
行政院國家科學委員會專題研究計畫 期中進度報告

建立一符合軟體成熟度模式Level2之需求管理及Level3之

需求開發工作流程模板(1/3)

計畫類別：個別型計畫

計畫編號： NSC94-2213-E-009-112-

執行期間： 94 年 08 月 01 日至 95 年 07 月 31 日

執行單位：國立交通大學資訊工程學系(所)

計畫主持人：王豐堅

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 95 年 6月 28 日

1 The modification of system objectives could violate the organizational needs.

1

行政院國家科學委員會專題研究計畫期中報告
計畫編號：94-2213-E-009-112-

執行期限：2005.08.01 至 2006.07.31

主持人：王豐堅 國立交通大學資訊工程系

計畫參與人員：王靜慧等研究生

Abstract.
Fast change of information techniques introduces the
considerable needs of better software integration and
generation over various hardware, operating systems, and
applications. Facing the highly changeable environment,
software developers encounter more and more difficulties
and challenges. To extract the requirements of projects is
getting more difficult; however, there is no perfect
solution currently.
Capability Maturity Model Integration (CMMI) is the
most popular approach that can be used to guide process
improvement across a project, a division, or an entire
organization. One CMMI benefit expected is increased
focus and consistency in requirement development and
management. There are lots of researches which address
related problems in requirement development process, but
none of them consider the overall areas of requirement
development process. Identify project requirements from
particular perspectives reduces the successful opportunity.
Furthermore, all of them did not follow the CMMI which
take account with all phases of requirement development,
so we provide a model which could supports the
guidelines of requirement development process area of
CMMI level 3. If developers use the model, it can help
the organization to achieve the goals of Requirement
Development (RD) process area of CMMI Levels 3.

Keyword: Requirement Development, CMMI.

1. Introduction

During requirement development, we encounter many
problems that occur again and again. The question we
must ask ourselves is how we are going to solve it this
time. Documenting useful models is one way that you can
reuse. The information associated with the documents that
represent how it is better to solve the requirement
development problem [1].
On the other hand, CMMI is a process improvement
approach that provides organizations with the essential

elements of effective processes. It can be used to guide
process improvements across a project, a division, or an
entire organization. CMMI is claimed to help integrate
traditionally separate organizational functions, set process
improvement goals and priorities, provide guidance for
quality processes, and provide a point of reference for
appraising current processes [2-5], but there is not a
systematic approach to get the realistic benefit from this
process improvement approach.
In addition, requirement development is the hardest work
of software life cycle, but it is the most important factor to
decide the success of project. Based on above observation,
we decide to propose a model to help developers achieve
the targets of Requirement Development process area in
CMMI Levels 3.
Our model elaborates requirements from goal
[1][4][9][19][20], use case [14][21][22], and scenario
[8][11-13] view points according to the practices of RD
process area in CMMI Level3. The model realizes the
requirements specification by questionnaires.
Recommendable requirement development processes are
provided in CMMI. Our model follows the order of these
processes to provide corresponding questionnaires as well
as to get the expected products, which fulfill the goals
then.
The report is structured as follows: In Section2, we
present a short survey on requirement development
methodologies, focusing mainly on the relevant
researches of CMMI, software patterns, and goal-driven,
use-case-driven, scenario-driven approach. In Section 3,
we present our model, giving both template and semantics.
Our model is defined as a set of questionnaires and a high
level execution process. We also present a Workflow
system that is used throughout the research to illustrate
the presentation. Conclusion and future direction of our
work are given in Section 4.

1 The modification of system objectives could violate the organizational needs.

2

2. Related Works

2.1. CMMI and Related Researches

The first version of Capability Maturity Model (CMM) [2]
was released in 1991. The CMM has evolved to CMMI
[3], which enables the continual growth and expansion of
the CMM concept to multiple disciplines, such as system
engineering, software engineering, integrated product and
process development, and supplier sourcing.
Requirement Development (RD) Process Area (PA) is
concerned necessarily in Level 3 of Capability Maturity
Model Integration (CMMI) [4][5]. In RD-PA3 (RD-PA in
Level 3), there are several goals to be achieved. Software
developers might achieve the specific goals based on the
generic goals. RD-PA3 has three types of requirements:
customer, product, and product-component requirements.
These requirements address the needs of relevant
stakeholders, product attributes and constrains for design
decision. Above goals are implemented by practices that
not only cover the products, but also consider their
generation processes and limitations from stakeholders.
There is a method [7] creating a meta-model which
represents the relationships among elements such as
organization policy, restricted resources, and functional
requirements. The design of the meta-model is
emphasized on requirement management and elicitation
traceability, but disregarded other influence factors. This
model does not cover the whole improvement essentials
of RD-PA3, so we provided a model which could further
the organization maturity to RD-PA3.

