NSC94-2220-E-009-039-
94 08 01 95

95

07

31

10

(

)

31

R

(=) #+&7 2L

AP ELRAFTHEAT ORI L S LN RGBT P AR D)0
SRR R R LN BB AT E K N REET RARL D P DT
PRPALY ER - TR P F R U 2 Y EEN R S L

T BEEMA O NBERN o HERASFAUAES KA o 0

C

%

FRELFENBOE R LN KBRS o LLEP BTEP
?@ﬁﬁ PR RAES o A o AP F RS N2 B ERRH A R
MEo A s R R E SR F A PR HIFR T R R

TR RILER HT o I F R B RERTIREARK HRFRET R
GOREEFITILFEN 2P P oa {80 P F LML ARLTED 2 G -)50
%ﬁiﬁgﬁﬁmf,%&mﬁgi»ﬁiﬂﬁw’éaﬁﬁmﬁgﬁ
FodlRPHRAFYBANNARELS A RHLIETHE R FENAE - 5

o

AR R IIEP BB RPN T Sk AH S FE NG I N HRER
o o },ﬂf /}\55;,43;{%-;;.2,_?[94“4 g l;lr/;:;J-.ﬂzi Lig* ANk %

21 21
= "——;%

RiaEse G ALl P 0 AN EE TIEEP 4}3 B A e

(=) #F#ETH&
The SygemOn-Chip (SOC) desgn encompasss a large desgn space Typicdly, the desgner
explores the possble architedures sHecting dgorithms choosng architedurd dements, ad
condruding candidete architedures Designing such a complex sysem is hard; desgning such a
sysem thet will work corredtly is even harder. Design errors should be removed as early aspossble
othawise, arorsdatedted & the later Sageswill resuit acodly, time-consuming redesgnoydes Thus
the desgner dould face two diginct tasks in SOC desgn; carrying out design process itsdf and
egablishing the coredness of a desgn. Desgn corredtness is the main theme of thisprojet. This
project ams onthe formd verification for high-level synthesis and addresses on three issues: theorem
proving, propaty ressoning, and design for formd verification. Frd of dl, the project will develop
theorem proving technique for architecturd design. Based on Petri-Net modds; the theorem proving

verifies the reechahlity, admissibility, and correctness of task scheduling and resource dlocation. In
the propaty ressoning, the project will focus on merics of property covarage With accurate
caculation on property coverage, the notorious proparty-vaidation problem can be lessaned or even
lved. Fndly, atechnique on design-for-formel-verification (DFFV) will be developed, driven by
theorem proving and proparty reesoning. The DHFV technique will aid SoC desgners for eficertly
gpplying formdl verification in proof of their design.

Keywords: SoC, Formal Verification, Theorem Proving, Design for Verification

B A
A N
S T T - P
Sy TP

o~ EH;Z—'/;‘
I~ e T 2

FEPNF

o %% BT B B AR 2 - v ksl 2 (System-on-Chip) k9 IAg s2eh)k % o i
¥ o R AAERAA G o - e BEL S BAMP)E ANE - A F 0 ¥
BRBRBAGEENUPL AR R B AHN P LHEBFAE ANE - h iRyt e
FTIAZFP R EARED TR R RS P a s BN BE R PR
Bz ~EAEEE R AR T A AR o E B PR R EFE- Bd A T g
B 3V ROMAR 0 K3 jﬁ¢" Pl d i AR RE O AR NT - B AW
CEBAE R -
- BHFTAL DT FFRIBERFLREI L - B3 o Rdole G 2K SRR
HEAFRFELAQFSFTLARDELFAL - P o > FHel & F R0 B R 300 P

LR A R ERERMAIF LT S DAL

RV EEFOE AT R S FE PR ITRE

’
.
T
(
N3
-
i
e

9.

o

=

6‘

A s ERBYEF A OFE SR o KA o
FRWAT & o 3 ok i A A TR IR B IR 0 B T i R 5B R ehsE SRR
BRI A AT FERF o i»}; ;d‘jﬁ v b SRR R PR R 18RI T A i e PL:—‘J._& hf Al R

=T
LAl AR R H A A R A2

ETTRY

EHBREANL PR E o Bl 7T

KPR EF AL EE>T - BRI Z D ARREAITREDIIRET -

-~

Requirements Algorithm b .
Development ;

L L >

Task Allocation
(Partitioning, Assignment, Scheduling)

Reuse COTS Library o o
and Architectural 5
Interoperable Package [| (off-cycle update) Specification 5

Architecture Exploration

(off-cycle update)

i HW/SW co-development

o omen > redesign path

| Field prototyping |

@" - ;jﬁ ff"-‘BBB 53)‘L /IT yia

R o g g R 1 PRl BRI S HRERE N ERIFRIA o F - BAHAEL

PP FFRFEEFRFLRFEH LT - A A R e S ORRAR B ELTRF AL

FE A 2T LARNERFAL - P 0> FUFE A ERH T EBFRINNHL A S04 o L
R ABTEFE AR o Ra o Y RS HEHNRBERLTICEED AL FEWMOTE o2
SR PR S B TR SRR B IR 0 B A i 2 B TR engE ik K S A ehk
WERF o L7 HF 0 RESFERREEE QRII DS TR R A S B E A D {

