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Abstract
Keywords: Cascaded Subsystems, Global Positioning System, Frequency Acquisition

The purpose of this report is to report and discuss the progress of the project. This project aims to
develop algorithms for the design of cascaded subsystems and its applications to the communications and
signal processing. This project has been executed for one year. One accomplishment we have achieved
from this project is that we have applied this approach to design algorithms for the acquisition of Doppler
frequency in global positioning system (GPS). We combine the traditional approach of using fast Fourier
transform (FFT) and the chirped transform algorithm (CTA) to successfully estimate the Doppler fre-
quency. This approach, compared with the traditional algorithm, yields a faster algorithm with a higher
resolution. The design approach and derivation constitutes the main content of this report.
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abstract

The chirp transform algorithm, which can compute the Fourier transform of data in any set of equally
spaced samples on the unit circle, is used for the frequency acquisition in GPS receivers. This approach,
compared with the fast Fourier transform approach, is more flexible in setting the frequency resolution and
requires lower realization complexity for a fixed resolution.

1.1 Introduction

The signal acquisition in global positioning system (GPS) receivers is a coarse synchronization process for
estimation of the pseudo random number (PRN) code delay and the Doppler frequency; these estimates are
then used as the initial values for further tracking. Since the signal acquisition is the most time-critical and
computation intensive step in GPS receivers, recently several techniques using FFT have been developed for
either the acquisition of the Doppler frequency [1, 2, 3] or the acquisition of the PRN code delay [4, 5] such
that the realization complexity can be reduced. This letter focuses on the realization for the acquisition
of the Doppler frequency. We observe that if one desires to estimate the Doppler frequency with a finer
resolution, the approaches via the FF'T still require a large number of received data and thus demand high
realization complexity. This disadvantage arises because the FF'T evaluates the Fourier transform of data
at uniformly spaced samples of the whole unit circle, but the interested and possible Doppler frequencies
are within only a small frequency band. Therefore, this paper uses the CTA to overcome this drawback by
exploiting the property that the CTA can compute the data spectra only within a specified frequency band
with a designed resolution. This approach, compared with the FF'T approach, is more flexible in setting
the frequency resolution and requires lower realization complexity for a fixed resolution.

1.2 Signal model and maximum likelihood estimation:

Let the received GPS signals for standard positioning service via the receiver antenna have been down-
converted to a digitized baseband signal which is given by the following equation,

r(n) = AP(nTs — 1)l @etwan 4 o(p), (L.1)

where A denotes the amplitude, T the sampling period, P(-) the f1-valued coarse acquisition (C/A)
code function, 7 the code delay with respect to the GPS system time, w;, and wy denote respectively the
digital baseband offset and Doppler radian frequencies, and v(n) represents the noise. The digital offset
frequency wy is commonly known and is caused by the mismatch between the signal carrier frequency and
the frequency of the local oscillator. Note that the signal model adopted here neglects the code delay
arising because of the Doppler effect; besides, the effect of navigation data, as commonly done, is also
neglected because its period is usually much longer than the duration of the available data samples. The
technique of the maximum likelihood estimation is commonly employed to estimate the code delay and
the Doppler frequency from the received data. The likelihood function, assuming the white Gaussian noise
v(n), has been derived in [6, 7], given by

1 N-1
L(m,w) = E' > r(n)p(n + m) exp(—jon)[? (1.2)
n=0

where N denotes the number of received data r(n), p(n) = P(nTy), and Ny represents the two-sided power
spectral density of the noise. The maximum likelihood estimator finds m and @ such that the likelihood
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function (1.2) is maximized. Notice that the obtained m means that the code delay estimate equals mT}
and the frequency @ represents the estimate of the sum of the baseband offset frequency wjy and the Doppler
frequency wg. Since only the frequency acquisition is concerned here, we assume that the code delay m
has been obtained, the problem remains to estimate the frequency @ to maximize the likelihood function
n (1.2).

1.3 FFT approach

Setting @ = 2wk/N in (1.2) with & = 0,..., N — 1, we observe that the FFT can be used for com-
puting the summation term within the absolute function in (1.2) so that the computational complexity
can be significantly reduced. Thus, the acquisition process first uses the FFT for computing Y (k) =
Zf:[;ol r(n)p(n + m)exp(—jnk/N) for k = 0,..., N — 1, then finds the index k in which |Y (k)| is the
maximum; the frequency corresponding to this index is the obtained estimate; that is, © = k/(NTs). The
frequency resolution of this approach clearly equals 1/(NTj); hence, if a finer frequency resolution is de-
sired, then the required N and the realization complexity should be increased. For instance, if the desired
frequency resolution is 100 Hz with the sampling frequency 3 MHz, then N should be no less than 30000;
the FFT of this length demands heavy computation load and a large size of memory.