2.2. Current States of Requirement Engineering

The Goal-Driven (GD) [1][4][9][19][20] approach
elaborates software requirement from high-level goals to
low-level elements. It also can support goal refinement
and element identification. The identification of an
element such as component, subsystem, system, et al.
contributes to its subject establishment in Use Case-
Driven (UCD) approach [14][21][22]. UCD approach
aims at functionality refinement and execution scenario
extraction of each element identified from GD approach.
Scenario Based-Driven (SBD) [8][11-13] approach
displays actor execution scenario in interaction diagram,
e.g., message sequence chart, sequence diagram of UML,
swimlane chart of UML. SBD approach combines
scenario(s) of each element to form a complete
description of system behaviour. UCD approach can make
up for GD approach and the insufficiency of UCD
approach can be remedied by the SBD approach. It could
earn below benefits to apply three approaches together to
analyze software requirements:
1. Support requirement development from elaboration

to validation;
2. Provide traceability because the relationships among

the products of each approach are generated
(automatically);

3. Higher reliability because the software requirements
are extracted from original goals;

4. Higher maintainability supports by the requirement
traceability;

5. Higher readability because by displaying execution
scenario with interaction diagrams and representing
functional requirements with use case diagrams;

6. Support many analysis methodologies [8][11-13] of
interaction diagrams.

3. The Model

Our model develops and elaborates software requirements
from goal, use case, and scenario view points based on the
recommended processes of RD-PA3 [3-5]. The model
realizes the requirements specification by questionnaires.
The replies of questionnaires can be used to construct the
work products of RD-PA3.The recommended process has
three stages which are development customer
requirements, development product and product-
component requirements, and analysis and validation
requirements.
In development customer requirements stage, developers
elicit needs from various stakeholders with questionnaires
designed for translating the high-level goals into detailed
software functions. Our model also proposes a method to
consolidate various inputs from the stakeholders.
Moreover, there are two refinement sub-models,
Customer Requirement Derivation Model CRDvM and
Customer Requirement Decision Model CRDcM,
introduced to help developers to obtain more information
by reconsidering the replies of TSQ and resolve conflicts
by making decision with the information recorded.
All requirements gotten from stakeholders are represented
in a domain specific language. Our model transforms
customer requirements into technological requirements in
development product and product-component stage with
actor and use case identification concept. The model
establishes product and product-component requirements
by identifying the elements boundary, eliciting functional
requirements from relevant actors, and defining the
communication interfaces of each product and product-
component.

The last stage of the recommended process is not
concerned in this year.

Figure1. The requirement development recommended

process of RD-PA3

1 The modification of system objectives could violate the organizational needs.

3

4. Development customer requirements

Somerville and Sawyer [24] defined a stakeholder as
“anyone who has a direct interest in or benefits from the
system that is to be developed”. A stakeholder could be a
project manager, a marketing people, an end-user, a
software engineer, a support and maintenance engineer, et
al. All information from stakeholders could directly
influence the determination of customer requirement
adoption [25]. The analyzed results can be transformed
into a set of customer requirements.
4.1 Stakeholder selection
One of the difficulties in above works is extracting useful
stakeholder(s). The information from a non-appropriate
stakeholder neither helps requirement development, nor
reduces the development complexity. The stakeholders
influence continually the requirement life cycle.
Therefore, our model identifies appropriate stakeholders
before development customer requirements.
For a project, its importance, system objects, urgency
degree, consuming effort might be the most significant
factors to affect the selection of stakeholders. Based on
these factors, our model is designed with below questions
used to identify project stakeholders.
(1) How important is the targeted system for the

organization? – The targeted system may be
developed because of strategic or operational needs
of the organization. The necessity degree of the
envisioned software can decide the importance of the
target system. An organization could promote stricter
criteria of stakeholder selection to more important
systems.

(2) What are the objectives of the targeted system? – The
organization needs are referred to modify the objects
of the targeted system.

