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Abstract

Based on the inclusion matrices of t-cliques with various sizes of Johnson
graphs J(n,t) and Grassmann graphs J,(n, t) respectively, two families of error-
correcting pooling designs are given, some of their properties including the error-
correcting capability together with two parameters e4 and e<gare studied. With
an interpretation of matchings Ko, of as 2-cliques of Johnson graph J(n,2),
this gives a g-analogue of the pooling designs defined over matchings of Ko,

given by Ngo and Du.

1 Introduction

Suppose there are at most d defective items among n items to be tested, and we

assume some testing mechanism exists which if applied to an arbitrary subset of the
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population gives a negative outcome if the subset contains no positive and positive
outcome otherwise. A group testing algorithm is non-adaptive if all tests must be
specified without knowing the outcomes of other tests, which is useful in many areas
such as DNA library screening.

The notion of d°-disjunct matrices (defined in Sec.2) provides a mathematical
model for error-correcting pooling designs. Macula [5] constructed d°-disjunct ma-
trices for certain values of e by the containment relation of subsets in a finite set.
The g-analogue of Macula’s construction is given by Ngo and Du in [7]. Moreover,
the notion of pooling spaces was introduced by Huang and Weng | | which provides
one of general frameworks for d°-disjunct matrices. They showed that a d?°-disjunct
matrix is e-error-correcting in [3].

Recently, Ngo and Du constructed a class of disjunct matrices over the incidence
matrices of matchings with various sizes of the complete graph Ky, in [7], and
asked for its g-analogue. With an interpretation of matchings as 2-cliques of Johnson
graphs J(n,2), we generalize Ngo and Du’s construction to the incidence matrices of
t-cliques with various sizes of Johnson graphs J(n, t) and Grassmann graphs Jq(n, t),
respectively. We show that our pooling designs have the same capability of error-
detecting and error-correcting as Ngo and Du’s, however the test to item ratio of
ours is much smaller. Moreover, the parameters e; and e<,4 of these pooling designs
are also considered.

An overview of up-to-date results on Combinatorial Group Testing algorithms
was given by Du and Ngo [8]. It is interesting to note that they pointed out that this
is a young and interesting field with deep connections to coding theory and design
theory, and they strongly believe that the theory of association schemes , and in
particular distance regular graphs, should play an important role in improving our

pooling designs.



We will recall some known results regarding pooling designs in the framework of
two families of distance regular graphs, the John graph and the Grassmann Graphs.

We first recall some pooling designs associated with the Johnson graphs and
Grassmann graphs as well in section 2. Some basic definitions on ¢-cliques, {1, 2, K, t}-
cliques of Johnson graphs are also given in Section 2. Two new families of pooling
designs together with their capability of error-correcting are given in Section 3.
Moreover, two parameters eq and e<4 over the Johnson graphs are studied in Sec-

tion 4.

2 Preliminaries

The notion of d®-disjunct matrices provides a mathematical model for error-correcting

pooling designs.

Definition 2.1 A binary matrix M is said to be d°-disjunct if given any d + 1
columns of M with one designated, there are e + 1 rows with a 1 in the designated

column and 0 in each of the other d columns.

A d-disjunct matrix with e = 0 is said to be d-disjunct matrix. Let g be a
positive integer, indeed a prime power in use. Given positive integers 1 < i < n, the

Gaussian binomial coefficients with basis q is defined by

i—1 n—j
= ifg=1,
HI =3
ilg ) =iy
7 . (;z‘_;zj ’ if q 7é L.
7=0
In the case ¢ = 1, we write ( ) ) instead of [ } for convenience.
i i1
For any positive integer n we use [n] to denote the set {1,2,...,n}. For any pos-
GF(q)"
itive integer k, <[Z]> denotes the collection of all k-subsets of [n], and [ qu) }
q



denotes the collection of all k-subspaces of GF(g)".
Definition 2.2

1. The Johnson graph J(n,t) is the graph defined on <[7z]) such that A and B
are adjacent if |[ANB| =t —1.

F n
2. The Grassmann graph Jy(n,t) is the graph defined on [G t(q) ] such that
q
A and B are adjacent if dim(ANB) =1t — 1.

Definition 2.3 A clique C of J(n,2) is a subfamily of (@) such that |[ANB| =1
for any two distinct A,B € C.

Note that J(n,2) is a strongly regular graph, i.e.a distance regular graph of
diameter 2. Both Johnson graphs and Grassmann graph are distance-regular, refer
to [1] for details.

Hence an [-matching in [7] is a 2-clique of J(n,2) with size {. With this inter-

pretation, its g-analogue extensions are available.
Definition 2.4

1. A t-clique of J(n,t) with size | is a subfamily {Ay, As, ..., A} of <[ZL]> such
that |[Ay U Ag---U A =tl, i.e., AiNA; =0 for any two distinct ¢ and j.

F(q)"
2. A t-clique of Jy(n,t) with size l is a subfamily {A1, Aa, ..., A} of [G t(q) }
q

such that dim(A; + Aa + -+ -+ A;) = tl.