1.4 CTA approach

The FFT approach is inefficient because it computes the data spectra with its frequencies around the whole
unit circle but the interested Doppler frequency varies only within a small band. For instance, the Doppler
frequency of the GPS signal varies at most from -10 kHz to 10 kHz. Hence, we use the CTA [8] to overcome
this drawback. Let the desired resolution be Aw and the bandwidth of the Doppler frequency variation is
no more than (M — 1)Aw, as shown in Fig. 1.1. Then the CTA evaluates the Fourier transform of data at
only M frequencies, denoted by wp = wp + kAw for k =0,..., M — 1 by the following equation,

N-1

Y (el¥r) = Z r(n)p(n + m)e Ik = Wh/2 Z p(n+m)e —jwpnyyn? /2y —(k=n)?/2
n=0
, N-1
= WH2Y " y(n)h(k - n) (1.3)
n=0

where W = e 798 y(n) = r(n)p(n + m)e 9" Wn*/2 and h(n) = W/, for —=(N —1) <n < M — 1,
otherwise h(n) = 0. Notice that the summation in (1.3) is just the linear convolution of y(n) and h(n) which
can be realized by using the FFT for reducing the computation complexity. The FFT length is chosen to
be L = M + N — 1 so that the circular convolution can equal the linear convolution for 0 < k < M — 1.
The block diagram to realize the CTA via FFT is depicted in Fig. 1.2. The detailed operation of each step
is given as follows: (1) Padding M — 1 zeros after y(n) yields y'(n) which is of length L. (2) Delaying h(n)
by N — 1 yields h/(n), that is h'(n) = h(n — (N — 1)), so that h'(n) is causal. (3) Taking FFTs of y'(n)
and h/(n) yields Y'(l) and H'(l) respectively for [ =0, ..., L — 1. (4) Multiplying together Y’(I) and H'(I)
and taking IFFT of Y'(I)H'(l) results in z(n). (5) Extracting the last M data of z(n) yields 2/(k), then
multiplying 2'(k) by Wk /2 for | = 0,...,M — 1, we obtain Y (e/“*). One can find that the CTA is flexible
to design the frequency resolution; moreover as the frequency resolution increases, we can increase M only
but keep N unchanged. This advantage thus can be taken to lower the realization complexity in frequency
acquisition especially when a fine frequency resolution is required.
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Figure 1.1: The frequency samples for CTA
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1.5 Realization complexity and computer simulation

The realization complexities of the FFT and CTA approaches are first discussed. For simplicity, we
consider only the complexity to realize the Fourier transform using either the FF'T or the CTA but neglect
the complexity to take the absolute values and to find the maximum from these values in the estimation
algorithm. We also assume that the size of FFT should be of radix 2 such that realizing an FFT of length
N requires % logy, N complex multiplications and N log, N complex additions. Hence, the FFT approach
needs to realize the product r(n)p(n +m) and an FFT operation, and thus requires in total N + % logy N
multiplications and N log, N additions. The CTA, in addition to realizing one FFT and one IFF'T of length
L, needs to realize 2L + 1 complex multiplications, including N multiplications for realizing the product
r(n)p(n +m)e 3" Wn*/2 [, multiplications for Y'(I)H’(l), and M multiplications for 2’(k)W**/2. Hence,
the CTA in total requires 2L + 1 + L log, L multiplications and 2L log, L additions. Note that the FFT
operation on h/(n) is not included because it can be computed and stored prior to the frequency acquisition.

Assume for example that the Doppler frequency may vary from -10 kHz to 10 kHz and the sampling
frequency is 3 MHz. If the required resolution is 100 Hz, then the data length should be no less than
30000 for the FFT approach to attain this resolution. Hence, let the data length of the FF'T approach be
N = 32768; its realization will demand 278528 multiplications and 491520 additions. Using CTA, we need
M —1 = 20k/100 = 200 and thus M = 201. The FFT size can be chosen up to L = 16384 under which
the CTA realization complexity is still less than that of the FFT. If L = 4096, then the CTA realization,
besides the reduction in memory, demands 57345 multiplications and 98304 additions, about one fifth of
the computation complexity of the FFT approach. The simulation of the CTA approach for L = 4096 with
the signal-to-noise ratio (SNR) of —20 dB, wj, = 0 and wg/27 = 3000 Hz has been performed; one typical
simulation result of |Y (e/“*)| for k = 0,---,200 is shown in Fig. 1.3 in which the maximum peak occurs
at the bin number 131, corresponding to the frequency of 3000 Hz, demonstrating the effectiveness of this
approach.

1.6 Summary

In this paper, the CTA is employed to develop a frequency-acquisition algorithm which, compared with
the FFT approach, is more flexible and yields lower realization complexity at a given resolution for the
estimation of the Doppler frequency. The proposed approach is used for the GPS receiver; naturally it can
be used for the frequency acquisition of any communications via the modulation technique of the direct
sequence spread spectrum.
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