(3) How urgent is this project for the organization? – The
urgency degree of the project was decided against
time limitation, budget of the project, and personnel
of the organization. The evaluation of urgency degree
is supported by below questions:
(a) How much available time do you have?
(b) How much development time does the software

need?
(c) How much cost is needed to build the system?
(d) How much is the price of the system?
(e) How many personnel should be used?
(f) How many personnel can be used?

(4) Who will use the system? – A user interacts with the
system and gets the direct benefit from the
functionalities provided from the system.

Our model classifies the candidates into four groups
(shown in Table 1): development team, supporting team,
business team, and users. The developer refers the
answers of questions to choose appropriate members
into development team, supporting team, and business
team.
A system serves various types of users who could play
different actors of the system. An actor is interested in

some functionalities of the system and interacts with
system on specific behaviours. Consequently, all actors
of the system are the necessary stakeholders whose use
behaviours and functional needs are essential factors
that should be considered.

4.2 Needs Elicitation
The requirements of the system will be explored from
various points of view. For example, the marketing
group is interested in the functions and features that
will excite the potential market. End-users may want
the features they are familiar with and that are easy to
learn and use. In this step, our model provides a set of
questions performed in three steps, TSQ, to elicit
stakeholders’ needs in a proper sequence. TSQ helps
developers to progress stakeholder needs step by step.
1. The questions in TSQ’s first step
The questions in the first step focus getting contents
from stakeholders on goals, market space, economic
benefits and limitations. This step helps an organization
to evaluate how much confidence and agreeableness
stakeholders have for this targeted system.
(1) Do you agree to develop this software? – This

question helps an organization to indicate the
stakeholders who agree to build the software.
Who could request for this targeted system? –The
requesters are the major customer group. This
question contributes to find out the major market of
the product.

(2) Who could use the solution? –This question helps
to indicate the users who may use this software.
The estimation of expected future user group
determines the size of potential market of the
targeted system.

(3) What are the major functionalities of the targeted
software? – This question is designed to gain the
(kernel) essential functionalities from various
stakeholders’ view points.

(4) What economic benefits will be gained from a
targeted system? – This question tries to
understand the expectation of economic benefits
expectation targeted benefits of the system from
stakeholders.

(5) Are there other sources, such as unfamiliar skill,
software, and hardware, needed for developing the
targeted software? – This question helps
developers to evaluate the cost of extra requests.

2. The questions in TSQ’s second step
The questions in the second step help stakeholders to
gain a better understanding of the targeted system.
These questions are designed in order to retrieve the
functionalities, constraints, potential user groups, and
execution environment of the targeted system from
each stakeholder.
(1) How many kinds of users for the targeted systems

and who are they? – The question guides
stakeholders to reply by referring to the results of
question (4) in stakeholder selection and questions
(4) in stakeholder selection and questions (2) & (3)
in step one and thus to identify the user types

1 The modification of system objectives could violate the organizational needs.

4

(actors). Moreover, these actors can be treated as
necessary stakeholders.

(2) What kind of execution environments do the
targeted systems operate in? –This question
attempt to gain the information about the execution
environment of the targeted system for (software)
design and implementation.

(3) What are the detailed functions of major

functionalities in targeted software? – This
question guides stakeholders to refer to the
suggestions from the identified actors to refine the
results of question (4) in the first step further.

(4) What characteristics should target software
possess? – The question identifies the stakeholders’
expectancy of the targeted system. This
information provides to non-functional

requirements identification.
3. The questions in TSQ’s third step

An appropriate stakeholder can give more suitable
answers. On the contrary, the information from a non-
appropriate stakeholder can not help requirement
development, but increase the development complexity.
The quantity of questions is another factor to affect the
quality of the answers. Moreover, the questions in steps

one and two don’t cover all relevant items. If stakeholders
want to provide additional information, the questions in
this step can help derive the data. A selected stakeholder
may indicate someone who is not in the stakeholder list
but could contribute toward the requirement development.
The questions include:

(1) Are you the right person to answer these
questions?

(2) Are your answers official?
(3) Am I asking too many questions?

Table1. The template of stakeholder selection
Project ID: p00001 Project Name: workflow management system
Description: workflow management system supports electronic office.
How much importance of the targeted system
for the organization?

■ very important □ important □ common □ less important □ not important

How urgent is this project for the
organization?

□ very urgent ■ urgent □ common □ less urgent □ not urgent

 How much available time do you have? Six months
 How much development time does the

software need?
Five months

 How much cost is needed to build the
system?