Definition 2.5 A family of k-subsets in [n] with |K (K'| <k —t for all K and in
K' in K is called a {1,2, K, t}-clique of J(n, k).

The notations for disjunct matrices: Let d < k < n,

J(n,d,k): the incidence matrix of the system (<[Z]> , <[Z]> Q)

4



( J is for Johnson Schemes)
Gq¢(n,d, k): the incidence matrix of the system (<GF(q)"> , (GF(q)”> Q)
(G is for Grassmann Schemes)
M(2n,d, k) : the incidence matrix of the system
(M is for matchings)
M,(2n,d, k): the incidence matrix of the system of g-analog of
(M, is for g-analogues of matchings) The error-correcting capability of d° - dis-

junct matrices is summarized in the following.

Theorem 2.1 Suppose a d¢ - disjunct matriz M of order N x t is used for a pooling

design, and P is the positive set to be identified,

1. if it is known that |P| = d, then M can correct e-errors;

e
2. if it is known that |P| < d, then M can correct LgJ -errors; moreover, M can

correct e-errors in addition to another d-confirmation tests.

Moreover, the g-analogue of G(m,t, k,r) can be obtained naturally by Definition

2.2.
Definition 2.6 Given positive integers m > k >r > 1,

1. G(m,t, k,r) be the binary-matrix M with row-indezed (resp. column-indexed)
by t-cliques of size v (resp. k) of J(tm,t) such that M(A,B) =1 if AC B

and 0 otherwise.

2. Gg(m,t, k,r) be the binary-matrix M be with row-indexed (resp. column-
indexed) by t-cliques of size r (resp. k) of Jy(tm,t) such that M(A,B) =1 if
A C B and 0 otherwise.

Lemma 2.2 Let W be a k-subspace of F,". Then the number of d-subspaces of Fy"

—k
intersecting trivially with W is [n d } q*.
q
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Proof. Let

v
D={AlA € [d] ,ANW =0}
q
Counting the set {(vi,ve,...,vq)| vi ¢ (W,v1,v9,...,v;—1)} in two ways, we have

@ =)@ = ") (@ = =D (¢ - 1)@ —q) - (¢ — ).
—k
Hence |D| = [n p ] q% as required. O
q

Lemma 2.3 1. The number ulm,l]; = u(m,l) of t-cliques of J(tm,t) with size
t
lis ulm, 1], = u(m, 1) = (g) )/ (.

2. The number ug(m,l) of t-cliques of Jy(tm,t) with size l is

t . 2
tm it qt l(l—l)/2
] 2] 25
q :

qi=1
, where 1 <1 <m and
Proof. By Definition 2.2, {A1, As,..., A;} is a t-clique of J,(tm,t) with size [ if
and only if Ay + As + -+ + A; is a tl-subspace of GF(q)™.
Let L(m,l) be the number of ordered tuples (Aj, Asg,..., A;) of t-subspaces of
GF(q)"™ such that dim(A;+As+--- A;) = tl. Notice that the number of t/-subspaces

of GF(q)'™ is [tm

tl
y } . Counting L(m, 1) directly, there are [t} ways to choose Aq,
q

q

tl—t
then [ ’ ] qt2 ways to choose A by Lemma 2.1 and so on. Thus
q

_|tm tl o [tL—1 t-t 2t t-(1-2)t t t-(I—1)t
L(m,l)—[tl]q[thq [ . Lq . qq . qq @)

On the other hand, (A1, As,...A;) may be obtained by first picking a t-clique of
Jq(tm,t) with size [ in u[m, ], ways, then for each t-clique, there are I! ways to get

the ordered tuples (A, Ag, ..., A;). This yields
L(m,1) = ulm,]4l!. (2)

Combining (1) and (2) gives u[m, ], as desired. O



Theorem 2.4 ([6, Theorem 2|) Let Kbe a family of k-subsets of [n] and ag =
min(t?, k — d), i.e., a 1,2,K,t-clique of J(n,k). If the minimum Hamming distance
dy (K) between any pair of k-sets in K is at least 2t, then J(n, d, K) is d*~-disjunct.

Theorem 2.5 J(n,k,d) is s¢ - disjunct for 1 < s < d, where e is the function of s

defined by e = <k_8) —1.
d—s

k
x; € Kog— K;, 1 <i<s,and let S be a s-subset of Ky containing {z;|1 < i < s}.

Then each row indexed by D € <[Z]> with S € D C Ky is of the form 1---1 over

Proof. For those columns of J(n,k,d) indexed by Ky, Ki,...,Ks € ([n])) let

— S

Ky, and 0---0 over Ky, -, Ky. Indeed, there are <d 5) many such choice of D,

as required.

3 New families of d°-disjunct matrices

Given positive integers m > k > d > 1, . Let M(2m,d, k) be the binary-matrix
M with row-indexed (resp. column-indexed) by d-matchings (resp. k-matchings) of
Koy, such that M (A, B) =1if A C B and 0 otherwise. In [7], Ngo and Du proved

the following results:

2
Theorem 3.1 ([7, Theorem 11]) Let g(m,l) = (( 27))(2”!/2[[!,1) = g(m,d) and
n=g(m,k). