T AT EW WP Yt SR
355K KKK OIOIOIOIORIIBIIIOGIOIOIOK KK

KA SR R B R PR R B R 1T 25

PR IR PR IR IR IR IR TR IR SRR IR SR IR SR IR RO IR SR IR RO ROOR

R MELAE FEEIVE
3% %% 1 1 93WFA0605290
HTHR 1 94E 087 0L p 3 954# 079 31 ¢

ol

o ER RIS AR S

A kR4S #lT%ﬁQ%wﬁ:
[RA R DL EFY v F3R4
A~ s ?méépﬂwwﬁ
DR R ﬁgimwﬁ*ﬁﬁa;m 2~ i
(JB% & T 2 WA AT 23 - >

HEFEE {2l A FF AL

P X K 95=#%10 * 15

Design and Implementation of an Object Tracking Management in Wireless
Sensor Networks

Chih-Chieh Hung and Wen-Chih Peng*
Department of Computer Science
National Chiao Tung University
Hsinchu, Taiwan, ROC
E-mail:{hungcc@csie.nctu.edu.tw, wcpeng@cs.nctu.edu.tw}

Abstract

One promising application of sensor networks is object
tracking. Because the movements of the tracked objects usu-
ally show repeating patterns, we propose a heterogeneous
tracking model, referred to as HTM, to efficiently mine ob-
ject moving patterns and track objects. To ensure the qual-
ity of moving patterns, we develop a storage management
to facilitate mining object moving patterns. Specifically, we
explore load-balance feature to store more moving data for
mining moving patterns. Once a storage of a cluster head is
occupied by moving data, we devise a replacement strategy
to replace the less informative patterns. Simulation results
show that HTM with storage management is able not only
to increase the accuracy of predition but also to save more
energy in tracking objects.

1 Introduction

Obiject tracking is one of the killer applications for wire-
less sensor networks. Various energy conservation schemes
for object tracking sensor networks have been extensively
studied in the literature [3][5]. In this paper, we concen-
trate at the prediction-based object tracking sensor network.
The prediction-based object tracking sensor networks relies
on certain prediction mechanisms to achieve energy saving.
We argue that tracked objects such as human or animals
tend to have their own moving patterns since the behaviors
of human or animals are likely to be regular [4]. Thus, ef-
ficient techniques for obtaining moving patterns of objects
are very important for energy conservation in object track-
ing sensor networks. Various data mining techniques have
been explored in the literature [1]. However, these prior
works mostly require data to be collected at one central-
ized server, leading to a significant amount of energy con-

*The corresponding author of this paper.

sumption in data collection. Our goal is to propose an ef-
ficient data mining mechanism for deriving object moving
patterns in object tracking sensor network and utilize the
object moving patterns for energy saving prediction-based
object tracking sensor networks.

To facilitate collaborative data collection processing in
object tracking sensor networks, cluster architectures are
usually used to organize sensor nodes into clusters (with
each cluster consisting of a cluster head and sensors). Sim-
ilar to [2], we consider the sensor network which consists
of heterogeneous nodes of various functions and roles and
thus propose a heterogeneous tracking model (referred to as
HTM) in the cluster architecture, in which a large number of
inexpensive sensor nodes perform sensing operations and a
limited number of heterogeneous nodes (standing for clus-
ter heads) offer data collection and mining capabilities. For
scalability, the cluster heads recursively form a hierarchical
architecture for efficiently mining and queries. As such, the
higher-level cluster heads will maintain coarse object mov-
ing patterns and the low-level cluster heads will have more
precise object moving patterns. Based on the obtained ob-
ject moving patterns, the cluster heads predict the object
movements. If the prediction fails, a recovery procedure
will be executed by waking up sensor nodes within the cov-
erage region of the cluster head. Based on HTM, only a
bound number of sensor nodes need to participate in the re-
covery procedure.