1 million

 How much is the price of the system? 2 million
 How many personnel should be used? One manager, one project manager, one software designer, two software engineers, two software

engineers, one marketing, and one sale.
 How many personnel can be used? One project manager, one software designer, one software engineers, one software engineers, one

marketing, and one sale.
What are the objectives of the targeted
system?

1. Providing a workflow management system to support office workflow automation.
2. The workflow management system provides the workflow creation function, organization

structure design function.
3. Each employee in the company can use this system to deal with the traditional paper work.

Who will use the system? Every employee of the company adopted the workflow management system could be the user.
stakeholders belong development organization

 The importance of someone for the project
Requirement Analyzer/ modeller Software Designer/e0006/Lily 8
System Architecture Designer Software Designer/ e0006/Lily 8

Software Engineer/e0007/Tina 7
Software Engineer/e0008/Tom 7
Software Engineer/e0009/Ben 7 Implementer

Software Engineer/e00010/Lo 6
Tester Software Engineer/e0007/Tina 7
Deplorer Software Engineer/e0008/Tom 7
Maintainer Software Engineer/e0009/Ben 7

Development Team

Others
Project Monitor Project Manager/e0003/Tom 8
Administrator Manager/e0004/Chris 10 Supporting Team
Domain Expert Domain Expert/e0005/Bob 8
Marketer Marketing/e0001/Joy 6
Sales Sale/e0002/Mary 6 Business Team
Customer Service Sale/e0002/Mary 6

stakeholders belong to an external organization
UserType1/NA/Grant 10
UserType2/NA/Mick 10 User types
System Manager 8

Notes:
1. The representation form of the stakeholder is organization role/employee id/employee name.
2. The importance of the stakeholder was divided into 10 degree from 1 to 10. 10 is the highest degree. It decreases progressively from 10 to 1.

1 is the lowest degree.

1 The modification of system objectives could violate the organizational needs.

5

(4) Can anyone else provide additional information?
(5) Should I ask you anything else?

4. The operation policy of TSQ
TSQ is able to help developers adjust the stakeholder
candidates and extend the information collection
capability, but that is not enough for guaranteeing the
quality of answers. Therefore, all answers we get from
stakeholders are required to satisfy the following
conditions:

(1) All TSQ repliers should be included in the
stakeholder list.

(2) All questions in TSQ need be filled.
(3) When an extra stakeholder is found in the third

step, the stakeholder list should be reconsidered.
This stakeholder could be added into or replaced
with someone in the stakeholder list. The
modification policy will be discussed below.

(4) The answer(s) of Question (5) in TSQ step three
should be recorded correspondingly.

There are two cases for the modification in (3):
Case1: The stakeholder belongs to the development
organization.
The key problem here is the role he/she will play. Every
stakeholder has a chance to provide his/her opinion.
The degree of influence is calculated based on the
importance of the person for the project. If the
calculation result is grater than the threshold, the
stakeholder will be put into the consideration list.
Each candidate stakeholder in consideration list is
corresponding to a data item set {si1, si2,…sin} used to
introduce a new stakeholder. An item sik, 1 ≤ k ≤ n,
represents a distinct activity type (e.g., replacement in
the stakeholder list or add the stakeholder to
stakeholder list) for adjusting candidate stakeholder list.
Each stakeholder has right to select his own activities
and the importance of sik, is counted by summing all the
importance values of the stakeholders who vote sik,.
Case2. The stakeholder belongs to an external
organization.
The key problem here is the user type identification.
There is a candidate stakeholder set. Each stakeholder
in the set has one or more corresponding activity for
adjusting user type list which consists of users of
different varieties. The preliminary list is generated by
stakeholder selection. The decision strategy of the
candidate stakeholders is the same as that in Case 1.

4.3 Specifying the Customer Requirement
The organized ability is important for showing potential
information from the elicited answers. The various inputs
from the stakeholders must be consolidated, missing
information must be obtained, and conflicts must be
resolved when documenting the recognized set of
customer requirements.
1. Consolidation for the replies from TSQ
The replies from TSQ should be consolidated as a set of
statistical values of the stakeholders’ opinions. These
values will be used in the following step. The replies are
mostly written with natural language and their analysis is
based on the semantic meanings. Here is not concerned

with natural language related problems. Instead, we just
provide a method to do information classification.
Let the set of replies of a question qj be qj.an,
qj.ans={a1,a2,…,an}. The set of reply classifications of qj is
denoted as qj.class, qj.class = {c1, c2…}. Each element ci in
qj.class is a set of the stakeholders who give the same
opinion. The answers from different stakeholders may not
equal, so we define another set qj.sim whose elements
contain two tuples to represent the similarities: The first is
an element in qj.ans and the second in qj.class. Two elements
in qj.sim which have the same replay but different
classifications indicate that the answer is similar to both
classifications. Two elements which have the same
classification but different answers indicate that both
answers are similar to the classification.
Each classification c indicates the stakeholders who give
the replies classified as c. Here, c’s importance, c.imp, is

defined as ∑
n

i

i.imps , where si is a stakeholder in c and

si.imp is the importance value for si in the project
considered. The higher c.imp is, the more people have the
same opinion on c. Moreover, from the classification sets,
we can know the opinions of various roles and the
distribution of stakeholders in these classifications.
2. Customer requirements management
TSQ supports developing preliminary customer
requirements. The following development proceeds with
the factors such as organizational needs, system
objectives, critical success factors, requirements and
mandates. TSQ helps developers elicit stakeholders’
requirements without explicit identification of semantics
of the relationships among these factors. Traceability
would greatly benefit requirements management,
facilitating requirements understanding, capture, tracking,
and verification. A Customer Requirement Derivation
Model (CRDvM) is created here for supporting
stakeholders to 1) establish traceable links to model
requirement dependencies, 2) develop requirements
taking account of organizational needs, critical success
factors, and mandates, and 3) generate requirement
change proposals based on system objectives.
CRDvM represents the interaction relationships among
software requirements, organizational needs, resource
limitation, constraints, and etc. The replies from TSQ
instantiate the elements of CRDvM. Developers follow
this model to concern direct or indirect relationships

c1.value = a1, c1 = {s1}and PUT c1 into qj.class
For from i=1 to i=n-1, n is the number of stakeholders;

For from x=1 to x=the size of qj.class
COMPARE (cx.value, ai+1)
IF the value of cx.value equal to the value of ai+1
THEN cx = cx∪ { si+1} BREAK;
IF the value of ai+1 is partial equivalence to the value of
cx.value
THEN qj.part = qj.part ∪ {cx, ai+1} BREAK;
IF the value of ai+1 does not equal to the value of cx.value
THEN qj.class = qj.class∪ {ci+1} and ci+1={ s1+1} BREAK;

 END
END

1 The modification of system objectives could violate the organizational needs.

6

during the successive customer requirements progress.
The structure of CRDvM is shown as Figure2.
The details of CRDvM are described based on the six
components below:

(a) Organizational Needs
A targeted system is built to preliminary satisfy
organizational needs which could either be long term
strategic needs or short term operational needs. An
organizational administrator instantiates the

Figure2. The structure of Customer Requirement

Derivation Model
organizational needs at very high level. The needs
could influence the objectives of the targeted system.
(b) System Objectives
Stakeholders such as customer, program manager,
programmer, etc., specify the system objectives. The
most primary objectives are gotten at stakeholder
selection step and the objectives are revised
corresponding to question (4) and (5) at the first step of
TSQ. The objectives of the system are also adjusted
based on the organizational needs.1
(c) Critical Success Factors (CSFs)
Organizational needs help developers identify some
critical success factors. Resources such as cost, time,
budget, etc. are examples of CSFs, so the factors
concerned in stakeholder selection are CSFs also.
Requirements for the system are affected by these CSFs.
For example, the time that remains for the development
of a project decides the urgency degree of the project.
The essential cost is one factor to decide the profit of
the software product. During the negotiation associated
with the stakeholders, many trade-offs are made in
deciding the scope and functionality of the system
depending on their CSFs.
(d) Mandates
Requirements development is usually associated with
standards, policies, and procedures. These constraints
could reduce the flexibility of requirement development.
The question (6) in second step of TSQ collects the
extra matters needing attention in software
development.
(e) Requirement Hierarchy
The hierarchy of requirements abstraction level
maintains linkages between each requirement and its
sub-requirements created during the requirement
development. The requirements of different
significance or criticalities are evaluated; requirements

may be traced through the lifecycle at different levels.
(f) Change Proposals
Change proposals are extracted from system objectives.
The proposals are used to guide the modifications of
software requirements.

There may be conflicts among specification, elaboration,
decomposition, derivation and modification of
requirements, due to different interpretations, assumptions,
interests, viewpoints, experience, or objectives of the
stakeholders. Information for resolving these conflicts
must be maintained throughout the system lifecycle to
ensure that customer requirements are understood and
satisfied. Therefore, this research proposes a Customer
Requirement Decision Model (CRDcM) to support
developers to make a better decision.
The relationships of requirement development influenced
factors are displayed in CRDvM. The state of the
instances of these identified factors could be changed
constantly, so it is hard to make a strategic decision
during development time. CRDcM is designed to record
the progress of a decision making to cope with the
changeable environment.
Each type of object generations during software
development is based on a distinct rationale. Both objects
and generations could raise their own conflicts. CRDcM
supports the developers to record the cause of conflicts.
The developers evaluate the alternatives of each conflict
to derive its arguments with external assumptions. A
decision making was influenced by critical success
factors, and rationale. CRDcM allows each developer to
keep a record of progress of a decision making.
The details of CRDcM are described as follows:

(a) Conflicts
The produced objects of requirement development such
as customer requirements, organizational needs, and
system objectives are related one another; therefore an
object modification could raise a conflict(s). Such a
modification can be a revision of organizational needs,
customer requirement decomposition, or system
objective adjustment.
(b) Decisions
Facing these conflicts, the developers could find one or
more solution based on some critical success factors. It
is assumed that each candidate solution is associated
with some arguments for a possible situation. The
arguments could support or oppose the solution.
Developers make decision in accordance with the
arguments, rationale, and resource limitations. All of
these inter-mediums are maintained throughout the
software lifecycle.
(c) Rationale
In general, rationale construction provides large profits
for software development. However, the overhead is
high in capturing detailed rationale because it is usually
lack of tools for help. CRDcM displays the
relationships between the rationale and other factors
which maintain the mutual interaction. Again, the
details regarding rationale constructions are not
discussed here because of space limitation.

1 The modification of system objectives could violate the organizational needs.

7

5. Development Product Requirements

Customer requirements are analyzed in conjunction
with the development of the operational concepts to
derive the sets of more detailed and precise
requirements called “product and product-component
requirements.” In product requirement development

Figure3. The structure of Customer Requirement Decision

Model
stage, developers divide the whole software requirements
into several product or product-component problems.
Deriving the product and product-component
requirements addresses the operational concepts implied
in customer requirements, the limitations of the
architecture to be selected, the design of the targeted
system, and the distinct business considerations of
developers. There are three essential tasks to develop
product requirements which are product and product-
component identification, establishment, and allocation.
The incompleteness and inconsistency of requirements are
the most general problems during requirement
development. A correct identification of a product and
product-component boundary could lighten the efforts, so
deciding the boundary of the targeted system is very
important for establishing product and product-
component requirements.
The boundary recognition of product and product-
component should be supported by the component
identification. Boundary recognition and identification of
product and product-components are performed mutually
recursively. Besides, after each identification step, our
model provides several questions to help developers
obtain the actors related to each product or product-
component directly. Getting component requirements
from these actors could increase the requirements
completeness and consistency. The detailed information is
shown as below:
(1) Product Component Identification
According to Szyperski [13], the characteristic properties
of a component are that it: 1) is a unit of independent
deployment, 2) is a unit of third-party composition, and 3)
has no observable state. He gives the following definition
of a component:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition
by third parties.
There are several researches [26] which provide the
methods to do component identification.
(2) Actors Identification
To identify the actors, all extra elements who or what
directly interact with the product or product-component
should be concerned. The actors can be categorized into
three classes. One is the major actor who gets the
immediate services from the product, another is the
secondary actor who keeps the normal operations of the
product, and the third is the supporting actor who
supports some functions to the product. Our model uses
below questions to elicit the actors of each product or
product-component.

(a) Who or what use the product/product-component?
(b) What roles do they play in the interaction?
(c) Who installs the product/product-component?
(d) Who or what starts and shuts down the

product/product-component?
(e) Who maintains the product/product-component?
(f) What other systems interact with this

product/product-component?
(g) Who or what gets and provides information to the

product/product-component?
(3) Use Cases Identification
The functions provided to the actors are always applied
with information store and retrieval. The state transition
of a product could be triggered by an actor interaction.
The product operations activated by external events
generate output reports or interact with outside systems.
Our model refers the cooperation relationships among all
these supporting actors to design below questions that
help developers to elicit functional requirements of each
product or product-component.