Feni i o

—{?ma?ﬁﬁiﬁ‘F—{ﬁiﬁﬁﬁ%ﬁ%é

BlEndgh o GOV 0 AP FUBRED KRS P FIE S AN REHNL P AR

= é%ﬁﬁ

ITE R AN ESN ARG D P DT AR PRI AEY £ - R[1]-[3]- P
LA BRGNS A R S AW 3 BEENAR OV RERI o JHERE
(Equivalent Checking[4]-[15]¢ #-3]# % (Model Checking) [16]-[20]% - %@ > {x°
FRLFENBIER R 2N ERERLN 0 4o 0 T ILHE P (Theorem Proving) ~ 1 F 2
(Property Reasoning) - £ % /& # 5 (Property Coverage) ~ 7 {17 ;% % # (Design for Formal
Verification) & o Bl= 2 2\ @2 2 e o R B2 AN BB ARE ¥ R D B E I
P LFEEFER ERAFYR45%E (Vdidate)f 82 2 /gt o £ B H
G105 S HmE o deifie i o B0 FRE SRR UL MR it & A R A A
P g 2 2 - s 4o % (deadlock) ~ Fo#L B 5 (data dependency) ~ ¥ i & 4
(reachability) & - @ {5 £ & {7 {2 % 4 % (Property Checking) - §1* CTL & LTL ¥ 5 B4 %
R AMILERFZBEL o A AREE SR WAl AS IR LML BEF RIL

FSM ¢ Kripke #ic 3| FF 2 %2 0 2 BEIT RO RTLF T PR E -

Algorithm
l Reasoning About L\ Development

4

'y

Theorem Proving I High-Level
igh-Lev

|PropertyCheck|n K Synthesis

Modeling Checking I

Logic
| Equivalent Checking Synthesis

Bl- 1A\ A

3L BN R IR S S PR § R e] 3 R [5]-[20] 0 3 0 ¢ s A R A

SfRAS oo Poa A PR T T FE O AN EAT R R B AT ORTL W 0 2 R 1

LT F L ML A R FROTE TR 2 s 5 [21]-[26] - B 750 %
Jﬁcﬁxgﬁlkrg’rﬁmﬁrg i&{'ﬁﬁ*ﬁﬁiiﬁéfﬁﬁi/&ﬁoﬁ p,LJLgé g & A2 ,}'J—ﬁFﬁ 5’@5&,
AR B PR 3 A R R N s e L

bldeo & BEE Rk 3 Acknowledge &2 Request B itk 20 ¥ 02§ B () * "Reg— Ack”

Kdw df PR o XA 2t - fy i -4 Two acknowledges after one request” 2 # (£ 4R & o iH R

#"Req—>Ack” H - B F 4> [aihdy i o 3 F A ek R iR g 4 - 43 %L?f

o AN SREMLET R o kpud FlF BE < F 2 Dr. Chockler £ ek 552 — o b 4k)

5 oE 3 oAy M %ﬁﬁd m'&f i P (A ‘H}”“‘ﬂq M ﬁFfrm At e FRm oo kv R aﬁ—% m@'ﬂayf}g;g\.
it 2

BRE OQM e ARtz gipaaspPpds i deh i Fo

AR RS S BERIFEA S RERN > A R T L3
Mg B R AT RSB TR AT E P P o 1% %k e B (Petri-Net Model) iF % 2% 3%
AR HEFHEIRFL BRI IILEP 2P hea il T HERBRALTE
PG o AN RBEZLETRENS > FREIBT AT L A N

Ja&p Jﬁ;_{-# 2ﬁ;;#q3;h‘5§g»g$ A 23 —/* Z_ ,}4— ﬁﬁ?ﬁd Z%f'k—t&“%g o I f& 0 AN fra) 7

S B

<

\p

3
IR

—n

EPoa R FEPR Y R A#E S FE DG PN R E K
(Design-for-Formal-Verification)$£ jiF o 5 4135 3% S 2 3% 35 #-FT 25 & S fy %‘;{?iﬁ {5 @ * A
Nk R E R ES

PEY - ERE R TR RILEP BT e B o A P B 2 S N RR R R
U R o AU IR B R RECR ch 3T o B AN %R AT F 2 ® 324 i (Theorem

Specification) - @ {5 £ % B I TR EF RE c FFRAERFHR L F LR LEH GEF L
TREFTOHRIEA AT b B (deadlock) ~ F R B F (data dependency) ~ ¥ i = |2
(reachability) % -

o ENPERALTEP s Py °‘§iﬁ4'riﬁﬁ*ﬁ1€ﬁ%i)i§_fb W ST
23R E o AR) R R BB 2 vk 8 (FSM) 0 B i > 0 Kripke B3 # s -
BORPRBEVRFEEFEAF L EAHL P HGHEREE <] Q\FE?,LH%@LEh;;

¢ 45 A A s AT o B BT
B PR R B SRR 0 2SR T AR SR

PEOERLE - BRI R SR FEHNHRE LI LRSS PR o AR
s By chgd MR RS 2 S RY E DRI T R N R o dopt - Ko
AR ERL DR DT e B ;wfa;,g_ﬁﬂ,lqﬁ S e

Design-for-Formal-Verification #-# = % 8 & & f S echE & - % > Ff24d 37

8 g e 410 'riﬁm&f;*; CREN S

VAR 2 Z’ﬂ 3‘&“.55? EcAl ’EE

I~ BEREHm

PERMFELANTI- AP THT - R g &k
1. Tsung-His Chiang and Lan-Rong Dung, 2006, June, “System Level Veification on High-Level
Synthesis of Dataflow Algorithms Using Petri Net,” WSEAS transactions on Circuits and Systems, Issue 6,
Vol. 5, pp.790-796

2. Tsung-Hsi Chiang, and Lan-Rong Dung, “System-Level Verification on High-Level Synthesis of
Dataflow Graph,” ISCAS 2006.

T ,{H"”‘;\,%F\’f""

System L evel Verification on High-Level Synthesisof Dataflow
Algorithms Using Petri Net

Tsung-Hsi Chiang & Lan-Rong Dung
Department of Electrical and Control Engineering
National Chiao Tung University
300, Hsinchu City
Taiwan, R.O.C.
aries.ece89g@nctu.edu.tw

Abstract: - This paper presents a formal verification algorithm using the Petri Net theory to detect design errors
for high-level synthesis of dataflow algorithms. Typicaly, given a dataflow agorithm and a set of
architectural constraints, the high-level synthesis per-forms algorithmic transformation and produces the
optimal scheduling. How to verify the correctness of high-level synthesis becomes a key issue before mapping
the synthesis results onto a silicon. Many tools exist for RTL design, but few for high-level synthesis. Instead of
applying boolean algebra, this paper adopts the Petri Net (PN) theory to verify the correctness of the synthesis
result, because the Petri Net model has the nature of dataflow algorithms. Herein, we propose two approaches
to realize the PN-based formal verification algorithm and conclude the best one who outperforms the others in
terms of processing speed and resource usage.

Key-Words: - Formal verification; high-level synthesis; Petri Net; dataflow graph

mailto:aries.ece89g@nctu.edu.tw

1 Introduction

With increasing design complexity of digital signal processing system, verification
becomes a more and more important within the design flow. In modern circuits, it is
observed that up to 80% of the overall design coss are due to verification. Formal
verification techniques which ensure 100% coverage of function and system model
correctness have gained large attention. In [1,2], authors give excellent survey of
major trends of formal verification techniques which can be classified into two
categories, equivalence checking [2] and model checking [3]. Equivalence checking is
used to proof the functional equivalence of two design representations modeled at the
same or different levels of abstraction. Model checking is a process that checks the
correctness of a design model with given properties. Although formal verification for
logic synthesis has been studied very extensively, little work has been done for
high-level synthesis.

This paper presents a novel verification algorithm to verify high-level synthesis
(HLS) of dataflow algorithms. Given a dataflow graph (DFG) and architectural
congtraints, the HLS aims to generate the task schedule with processor assignment.
Typically, the HLS performs algorithmic transformation, such as retiming, scaling,
and unfolding, on the DFG to meet the architectural constraints, and allocates
resources accordingly [4,5,6,7,8]. Both agorithmic transformation and resource
allocation require complex procedures. These procedures are rather heuristic and
error-prone. The integer linear programming (ILP), for instance, is one of the popular
techniques applied for HLS. The success of ILP is relied on the completeness of
clauses. Any mistake or incomplete description made in the ILP may result in an
illegal solution and screw up following synthesis results. This paper intends to present
aformal verification algorithm to unveil the faults produced in HLS.

In the proposed algorithm, we employed the Petri-Net model as the formal
description to check the correctness of dataflow behavior. Petri Net model has the
nature of dataflow computing, and hence a good tool for the verification of
algorithmic transformations and datapath scheduling. The use of the Petri-Net is
two-folded. First, the Petri-Net model of dataflow algorithm can hold the data
dependence and hence any legal transformation has to conform to the firing rules of
the Petri-Net model. Secondly, the scheduling candidate is correct if and only if the
initiation of each task is allowed in the Petri-Net model. Comparing with the
traditional model checking techniques, the first use can provide simple but thorough
model for restructured algorithms while the second use can avoid false negative
problems.

The inputs to the proposed formal verification are the system description and task
schedule. The system description is basically a fully-specified flow graph (FSFG) [9].

The FSFG represents the behavioral specification of the dataflow algorithm which is
aso a design entry of HLS. In HLS, to meet the architectural constraints, the
algorithmic transformation normally reconstructs the initial FSFG to find out optimal
scheduling results. The reconstructed FSFG is admissible if and only if it is equivalent
to the initial FSFG To verify the correctness of the task schedule, the proposed
algorithm first converts the initial FSFG to a Petri-Net model which is expressed by
Petri-Net characteristic matrix, because any admissible reconstructed FSFG has to
have the same characteristic matrix.

Another input is the schedule, the DUV (design under verification), generated by
HLS. The schedule is expressed in the format of processor-time chart (or chart).
The chart equally shows the firing sequence. The proposed verification uses the
firing sequence to unveil the legal algorithmic transformations applied for the original
FSFG. The legal algorithmic transformations will then be candidates to trace the firing
sequence of the given schedule.

Based on the inputs, the proposed verification first extractsthe initial firing pattern
and uses it to determine the candidate reconstructed FSFGs. The candidates will then
be verified with the Petri-Net model. If there exist at least one candidate who can
allow the firing sequence to execute legally (without against the firing rules), the HLS
result is claimed as a correct solution; otherwise, the verification will show the
counter example in proof of the incorrectness. In this paper, we propose two
approaches to realize the PN-based formal verification and conclude the best one who
outperforms the others in terms of processing speed and resource usage.

The remainder of this paper is organized as follows. Section 2 describes some
useful definition and proposed modeling technique. The proposed high-level
verification technique and verification algorithms are presented in section 3. In
section 4, we discuss the complexity analysis of two verification algorithms. In
section 5 some experimental results are given. Section 6 gives the conclusions of this

paper.

2 Definition and M odeling
In this section, we will discuss some useful definitions and proposed
transformation technique to transform a FSFG into PN model.

2.1 Fully-Specified Signal Flow Graph

Fully-Specified Signal Flow Graph (FSFG) [9] or DFG is a natural paradigm for
describing DSP agorithms. A FSFG Gesrs(VE,D), where V={v,...,.v,} and
E={ei,....en}, IS a three-tuple directed and edge-weighted graph which contains a
vertex set V, adirected edge set E, and an ideal delay set D. Vertex set V represents

atomic operation of functional units. A vertex may have a zero execution delay, such
as the signal duplicator, or may be assumed to take non-zero unit time, such as adder
or multiplier. Directed edge set E describes the direction of flow of data between
functional units. Inter data dependencies between functional units are denoted by
weighted edges. Figure 1, for instance, shows a third-order IIR filter in the form of
FSFG

vl2
w13 a2 v []

@ 1 time units adder (X) 2 time units multiplier

Fig. 1. A third-order IR filter in the form of FSFG,

2.2 Petri Net Model

A Petri Net Gpn(P T, WM) isafour-tuple [10], where P={p;,...,pn} and T={t,....t} are
finite sets of place and transition, W is the weighted flow relation, and Mg is the initial
marking. A marking is a function M:P® Z. If M(p;)=k for place pi, we will say that p
is marked with k tokens. If W(u,v)>0, then there is an arc from u to v with weight
W(u,v). Usually, matrix representation gives a complete characterization of Petri Net.
The characteristic matrix of PN is defined by incidence matrix A, which is a
|P|" [T|-matrix with entries

A =Witr,, pig-ngi,trjg (2)

Marking my is an [P|” 1 column vector with entities mo(i)=M(p;), " pi T P. We say that
isavalid marking if and only if mp(pi)2 0. Let x={tr;}=(...,0,1,0,...) be the unit [T|" 1
column vector, which is zero everywhere except in the j-th element. Transition t; can
be represented by the column vector x. We say that t; is enabled at a marking mg if
mg® A%; for every element of my is a non-negative integer. And the result me¢of firing
enabled transition t; in a marking my is represented by

mé=m, + Axx; 3

2.3 Transformation from FSFG to PN

The FSFG is attractive to agorithm developers because it directly models the
equations of DSP algorithm. Yet, it does not sufficiently unveil the dynamical
behaviour and the implementation limits in terms of the degree of parallelism and the
memory requirement. Thus, we use Petri Net to model DSP algorithms. It also alows
us to discover the characteristic of the target architecture and to observe the dynamical
behaviour of the algorithm.

The FSFG Gesr(V,E,D) of a DSP algorithm can be modelled as PN Gpn(P, T,W, M)
by applying following rules. First, functional element set V and edge E of FSFG can
be transformed into the transition set T and the place P with respect. Since, each place
in PN has only one output, the pseudo transition of each fork edge will be added as
source duplicators. At last, the delay element set D of edge in FSFG is corresponded
to the number of tokens of place in PN. By applying above transition rules, an
example in Figure 2 shows the PN model of the third-order IIR filter in Figure 1. The
characteristic matrix A with the initial marking m shows the matrix representation of
the PN model, for instance.

=1

tr3

=]

i1

p16

16 =

PT

o+
ra

trd rd 8 10 11 12 13 14 £13
a -

-1

o
o B
-
th
o
-+
o
my
M

-
OO0 0O00O000O0 == 000000000 dn

fa
-

1
1
GGGGGGGGDGG—\GG—\—\GGLGG

o I s e O Y Y O s s N i i |

1
R =R=R=R=R=R=R =R ===l N =R =R =R =R ==]
1

OO0 0O00O000O00O0000a00O= 000 =900

OO0 0O=>0O00==>O00= 000000000

I~ =

Eafira]
=
[]
1
1
1
OO0 0O00O00O00O000 0= 00 =000 =100mn0

OO0 0O000== 00000000000 d0

]
-
I
1

= =2 0O00= 0000000000000 dn

OO0 -=00-=>000= 0000000000

OO=O00-= 0009000000000 dn

=
-

OO0 0O00= 000 =0O00= 00000000

0= =000 000 0000000000 g a

= 00O 000000000 0a00 000 dn

OO0 0O0-= 0000 00= 00000 0-=0m0

e R=R=R=R=R=R=R =R =R =R =R =R=R =R =R =R = =]
Lo o I O I s e O O i O Y e s e

Fig. 2. A PN graph and the matrix representation to the third-order IR filter of

Figure 1.

2.4 Schedulestothe FSFG

In HLS, a FSFG design may contain cycles to model a DSP application with loops.
The intra-iteration precedence relation is represented by the edge without delay and
the inter-iteration precedence relation is represented by the edge with delays. Given an
edge e(vi,v)l E in FSFG design, d(e) means the data used as inputs in node v; are
generated by node v, at d(e) inter-iteration before. A static schedule of a cycle FSFG is
a repeated pattern of an execution of the corresponding loop. And a static schedule
must obey the precedence relations of the directed acyclic graph (DAG) portion of a
FSFG design that is obtained by removing all edges with delays from that FSFG.

10

Let d; be the execution delay for each task node op;', the length 1&(S) of a schedule
S is the latest finish time of all the operations scheduled, that is
le(S=max{j (op)+d;-1]" op'T V}. For each task node op1 V, a schedule of the
FSFG design is given as following:

m Sarttime: ¢ =j %op%j :ve 2 ={12K]
m Executiondelay: dif z={012K]}
m Finishtime: el =j %op!%+d;-1

m Task assignment: pe =t (op)),t :V ® {12,K,n,}
m Length of the schedule:

le(S) = max{j gop}¢+d;-1|" op;1 v}
m The earliest task-finished step:

ty = min{j gop'] g+d} -1 opijT V}

3 High-Level Verification
In this section, proposed two-stage verification technique is introduced. The
algorithms to both stages are also presented separately as the implementations.

3.1 Verification Flow

A flowchart illustrating our verification flow is shown in Figure 3. There are two
inputs to the flow: a given schedule and the original FSFG. The given schedule is the
DUV (design under verification) that needs to be verified. The original FSFG reserves
the characteristics of the system that the DUV must be satisfied. The proposed
verification method tries to find the correct restructured FSFG, which is candidate to
the DUV at the first stage, and then, it checks whether the execution sequence, the
DUV, of the PN model corresponded to the candidate is satisfied at the second stage.
Before introducing two-stage verification method, we address the preprocessing on
both inputs separately.

One of the inputs is the given schedule. In system-level design flow, designers may
use unfolding algorithm to pursue perfect FSFG achieving iteration period bound on
their original FSFG design. Usually, the FSFG of the DSP agorithm describes one
iteration of the computation. By applying unfolding algorithm on the FSFG is to
unfold the original FSFG by a factor f which implies f consecutive iterations of

1

the design. In contrast, we perform unfolding checking in our verification flow to
detect the unfolding factor f from given schedule. Another input to the verification
flow is the original FSFG graph. It is transformed into a PN model by proposed
transformation rules.

In PN domain, the markings, which can be reached from the initial marking, can
be seen as the retimed FSFGs of the original design. Some reachable markings are the
correct restructured FSFGs for the given schedule. These markings, which dominate
the correctness of the given schedule, are said to be the candidate markings. In order
to find the candidate markings, Breadth-First algorithm is used to traverse all the
markings of PN reachability tree at the first sage. If the candidate marking does not
exist, it means the correct retimed FSFG does not exist, it reports the given schedule
is not valid due to absent of the candidate marking. If the candidate marking exists,
we continuously apply Depth-First algorithm on each candidate marking.

12

Given schedule
(DL

v

Detect unfolding factor

v

Check job-complation

The original
FSFG design ¢

v

Transform F3FG
inta PN maodel

First stags:
Euild the reachability tree with Bread-firs? raverse,
and find the candidate markings

Job-completion
check ?

yes

v

Does candidate
marking exist?

Bacond stage: Verfy scheduls with Depth-first traverse

v

oes there exist any no
raachable marking? i
A
Report :
Report : Given schedule is invalid.
Given schedule is valid. The counterexample of the firing
sequendes is given.

v

Fig. 3. Flowchart for the proposed high-level verification method.

The given schedule is valid if there exists an initial marking, the candidate
marking, of the PN model leading a firing sequence of the schedule valid. At the
second state, we apply Depth-First traverse procedure on each candidate marking to
check whether the given schedule is valid by checking the firing sequence of the

13

schedule. At lagt, if it exists such candidate marking, the flow is done and reports
given schedule is valid, or a counterexample of invalid firing sequence is reported if
given schedule isinvalid.

3.2 TheCandidate Marking

The candidate marking set is a subset of the reachable marking set of a Petri Net. A
candidate marking is probably the correct initial marking, it also means correct
retimed FSFG, which leads the firing sequence of a given schedule being valid. Let S
be a schedule of a FSFG. The earliest task-finished set etf_set of Sare the tasks which
arefinished at the earliest task-finished step t in S such that

etf_set ={op| |e] =t " op| T V}. (4

Marking mis defined as a candidate marking, if marking m and firing sequence s

satisfies Definition 1.
Definition 1 Marking mis said to be a candidate marking if and only if there exists
a firing sequence s:try...try, such that for all tasks opl etf _set are covered by all the
transitionsin s, i.e. eff_seti s. And it is also satisfied that each firing transition tr;l s
is either a pseudo transition, di=0, or an earliest task-finished transition, g=1tar.
Markings

m [C0J00112000000]

my (0020011100010

m; [C0200110000220

my [QO2010100002210
my [CO0201210001120

]
]
]
]

Earliest task-finishad set: {tr3, tra}

e3_set Enabled nap Depth fired Rermained
{tro, ey S by, 1y {tr10} tr10 tro, tréd}
{tro, tre} ftrd, 10, 11 {tr10} tr10 tro, tréd}
{tro, e} S by, e, 11 {3 tra Jtra)

{trid} 7, e, 11} {1 tra {1

Fig. 4. Check whether a marking is a candidate marking.

14

tr P’ 12 p< 3

tr8

p14

tr11

I T T >
1 1
FE1 op:. op,
1 1
PEZ opg oy
1 1
FE3 alap opy
| 1 1
FE4 | ala o
‘)
. Y Y Y
Firng transitions e tr tra

trid tr11 tri
tr4

Fig. 5. An example schedule and 2nd order IR filter.

As an example, Figure 4 shows the procedure to check whether a marking is
candidate. For a given schedule in Figure 5, the earliest task-finished step ist«=1, and
the earliest task-finished set is etf_set={op/|g'=ter=1}={Vs,vg}. Markingm=[0000
0112000000] issaid to be a candidate marking of the corresponded PN model.

Since, there exists afiring sequence s:tryg trio trs trs, m® m,, such that etf_seti s. The

markings, my...m, of the firing sequence, ¢ m@ m e me m,, are valid states.

3.3 Marking sets

The proposed high-level verification method includes two stages: the Breadth-First
and the Depth-First traverse procedures. At the first sage, the Breadth-First traverse
procedure tries to find candidate markings, the correct retimed FSFGs, from
reachability tree. At the second stage, the Depth-First traverse procedure verifies
given schedule by checking the candidate markings. Since, the nodes of reachability
tree are exponential growth with the height of the tree, two-stage method is the better

15

policy. The verification method shortens the searching space by finding candidate
markings at the first stage. At the second stage, it verifies given schedule by checking
candidate markings rather than all the reachable markings of reachability tree.

51: Reachable set 52 Candidate set

53 Solution sat

Fig. 6. The relation between reachable, candidate and solution marking sets.

Assuming there are n operations in a given FSFG, and hence there are n transitions
in the corresponded PN model. Let f be the unfolding factor of a given schedule while
designers performing unfolding technique on their FSFG design. At the first stage, the
procedure tries to find the candidate marking set from the reachable marking set from
the reachability tree and fires each transition once each time. The height of each
marking in reachability tree is the distance from the root node to itself. Since, during
one iteration period of the schedule S 1&(S), each scheduled task must be fired once,
the height can also be seen as the number of transitions that have been fired since the
root node. Thus, for an n-tasks schedule, the upper height-bound of the reachability
tree is bounded by H=Fn. At the second stage, it continually finds the solution
marking set from the candidate marking set. The set relation between three marking
sets is shown in Figure 6, that is S3I S2I S1. The purpose of the first stage is trying to
reduce the searching space from reachable marking set Sl to candidate marking set S2,
while the second stage is trying to find solution marking set S3 from candidate
marking set 2.

3.4 First stage: Breadth-First Traverse

At the first stage of the verification method, we apply Breadth-First traverse
procedure to find the candidate markings from the reachability tree. Two approaches,
which include the early-terminated and the optimal approaches, are proposed in this
paper and discussed in the following sections.

3.4.1 Theearly-terminated approach
The second approach to verify a schedule of a given FSFG is called the

16

early-terminated approach which improves the exhaustive approach. Before
introducing the improved approach, we first consider Lemma 1.

Lemma 1l Let Tye be areachability tree which is bounded by upper height-bound
Hue and my be any one of the candidate markings in Tyee. FOr any other candidate
marking my in the successor path of marking my, m, is in the solution marking set S3
if and only if my isin S3.

Fig.8. The traverse order of early-terminated approach.

The early-terminated approach uses Lemma 1. It tries to minimize the size of
candidate set 2 from reachable set S1. The difference between the exhaustive and the
early-terminated approaches is that when an enqueued unvisited marking is candidate,
the early-terminated approach ignores the candidate marking and marks as a visited
node. Then, it proceeds other unvisited nodes in queue Q until all the markings have
been visited. In Figure 8, as an example, the traverse order of the early-terminated
approach ism, my, mp, mg, ..., M.

3.4.2 The optimal approach

The second approach to verify a schedule of a given FSFG is the optimal approach
which is improved from the early-terminated approach. In order to reduce reachable
marking set Sl of the reachability tree, it tries to merge the redundant nodes when it
proceeds Breadth-First traverse.

Let m be an unvisited node to be processed. If mis a candidate marking, it ignores
this node by using Lemma 1 and proceeds other unvisited nodes in queue. If mis not a
candidate marking, it applies negative test to find enabled set of transitions and

17

creates new node on each enabled transition. For each new produced node with
marking m¢ if there exists another node in the reachability tree, and has the same
marking associated with it, then the node with marking m¢is a duplicate node. Since,
the marking m¢has appeared in the tree, this new produced node is redundant. Then, it
merges this redundant node to the existential node and creates transition link from
marking m to the existential node. As an example in Figure 9, when it proceeds
marking ms, it founds the new created node with marking my is a duplicate node. It
merges these nodes and creates transition from ms to my. Then, it continually proceeds
other unvisited nodes in queue.

Fig. 9. Merge the redundant node in optimal traverse approach.

3.5 Second stage: Depth-First traver se method

At the second stage, we apply Depth-First traverse procedure to verify a schedule on
candidate markings rather than all reachable markings in PN model. As showing in
Figure 10, a candidate marking m which is found in the first stage is probably the
correct marking, the correct retimed FSFG that leads a given schedule being valid.
For a given schedule in Figure 5, task trs and task trg are scheduled and finished at the
first step of the schedule. The procedure tries to fire one transition of these scheduled
tasks or enabled nop operations once each time during the first scheduled step. At the
end of the first step, marking my is obtained from candidate marking m by firing

transition sequence s:tre trs trip tro, that is me m, Where transition treg and tryo are nop

operations. The procedure continually traverses entire length of the schedule

18

step-by-step until all the scheduled tasks are fired. A given schedule is said to be valid
if and only if all the markings in the traverse path are valid.

4 The Complexity Analysis
Assuming there are n non-nop operationsin agiven FSFG. Let f be the unfolding

factor of a given schedule. As described in previous section, the upper-height of the

reachability tree of the corresponded PN model is bounded by H, =f"n. The

complexity analysis of the proposed two-stage verification method is discussed as
following.

At the first stage, two approaches are proposed including the early-terminated and
the optimal traverse methods. Considering each node in the reachability tree has n
enabled transitions in worse case, the level O (the root node) has one node.

Level 1 has n nodes

Level 2 has (n)(n)=n? nodes

Level f* n has (n"™)(n)=n"" nodes
The tota number of nodesis:

1+n+n2+K+n““:(n“”l-l)/(n-l) Q)

19

Depth-first search

Cand|date marking ¢ T
m [00100001000000]

Firing: trg, trs,
Step’] tr10, re

(my;=[00001011001010]

Firing: tr10, tr7,
Step 2 tr11, rd

(m.=[00010000100111]

Firing: tr1, tr8
Step 3

(ms=[10000000010110]

Firing: tr2 tr3
Step 4

(m4=[01000000000110]

Fig. 10. Verify schedule with Depth-First search algorithm

In the first approach, the early-terminated approach, the algorithm stops traversing
anode while it is candidate. Let p, p£(f =), bethe deepest level that Breadth-First
traverse procedure can reach. The complexity of the second approach is
O(NP),p£ f .

In the second approach, the optimal approach, the algorithm merges duplicate
markings in order to reduce the reachable marking set of the reachability tree. Let
x1 Z={12,L} be the merging radio in the reachability tree. The complexity of the
three approach is O((N/x)?), p£ f x1. Thus, the relation of the complexity between two
approachesis:

0gN®e>0((N/x)?). (6)

At the second stage, the algorithm performs Depth-First traverse to verify a given
schedule by checking the firing sequence, which contains f xn transitions , of the
PN model. Thus, the complexity is O(f), in worse case.

20

5 Experimental Results

We have implemented these three approaches as the proposed formal verification
algorithms. Each of these approaches is applied to several dataflow algorithms. Figure
11 shows the statistics of these designs.

Cesign #vertices | #edges #init. Giza of PH _ Gchedule Linfalding
name delays | { Places x Trans. | length factor
iir2d-sch1 5 14 2 14 % 11) g 1
iir2d-sch2 5 14 2 (14 % 11) 4 1
iir2d-schi 5 14 2 14 % 11) 4 1
iir2d-sch4 5 14 2 (14 % 11) 4 1
iirid-sch1 12 21 3 (21 % 13) g 1
iirid-sch2 12 21 3 (21 % 13) g 1
p243-sch 3 (T« 53] =l g
p243-schl 3 (T« 53] =l g
ewfsch 34 47 J 47 x 34) 40 1
ewfschl 34 47 J 47 x 34) 40 1
Fig. 11. The statistics of test designs
Early-terminated Optimal
Test - -
schedule Time Fas. Time Fas.
{seC) usage {seC) usage

lir2d-sch 017 16 .19 16

lir2d-sch2 02 14 02 14

lir2d-sch3 24 .30 340384 .33 244

lir2d-sch4 189.845 34720 Q.32 293

lir3d-sch 019 18 .21 18

lir3d-sch2 018 18 .21 18

p243-sch 02 32 .21 32

p243-schz 022 32 .21 32

ewf-sch 0.26 36 .28 36

ewf-ach2 0.2 36 .28 36

Fig. 12. The experimental results

Design iir2d-schl to iir2d-sch4 and design iir3d-schl to iir3d-schl [9] are the
second-order and the third-order Infinite Impulse Response filters. Design p243 [9] is
adesign with unfolding factor 6, the lengths of schedule p243-schl and p243-sch2 are
both 96 steps. Design ewf-schl and ewf-sch2 are low power schedules for the Elliptic
Wave Filter in [5]. Figure 12 shows the experimental results of using three approaches.
The optimal approach outperforms the others in terms of time and resource usage.

21

6 Conclusion

This paper aims to exploit formal verification techniques for high-level synthesis. In
the top-down design flow, design errors should be removed as early as possible;
otherwise, errors detected at the later stages will result a costly, time-consuming
redesign cycles. Although formal verification for logic synthesis has been studied very
extensively, little work has been done for high-level synthesis. The paper presents a
novel verification flow that can efficiently detect the design errors from the results of
high-level synthesis. As shown in the experimental results, we can apply the optimal
approach for the first phase to efficiently verify complex design cases.

References:

[1] A. Gupta, “Formal hardware verification methods: a survey,” Formal Methods in
System Design, vol. 1, pp. 151-238, 1992.

[2] C.Kernand M. Greenstreet, “Formal verification in hardware design: a survey,”
ACM Transactions on Design Automation of E. Systems, vol. 4, pp. 123-193, Apr.
1999.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking, The MIT Press,
1999.

[4] V.K. Madisetti and B.A. Curtis, “A uantitative methodology for rapid
prototyping and high-level synthesis of signal processing algorithms,” |EEE
Transactions on signal processing, vol. 32, no. 11, pp. 3188-23 208, Nov.1994.

[5] L.-R. Dung and H.-C. Yang, “On multiple-voltage high-level synthesis using
algorithmic transformations,” |EICE Transactions on Fundamentals, 2004.

[6] K.Ito, L. E. Lucke, and K. K. Parhi, “llp-based cost-optimal dsp synthesis with
module selection and data format conversion,” IEEE Transactions on Very Large
Integration Systems, vol. 6, no. 4, pp. 582-594, Dec. 1998.

[7] K.K. Perhi, “High-level algorithm and architecture transformations for dsp
synthesis,” Journal of VLS signal processing, vol. 9, pp. 121-143, 1995.

[8] L.-F. Chao and E. H.-M. Sha, “Scheduling data-flow graphs via retiming and
unfolding,” IEEE Transactions on parallel and digtributed systems, vol. 8, no. 12,
pp. 1259-1267, Dec. 1997.

[9] V.K.Madisetti, VLS Digital Sgnal Processors, |EEE Press, 1995.

[10]W. Reisig and G. Rozenberg, Lectures on Petri Nets |: Basic Models
Springer-Verlag, 1998.

[11] K. Parhi and D. Messerschmitt, “Static rate-optimal scheduling of iterative
data-flow programs via optimum unfolding,” IEEE Transactions on Computers,
vol. 40, no. 2, pp. 178-195, Feb. 1991.

[12] C. Hwang, J. Lee, and Y. Hsu, “A formal approach to the scheduling problem in
high level synthesis,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 10, pp. 464-475, Apr. 1991.

22

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

\\?{r

o

R. E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation”, IEEE Trans. on Computers, vol. C-35, Aug. 1986, pp.
677-691.

E.M. Clark, O. Grumberg, and D. Peled, “Model Checking”, The MIT Press,
2000

S.-Y. Huang and K.-T. Cheng, “Formal Equivalence Checking and Design
Debugging,” Kluwer Academic Publishers, 1998

C.L. Berman and L.H. Trevillyan,” Functional comparison of logic designs
for VLSI circuits,” ICCAD ‘89, pp.456-459

E.l. Goldberg, M.R. Prasad, and R.K. Brayton, "Using SAT for
combinational equivalence checking," DATE 2001, pp.114-121

J-H.R. Jiang, J-H.R. and R.K. Brayton, "On the verification of sequential
equivalence," |EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol.22, No.6 , June 2003, pp.686-697

Shi-Yu Huang, Kwang-Ting Cheng, Kuang-Chien Chen, Chung-Yang
Huang, and F. Brewer, "AQUILA: an equivalence checking system for
large sequential designs," IEEE Transactions on Computer, Vol.49, No.5,
May 2000, pp.443-464

S. Reda, A. Wahba, A. Salem, D. Borrione, M. Ghonaimy, "On the use of
dont cares during symbolic reachability analysis” ISCAS 2001,
pp.121-124

S. Reda, A. Wahba, A. Salem, "M-CHECK: a multiple engine
combinational equivalence checker," ISCAS 2000, pp.613-616

Jha, Y. Lu, M. Minea, E.M. Clarke, E.M., "Equivalence checking using
abstract BDDs," ICCD '97, pp.332-337

Hee Hwan Kwak, In-Ho Moon, JH. Kukula, T.R. Shiple, T.R,
"Combinational equivalence checking through function transformation,"
|CCAD 2002, pp.526-533

P. F Williams, H. Hulgaard, H. Andersen, "Equivalence checking of
hierarchical combinational circuits,” ICECS '99, pp.355-360

J. Marques-Silva, T. Glass, "Combinational equivalence checking using
satisfiability and recursive learning,” DATE 1999, pp.145-149

A. Gupta, P. Ashar, "Integrating a Boolean satisfiability checker and BDDs
for combinational equivalence checking,” Eleventh International
Conference on VLS| Design, 1998, pp. 222-225

23

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. Ashar, A. Ghosh, S. Devadas, "Boolean satisfiability and equivalence
checking using general binary decision diagrams,” ICCD '91, pp.259-264
A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu, "Symbolic model
checking using SAT procedures instead of BDDs," DAC 1999, pp.317-320
N. Saxena, J. Baumgartner, A. Saha, J. Abraham, "To model check or not to
model check," ICCD '98, pp.314-320

G Parthasarathy, M.K. lyer, K.-T. Cheng, L.-C. Wang, "Safety property
verification using sequential SAT and bounded model checking,” IEEE
Design & Test of Computers, Vol.21, NO.2, pp.132-143

P. Dasgupta, J.K. Deka, PP. Chakrabarti, "Model checking on timed-event
structures,” |EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol.19, NO.5, pp.601-611

JR. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, D.L. Dill, "Symbolic
model checking for sequential circuit verification,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol.13, No.4,
pp.401-424

Y. Hoskote, T. Kam, Pei-Hsin Ho and Xudong Zhao, "Coverage estimation
for symbolic model checking," DAC '99, pp.300-305

S. Katz, D. Geigt, and O. Grumberg, "Have | written enough properties?,”
10th CHARME, 1999, pp. 280--297

Hana Chockler, Orna Kupferman, and Moshe Y. Vardi, "Coverage Metrics
for Formal Verification,” CHARME 2003, pp.111-125

Hana Chockler and Orna Kupferman, "Coverage of Implementations by
Simulating Specifications," IFIP TCS 2002, pp.409-421

Hana Chockler, Orna Kupferman, Robert P. Kurshan and Moshe Y. Vardi,
"A Practical Approach to Coverage in Model Checking,” CAV 2001,
pp.66-78

Hana Chockler, Orna Kupferman and Moshe Y. Vardi, "Coverage Metrics
for Temporal Logic Model Checking, " TACAS 2001, pp.528-542

24

PR

ALy - g FLiGgE Ef»,ﬁiﬂ’fﬁm,ﬁm SRR I S
%Jf*m B A2 m T ke g hE

B-hERM

Fe
CRERXFLALTH- RYPTH

Tsung-His Chiang and Lan-Rong Dung, 2006, June, “System Level Verification on
High-Level Synthesis of Dataflow Algorithms Using Petri Net,” WSEAS
transactions on Circuits and Systems, Issue 6, Vol. 5, pp.790-796.

Tsung-Hsi Chiang, and Lan-Rong Dung, “System-Level Veification on
High-Level Synthesis of Dataflow Graph,” ISCAS 2006.

Foob o FRAF Y A & RS IEEE AR M T o Hd A
:rﬁiiamam#;fi**bbiwﬁfﬂ

25