In HTM, cluster heads should keep as many moving log
data as possible in their clusters. Note that cluster heads also
have storage constraint and the amount of data will affect
the effect of pattern mining. Notice that the conventional
hierarchy clustering architectures (i.e., the level i cluster
head is chosen among these level (i-1) cluster heads) suf-
fer from the storage load unbalance problem. Assume that
the storage space of a cluster head is S and the height of
hierarchy is k, there is always a cluster head (called heavy
node) which stores information of all level in the hierarchy

and thus can only use % to store information of each level.
The heavy node can only mine patterns with shorter term
than these cluster heads that only store information of one
or fewer levels. In this paper, we develop a storage manage-
ment, which consists of two modules: load-balance storage
scheme and one replacement strategy. In the load-balance
scheme, we address how to mine and maintain the informa-
tive patterns under the storage constraints of cluster heads.
We develop a replace strategy to replace less informative
patterns when the storage space of a cluster head is full.

The rest of the paper is organized as follows. Preliminary
is described in Section 2. Storage management for HTM is
presented in Section 3. Performance study is conducted in
Section 4. This paper concludes with Section 5.

2 Preliminaries

In this section, we briefly illustrate the tracking mecha-
nism used in HTM. Assume that low-end sensor nodes and
cluster heads have unique sensor identifications and these
sensor nodes are well time-synchronized. Suppose that each
low-end sensor node is a logical representation of a set of
sensor nodes which collaboratively detect an object. When
a low-end sensor detects an object, this sensor node will in-
form the corresponding level-0 cluster heads of the detected
object identification, object arrival time and its sensor iden-
tification. In other words, the location of an object is repre-
sented as a sensor identification and the moving log for each
object is viewed as a moving stream, which is composed of
a series of symbols. Since the cluster heads still have the
storage constraint, in this paper, we adopt the variable mem-
ory Markov (referred to as VMM) model, which has been
shown to be very effective in capturing dependences and in
obtaining sequential models in one scan, to discover object
moving behavior in every cluster head.

Due to the storage constraint in cluster head and the de-
pendence of movements, mining object moving patterns can
be regarded as a VMM maodel training. For each object, we
use a variation of a suffix tree called emission tree [6] to
maintain its VMM model and one corresponding buffer in
a cluster head is used to hold the most recently segment of
moving records. Each edge of an emission tree represents
a moving record (i.e., sensor id) appearing in the moving
path. A tree node of an emission tree is denoted as a con-
catenation of the edge labels from the node to the root. In
other words, a tree node labeled as ry,...ror; can be reached
from the traversal path from root — ry —ry — ... — rg.
Each tree node will maintains the occurrence number of its
label in the moving path. Furthermore, each tree node also
records the conditional probabilities of all consecutive mov-
ing records given the node label as the preceding segment.
For example, according to the conditional probabilities of
consecutive moving records of node EF in Figure 1, it can

current_position E o015

buffer _DCAEF what's the next position ?

Figure 1. The resulting emission tree. The
nodes with dash circle are immature. Aother
nodes are mature.

be verified that P(D|EF) is 0.60. Consequently, if the most
recently moving record is EF, one can estimate the consec-
utive movement to be D.

VMM model is trained on the fly and not all the tree
nodes are suitable for predicting. There are two kind of
nodes in an emission tree: mature node and immature node.
Mature nodes are those tree nodes whose the conditional
probabilities are stable. When predicting the next move-
ment, only mature node is participated in prediction. Fol-
lowing the above example, the mature node EF is used
to predict instead of the immature node AEF. To justify
whether a node is mature or not, we explore L., distance,
which is defined as follows:

Definition 1: For a node y with the corresponding proba-
bility table denoted as = and the number of tuples in table x
isN, Loo(z, ') = max;=1,_._,(|df —d} |), where d¥ rep-
resents the probability value for tuple 7 in table = and table
2’ is the probability table after updating.

Definition 2: For node y and given two application depen-
dent parameters « and 3, if Lo (z, ') < a for 8 times of
successive updates, then node y is a mature node.

3 Storage Management for HTM

Since the quality of moving patterns are the dominant
factor for HTM, the storage management is thus an impor-
tant issue for HTM. In Section 3.1, we develop a new stor-
age scheme for HTM. In Section 3.2, we devise a replace-
ment strategy to keep the most informative patterns when
memory space of a cluster head is full.