(a) What functions does an actor want from the
product/product-component?

(b) Does the product/product-component store and
retrieve information?

(c) Which actor triggers the store and retrieval of this
product/product-component?

(d) What happens when the product/product-
component changes state?

(e) Is any actor(s) notified when the product/product-
component changes state?

(f) Do any external event(s) affect the
product/product-component?

(g) Which actor notifies the product/product-
component about those events?

(h) Does the product/product-component interact with
any external system?

(i) Does the product/product-component generate any
reports?

(4) The Project Glossary
Every business domain has its own language. The
glossary provided a dictionary of specific business terms
and definitions. In the project glossary, developers should

1 The modification of system objectives could violate the organizational needs.

8

record the preferred terms and list any synonyms under
the definition.
Developers repeat the above steps till all functional
requirements of the products and product-components are
established. These components cooperated together to
complete the functionalities of the software product. The
requirements of communication interfaces among these
components are necessary to be defined. Then, the
interfaces of products and product-components are
analyzed in conjunction with the communication concepts
to derive interface requirements.
(5) Interface Requirements Identification
The last step is to identify the interfaces among products
or product-components. Our model uses below questions
to elicit the interfaces requirements for products or
product-components one by one.

(a) What product(s)/product-component(s) could
communicate with the product/product-component?

(b) What functions do they request respectively from
this component?

(c) What communication formula is for each of these
functions?

(d) What interfaces are summarized for these functions?

6. Conclusion

Although there are many researches and commercial tools
used to solve requirement development problems, they
can not give an exact solution still. The difficulties of
software requirement development increase dramatically
in the highly changeable environment. The importance of
requirement development manifests clearly on the reasons
of a failure project.
Our model elaborates requirements from the viewpoints
of goal, use case, and scenario according to the practices
of RD process area in CMMI Level3. The model realizes
the requirements specification by questionnaires in
accordance with requirement development processes
provided in CMMI.
Our model collects and accumulates problem solutions on
RD and refers the most popular process improvement
approach CMMI. This model provides the ability to do
the elicitation of customer requirements and the
requirements establishment of product and product-
component. It provides a high acceptance methodology in
questionnaire referred to goal, use case, and scenario
driven approaches.
We are currently studying the feasibility of this model by
cooperating with some software companies. The future
work is to extend this model to achieve the goals of
“Analyze and Validate Requirement in RD-PA3”, and
then to implement a CASE tool to support the process
improvement of an organization on RD-PA3.
The major work of the next year is to: (1) extend this
model to achieve the goals of “Analyze and Validate
Requirement in RD-PA3”; (2) implement a CASE tool to
support the process improvement of an organization on
RD-PA3; (3) implement the models to accomplish the

goals of requirement management process area in CMMI
Level2 (RM-PA2); (4) implement a CASE tool to support
the process improvement of an organization on RM-PA2.

