Willmore

NSC94-2115-M-009-014-
94 08 01 9%5 07 31

)

9% 8 2



FREFAFFEL R € LMy E > 5

E G
SRS RN EESTRY) R Ty
&

::L
v
Willmore & & =n8Li5 32 FF M
Gaps between pointwise estimates of Willmore surfaces
4 ¥l 1 NSC 94-2115-M-009-014
HiFHR:94 28" 1 pIT95ET? 3P
a4 A

E-mail: yjhsu@math.nctu.edu.tw

by
Bk M & 3ares F 2 %% Willmore &

oo 2 IRE g Fh - BRI T

P Tt Em
BLAL AT cnRt A o AR Y BREA R
3 g il et BE o

W(X):jM @,

where the integration is with respect to the
M4t Willmore o & ~ I

area measure of M. This functional is
preserved if we move M via conformal
transformations of S°.
Abstract
In this report, we will find a pointwise
estimate which improves our previous result.

The critical points of the Willmore functional
are called Willmore surfaces, they satisfy the
Euler-Lagrang equation

This estgnate charagterlzes t}}e Willmore AH+®H =0.

spheres with nonnegative Gaussian curvature

and the flat Willmore tori. For the latter case,
we find a gradient estimate and a
characterization of the Clifford torus.

[WD.

The minimal surfaces in the 3 dimensional
unit sphere S are Willmore surfaces (see
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1. Introduction

Let M be a compact immersed surface in

One expects that the technique of pointwise
estimate for minimal surfaces are also
working for Willmore surfaces. However
the geometric structure of Willmore
the 3-dimensional unit sphere S3 et h; be surfaces are more complicate than that of
the components of the second fundamental minimal surfaces.
form of M, by H=>s, the mean curvature.
Letg, = h; ———0J, be the trace free tensor
and @ =3 (¢,)* the square length of ¢,
Then the Willmore functional of X is given

Let M be a compact immersed Willmore

surface in the 3-dimensional unit sphere.
2

Using an integral inequality, we proved that

if 0<P<L 2+T, then M is either totally



umbilical or the Clifford torus. This estimate
is sharp in the sense that for every given
positive ¢, there is a compact Willmore

surface, which is not the Clifford torus,
2

satisfying 0 < P <2 +HT +& (see [CHI]).

However, M is not necessary to be the
2

Clifford torus when® > 2 + HT on M. In fact,

we do not know whether the coefficient
constant 1/4 related to the mean curvature
term is optimal or not. Similar results also
work for conformal classes and Willmore
surfaces in the n-dimensional sphere (see
[CH2)).

In the first part of this report we show the
following pointwise estimate:

Theorem Let M be a compact immersed

Willmore surface in the 3-dimensional unit
2

sphere. f0< P <2+ HT ,then M is either a

Willmore sphere with nonnegative Gaussian

curvature or a flat Willmore torus.
2

Furthermore, if CI>22+H70n M, M is a

flat Willmore torus.

For the first case, using a holomorphic
quartic differential, Willmore sphere was
classified by Bryant, so call Bryant’s sphere
(see [B1] and [B2]). For the second case, one
would like to know any properties of such a
flat Willmore torus.

In the second part of this report we establish
a gradient estimate for the mean curvature,
2 1
\VH|" +2H?* +ZH4 <c,
where c is the maximum value of ., 1.
4

This gradient estimate will give a Harnack
inequality for the mean cuvature.

Finally, when M is a flat Willmore torus, we
show that if after a translation the component
of coordinates of the immersion are

eigenfunctions, then M is the Clifford torus.

2. The Main Pointwise Estimate

In this section we characterize brief the
Willmore spheres and the flat Willmore tori
by a pointwise pinching condition. We need
the following two Lemmas.

Lemma 1 ([CHI1]). LetM be a compact
immersed Willmore surface in the
3-dimensional unit sphere. Then
2

%ACD =9y +¢ H, +CI>(2+HT—CI>)
Lemma 2([CH1]). Let M be a compact
immersed Willmore surface in the
3-dimensional unit sphere. Then

Vel
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Assume that & >0 on M. It follows
from Lemmas 1 and 2 that
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Lemma 3. Let M be a compact immersed
Willmore surface in the 3-dimensional unit
sphere. If >0 on M, then

j (2+7—c1>) 0.

We notice that the Gauss equation gives

2
2K = 2+H7—CI>

2
In the case 0P <2+ HT , the classical

Gauss-Bonnet formula gives that g= 0O or 1,
where g is the genus of M. That is, M is
either a Willmore sphere with nonnegative



Gaussian curvature or a Willmore torus. In
the latter case, Lemma 3 shows that M must
be flat.

It is different to our previous result that if
D> 2+Hion M, applying Lemma 3 again, M
2

is also a flat Willmore torus. This completes
the proof of Theorem .

3. Gradient estimate

In this section we want to find some
properties for flat Willmore tori. In this case,

the mean curvature H satisfying the
semi-linear equation
2
AH+(2+H7)H =0. ()

First if M is not minimal, we follow the
general properties of linear elliptic equations
([Be]) to describe the local behaviour of the
zero set of the mean curvature.

(a) The critical points on the zero set of the
mean curvature are isolated and finite.

(b) The zero set of the mean curvature
consists of a number of C>~immersed circles.
(c) When the immersed circles meet, they
form an equiangular system.

Next we find a gradient estimate for the mean
curvature, and hence we obtain a Harnack
inequality for the mean curvature. Let

1 .
P=|VH|2 +2H? +ZH4 —c¢, where c is the
maximum value of ,p2, 154
4

Since
P =2H H,+4HH, + H'H_,
for all i, it follows that if [VH|#0, then
1

H, = W(Pﬂl - PH,-4HH - H’H}),
1
H,=H, :W(RHz —-PH —-4HHH, _HSHle)’
1

H, = W(—PIHl +PH,-4HH; - HH,),

and

H2 =L QVP[ +@H + B |VH] —2(4H + H)VP-VH).
2vH|"
On the other hand, the equation (*)

that

implies

AP=2H; —%(4H +H?)%.
Thus
\VH|'AP =|VP|" —(4H + H*)VP-VH
holds for all points where |VH | #0.

However this equation holds on whole M. In
fact, |VP| =0 if |VH | =0. Therefore, P

satisfies a degenerate elliptic equation.

Let m be the maximum value of P, and K be
the set of all points where P=m. Then K is a

nonempty compact subset. If |VH|(x1)=0,

for some x; in M, then
P(x)< P(x,)<(2H* +iH4 —o)(x,)<0

for all x. Thus in this case P<0 on M.
Now suppose that |VH | >0 on K. We shall

get a contradiction. First, we use the
connected argument to show K=M. Indeed,
for any x, € K, let B; be a geodesic disk
around x;, outside the cut locus of x; and
|VH | >0 on B;. Suppose that P(x;)<m, for

some X, in B;. We then construct a auxiliary
function of the form
Z — e—ar2 _ e—ar02 ,

where 1 is the distance function on M starting
from x(. As we choose « large enough, ¢
small enough and choosing suitable xq , the
function W=P+ € Z assumes its maximum in
some geodesic disk B, ,and AW >0 on B,.
Here we have use the Laplacian comparison
Theorem because M is flat. This
contradiction shows that K = M. The
technique used here is essentially that of the
maximum principle. We note that if
2H(x)* +i1_1(x)4 =c, then H(X) is the

maximum or minimum of H, and hence
IVH|(x)=0 in both cases, thus |VH|=0



somewhere in K. We conclude that P<0
on M. That is, the gradient estimate
1
VH|" +2H? + H e
holds on M.
4. A Characterization of Clifford Torus

Let M is a flat Willmore torus. Then there is
a lattice I"(l,a,b) in R? generated by (/,0)
(a,b) with a 2 0,b >0 a’+b>>1?
such that M is isometric to the flat torus
R*/T(l,a,b) . As one the
eigenfunctions of the Laplacian on
R*/T(I,a,b) are given by

and

know

(5.3 =cos(2r L 27:%@ ~Lay.

8,,(x,y)= sin(27r§x+ 275%(q—?a)y),

where p>0or p=0andq=>0. Using a
rotation of the 3-sphere, we may assume the
immersion X of M into the 3-sphere is given
by

(C+Eqfy +ig X Gy +i8 L fy +H8 T dofy +i8)
where fo = f,,q, 20 = gpq When 0 = (p,q).

Denote by X; and X, the derivatives of X
with respect to x and y, respectively. Since X,
X; and X, are orthonormal, the coefficients
a’s, b’s and c of X satisfy twelve equations.
On the other hand, the structure equations of
M and the Euler-Lagrange equation give that

X
AX
H =det
Xl
X2
X X X
AX
2det —3det —3det =0.
Xl (AX)I Xl
XZ XZ (AX)Z

Now we consider the special case that
X=(c+af +hg.af, +bg,.af, +bg.af, +bg,),
where fi=f, . g=g,, wheni= (piq).

In this case, it follows from the orthonormal

conditions that ca, = cb, =0. By classifying
the index, there are seven cases. Among
these seven cases, there is only one possible
case which satisfies the twelve orthonormal
equations, the only case is
Dy =Py FD3= P44, =4, 43 =4,
Furthermore in this case ¢ = 0, and X is given
by

(af, tag,af Tag,afs ta,g, af; Tag,).
After orthogonal changing the coordinates of

the 4-dimensional Euclidean space, we may
assume that

X=@f,c g, of,, 0g)
For such X, the Euler-Lagrange equation
impliesA, =A, and A4 -4 4, =0, where
By =21l 2 =2m =L a Ay =)+ (R
when 0 = (p,q). Finally, we compute the

mean curvature
X

AX 1
XZ

That is, M is a minimal flat torus, and hence
M is the Clifford torus.
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