3.1 Load-Balance Data Storage Scheme

To facilitate to understand the concept, we assume that
cluster heads are grid deployed and the degree of hierar-

chy is four!. To avoid the heavy node problem of conven-
tional hierarchy architectures, we must consider the number
of levels of information a cluster head stores. Once a clus-
ter head stores too much information, we tend to separate
data flows to other cluster heads stored fewer information.
Based on this concept, we propose a storage load-balanced
scheme for HTM:

Given child cluster heads C; in level i and the coordinate
of sink, the parent cluster head of C; is assigned by the fol-
lowing rules: If there exist a cluster head v € C; such that
v stores only one level of information and v is the nearest
sink among any cluster head ucC;, then v is parent cluster
head of C;. Otherwise, redirect the task to a cluster head w,
where w is the cluster heads closet to sink among all 1-hop
neighbors of C;. The sink is assigned to be parent in highest
level

The proposed scheme can be illustrated as the following
example. An illustrative example shows in Figure 2. Every
square represents a cluster head. The square marked & is
the cluster head stores the information of level 0 and level
k. Sink is in the bottom of the network. Arrows repre-
sent the data flow from low level cluster heads to its parent.
Consider the circled level-2 cluster head, the circle level-2
cluster head in the marked region is the cluster head nearest
to sink among circled level-2 cluster heads, but it already
stores two levels of information and then redirects the task
to its right neighbor. Its right neighbor stores only level 0
information and then become the parent of circled level-2
cluster heads.

To prove our scheme is storage load-balanced, we eval-
uate the variance of storage cost. Suppose the height of the
hierarchy is k, the expected value of the storage cost for

. —k
each cluster head is Exrys = 4=5—. Then we can evalu-

ate the variance of the storage cost as:

4k
= § =45 — L= = 6(1)

Similarly, we can evaluate the storage cost for each clus-
ter head using conventional clustering hierarchy architec-
tures to be ©(k?). It can be seen that Vs grows in the
constant rate and is independent to the height. Therefore
we can conclude that the proposed scheme can satisfy the
storage load-balance and thus ensure the quality of moving
patterns for each cluster head.

k &
(2—Earm)* (30 +(1—Errm)® (345

Vurm

3.2 Storage Replacement Strategy

Through the proposed storage scheme can ensure that a
level i (i > 1) cluster head only has to maintain two lev-
els of information, with time passing by, the storage of each
cluster head will run out. Therefore, we must to discard less

1That is, every parent cluster head in hierarhcy has four children.

1 1)1 1 1 1 1 1

1 1T) 1 1021 121 1

1 1 1 1 1 1 1 1

1 1 1 [] 2 121 1
@HE

1 1 1 13|12 1 1 1

1 121 12|21 121 1
2

1 1 1 13|12 1 1 1
3| 2

1 121 14| 1 121 1
Rl

Figure 2. Storage load-balanced scheme for
HTM.

informative patterns to store more informative ones. Hence,
the storage replacement strategy is necessary for dealing
with this situation. When the memory space of a cluster
head is full and the count of one symbol in the table main-
tained by an emission tree node is larger than given thresh-
old min_sup, we have to decide to prune other nodes so that
the newborn node can be inserted into emission trees. We
specify a threshold e and if the prediction hit rate of the tree
to which the newborn node belongs is already larger than e,
we can ignore the insertion since this emission tree already
has higher prediction rates. Otherwise, we must select an
appropriate node to be pruned from other trees. The prun-
ing mechanism consists two steps:

1) Select the tree to be pruned. Each object usually has
its own moving behavior. An object may stay in some re-
gions more frequently than other regions. Hence, the re-
porting rates of objects in each cluster head will be differ-
ent. For tree selection, each tree maintains a counter. The
counter increases one when a tree is updated and minuses
one every T periods. Obviously, a tree with a lower counter
value means that it is not often used than other trees. Once
a newborn generated, we only select the same level tree to
the newborn node to prune. To guarantee that the accuracy
of each tree is acceptable, we specify a threshold . Sup-
pose that the new node will be inserted into a level i emis-
sion tree. Among other level i trees with their prediction hit
rates > &, the tree with the minimal counter value will be
selected. Consider an example in Figure 3, where the size
of a tree stands for the access counter value of the tree. Let
€ =0.8 and £ = 0.6. Since the hit rate of tree T; < 0.8, we
decide to insert the new node into T, and prune one node in
To~Ts5. To will not be selected since its hit rate<0.6 and T,
is next selected. Since the hit rate of T4 > 0.6, T4 is then

selected to be pruned.

level (i - 1) trees

A AL A A

sensor level trees

Tl T2 T3 T4 T5
()
%insert prune(”)

Figure 3. An illstrative diagram of pruning
node in a level i cluster head when its mem-
ory space is full and the new node is decided
to be inserted.

2) Select the node which will be replaced by the new
node. Once the tree is selected, we must prune the node
such that there will be less impact to the selected emission
tree. Let LNode is the set of all leaf nodes which no other
node is derived from them. For example, assume that node
CD and CDA are leaf nodes, node CDA belongs to LNode.
For the node selection, each tree maintains the profits for
LNodes. To derive the profit function for a node, two fac-
tors, the probability and the mature degree, of a node is used
to evaluate the importance of a node. The mature degree of
anode x is defined as M D(z) = &, where N is the number
of times that the L, distance of the probability distribution
of node x. Obviously, the higher the two factors are, the
more important the node is. Therefore, given c as a real
constant used as the base, we define the profit function for
anode as:

Profit(z) = P(z) x (M D(x) + ¢)

The node with the minimal profit value in LNode will
be chose to be pruned. Moreover, to reduce the cost of
maintaining LNode, if a node becomes mature, we won’t
continue to update the probability entries in the table of the
node. For example, suppose node DCAE is a node in LNode
and node DC and node DCA are immature. We don’t have
to recalculate P(DCAE) until one of node DC and node
DCA becomes mature.

With a storage replacement strategy, there will not be a
specific tree which is always selected to be pruned. Since if
the prediction hit rate of a tree becomes < ¢, the tree will
not be selected anymore. Furthermore, even if the hit rate
of a tree becomes lower due to the node pruning, it still has
chances that the nodes can be inserted back.

4 Performance Study

In this section, experimental results of our performance
study (based on simulation) are presented. The simulation
model is described in Section 4.1. The comparison of our
scheme with PES scheme [5] is conducted in Section 4.2.
Finally, the sensitivity analysis of our proposed storage re-
placement strategy is described in Section 4.3.

4.1 Simulation Model

In the experiment, we consider a three-level heteroge-
neous tracking model, where 9 low-end sensors are de-
ployed in each level-0 cluster. Hence, there are 16 level-
0 cluster head, 4 level-1 cluster heads, one level-2 cluster
head, and the number of low-end sensors is 144. To simu-
late the object movements, we generate VMM model trees
for each object in each cluster head. In addition, the city
mobility model [3] is used to simulate object movements
with locality. With the model, each object has a probability
p: to determine whether it should leave its current level-1
cluster, and a probability 1 - p; to stay. In the former case,
it will choose a level-1 cluster as the next position according
to its VMM model tree in the level-2 CH (It may stay in the
current level-1 cluster). In the latter case, it has a probability
po to determine whether it should leave its current level-0
cluster, and a probability 1 - p, to stay. Similarly, in the for-
mer case, it will choose a level-0 cluster as the next position
according to its VMM model tree in the parent. In the latter
case, it will stay in its current level-0 cluster. In all cases
above, the VMM model looking up procedure is repeated
until the object has decided to move to which low-end sen-
sor monitored region. The probability p; is determined by
an exponential probability p; = e=C-2""" where C'is a pos-
itive constant. A higher value of C' means higher locality.
The value of § used to justify whether the cluster head shall
be in the prediction phase is set to 0.5 and the probability
threshold for the number of senors in the prediction phase
(i.e.,v)issetto0.2.

4.2 Experiments of PES and HTM

In this experiment, we compare our object tracking mod-
els with load-balance storage scheme denoted as HTM with
PES scheme [5]. In order to show the proposed load-
balance storage scheme, we also implement our tracking
model without load-balance storage scheme, expressed as
HTM w/0). To conduct the experiments of PES scheme in
[5], each object will change its speed and direction every 5
seconds and employ the INSTANT heuristic for prediction.
The sampling and reporting frequency are once per second.
Once the prediction is not correct, the recovery procedure

035 50

o s 4 0/0\0/\7/\\0
03 55
e B - PES
g ER <~ HTM
o> 02 5 i ;5 - HTM w/o,
5 015 g -g 20
KL —— PES ED s D—’D\D/D\D/D\D\D
= s -~ HTM z E 0
S s
. . =HIMwlo, £ °
4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Time (ksec) Time (ksec)

(CY (b)

Figure 4. (a) The average missing rates be-
tween PES, HTM and HTM w/o (b) The average
number of nodes participated in the recovery
procedure.

will be performed by waking up sensor nodes. The missing
rate of two scheme is shown in Figure 4(a).

The number of sensor nodes waken up under PES and
HTM is shown in Figure 4(b). By utilizing object moving
patterns, HTM is able to accurately predict the movements
of objects and then the number of executing the recovery
procedure is small. Note that the impact of storage bal-
ance to moving patterns is shown. In HTM w/o, cluster
heads that store too many levels of information will reduce
the accuracy of prediction. Furthermore, due to the very
hierarchical nature of HTM, once the recovery procedure
is performed, only a bound number of sensors activate for
tracking objects. Thus we can conclude that load-balance
storage scheme improves the accuracy of prediction.

4.3 Sensitivity Analysis of Storage Replacement
Strategy

To conduct the experiments of various 5 for emission
tree node maturity verification, the value of « is set to 0.01.
Figure 5 shows the predication rates with the value of 3 var-
ied. As can be seen in Figure 5, the value of 5 should not
set too small or too large. If the emission tree training just
gets starting, it is possible that the probability difference is
very small when the cluster head receives the same record
for a few times. Thus, with a smaller value of 3, tree nodes
do not collect sufficient moving information for prediction.
Once the value of 3 is too large, tree nodes are hard to be-
come mature nodes. Even though tree nodes collect enough
moving information, these tree nodes are not able to use for
prediction. Clearly, the selection of 5 will be dependent
upon the moving behavior of objects and can be determined
empirically.

0.84

0.82
0.8
0.78
076 —o— MinSup=25
0.74

—=— MinSup=50
072 o MinSup=75

Prediction Hit Rate

0.68

8 15 20

Figure 5. The impact of 5 for emission tree
node maturity verification.

5 Conclusions

In this paper, we proposed a heterogeneous tracking
model, called HTM, to efficiently mine object moving pat-
terns and track objects. Since HTM relies on moving pat-
terns to predict, storage management is an important issue.
In this paper, we proposed a load-balance storage scheme
for HTM that satisfies storage load-balanced and thus en-
sure the quality of moving patterns in each cluster head.
Furthermore, when a storage of a cluster head is full, we
also developed a storage replacement strategy. Simulation
results show that HTM with our proposed storage manage-
ment can achieve the best performance to improve the ac-
curacy and thus saves energy for tracking objects.

References

[1] M.-S. Chen, J. Han, and P. S.Yu. Data Mining: An
Overview from Database Perspective. IEEE Transac-
tions on Knowledge and Data Engineering, 8(6):866—
883, December 1996.

[2] M. Y. et al. Exploiting heterogeneity in sensor net-
works. In Proceedings of 24th Annual Joint Conference
of the IEEE Computer and Communications Societies
(INFOCOM 2005), 2005.

[3] C.-Y. Lin and Y.-C. Tseng. Structures for in-network
moving object tracking in wireless sensor networks. In
BROADNETS, pages 718-727. IEEE Computer Soci-
ety, 2004.

[4] W.-C. Peng and M.-S. Chen. Developing Data Alloca-
tion Schemes by Incremental Mining of User Moving
Patterns in a Mobile Computing System. 15(6), 2003.

[5] Y. Xu, J. Winter, and W. C. Lee. Prediction-based
Strategies for Energy Saving in Object Tracking Sen-
sor Networks. In Proceedings of the 2004 IEEE
International Conference on Mobile Data Manage-
ment(MDM’04), 2004.

[6] J. Yang and W. Wang. Agile: A general approach to
detect transitions in evolving data streams. In Proceed-
ings of ICDM, pages 559-562. IEEE Computer Society,
2004.