References

[1] R. Darimont, A. Lamsweerde, “Formal Refinement Patterns for
Goal-Driven Requirement Elaboration,” Proc. 4th ACM Symposium on
the Foundations of Software Engineering, pp. 179-190, Oct., 1996.
[2] M.Paulk et al., “Key Practices of Capability Maturity Model for
Software,” Version 1.1, Technical Report CMU/SEI-93-TR-25,
Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh,
Penn.,1993http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr24.9
3.pdf.
[3] CMMI Product Team, “Capability Maturity Model, Integration
(CMMI),” Version 1.1, Technical Report CMU/SEI-2002-TR-011,
Software Eng. Inst.,Carnegie Mellon Univ.,Pittsburgh,Penn.,2002,
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr011.pdf.
[4]CMMI Product Team, “CMMISM for Systems Engineering/Software
Engineering/Integrated Product and Process Development/Supplier
Sourcing, Version 1.1, Staged Representation (CMMI-SE/SW/IPPD/SS,
V1.1, Staged),” Technical Report CMU/SEI-2002-TR-012, Software
Eng. Inst., Carnegie Mellon Univ., 2002,
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf.
[5]Capability Maturity Model Integration (CMMI) from the Carnegie
Mellon University Software Engineering Institute,
http://www.sei.cmu.edu/cmmi/.
[6] L. V. Manzoni and R.T.Price, “Identify Extensions Required by RUP
to Comply with CMM Levels 2 and 3,” IEEE Trans. Software Eng., vol.
29, no. 2, pp. 181-192, Feb. 2003.
[7] R. Ceron, J.C. Duenas, E. Serrano, and R. Capilla, “A Meta-model
for Requirements Engineering in System Family Context for Software
Process Improvement Using CMMI,” Software Process Improvement:
6th International Conference, June, 2005.
[8] A.V. Lansweerde, L.Willemet, “Inferring Declarative Requirements
Specifications from Operational Scenarios,” IEEE Trans. on Soft. Eng.
Vol. 24, NO. 12, pp. 1089-1114, Dec. 1998.
[9] W. Heaven and A.Finkelstein, “UML profile to support requirements
engineering with KAOS,” IEE proceedings, Software, Vol. 151, NO. 1,
pp. 10-27, Feb. 2004.
[10] A.M. Hickey, A.M. Davis, “Requirement Elicitation and Elicitation
Technique Selection: A Model for Two Knowledge-Intensive Software
Development Processes,” Proc. 36th Int. Conf. System Science, pp. 96-
105, Jan. 2003.
[11] G.D. Penna, B. Intrigila, A.R. Laurenzi, and S.Orefice, “A XML
Definition Language to Support Scenario-Based Requirements
Engineering,” Int. Journal of Software Engineering and Knowledge
Engineering (IJSEKE), vol. 13, no. 3, pp. 237-256, June, 2003.
[12] A.V. Lamsweerde, L. Willemet, “Inferring Declarative
Requirements Specifications from Operational Scenarios,” IEEE Trans.
on Soft. Eng., vol. 24, no. 12, pp. 1089-1114, Dec. 1998.
[13] S. Uchitel, J. Kramer, J. Magee, “synthesis of Behavioral Models
from Scenarios,” IEEE Trans. on Soft. Eng.., vol. 29, no. 2, pp. 99-115,
Feb. 2003.
[14] W.J. Lee, S.D. Cha, and Y.R. Kwon, “Integration and Analysis of
Use Cases Using Modular Petri Nets in Requirements Engineering,”
IEEE Trans. Software Eng., vol. 24, no. 12, pp. 1115-1130, Dec. 1998.
[15] B. Ramesh, M. Jarke, “Toward Reference Models for Requirements
Traceability,” IEEE Trans. Software Eng., vol. 27, no. 1, pp. 58-92, Jan.
2001.
[16]Patterns and Software: Essential Concepts and Terminology,
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html.
[17] H.Zhua, L. Jinb, D. Diaperc, G. Baid, “Software requirements
validation via task analysis,” The Journal of Systems and Software, vol.
61, pp. 145-169,2002.
[18] R.S. Pressman, Software Engineering-A Practitioner’s Approach
Sixth edition. McGRAW.Hill, 2005.
[19] A. van Lamsweerde, L.Willemet, “Inferring Declarative
Requirements Specifications from Operational Scenarios,” IEEE Trans.
Software Eng., vol. 24, no. 12, pp. 1089-1114, Jan. 2001.
[20] E. Letier , A. van Lamsweerde, “Deriving operational software
specifications from system goals,” Proceedings of the tenth ACM

1 The modification of system objectives could violate the organizational needs.

9

SIGSOFT symposium on Foundations of software engineering,
November 18-22, 2002, Charleston, South Carolina, USA
[21] B. Regnell , K. Kimbler, A. Wesslen “Improving the Use Case
Driven Approach to Requirements Engineering,” Proceedings of the
Second IEEE Inter. Symposium on Requirements Engineering, March,
1995, York, UK.
[22] Kexing Rui , Greg Butler, “Refactoring use case models: the
metamodel”, Proceedings of the twenty-sixth Australasian computer
science conference on Conference in research and practice in
information technology, p.301-308, February 01, 2003, Adelaide,
Australia

[23]R. O. Briggs, P. Gruenbacher, “EasyWinWin: Managing
Complexity in Requirements Negotiation with GSS,” Proc. of the 35th
Hawaii International Conference on System Sciences, 2002.
[24] Somerville,I., and P. Sawyer, Requirement Engineering, Wiley,
1997.
[25] C.Szyperski, Component Software: Beyond Object-Oriented

Programming, second ed., Addison-Wesley, 2002.
[26] J. Cheesman, J. Daniels, UML Components: A Simple Process for

Specifying Component-Based Software, first ed., Addison-Wesley,
2001.

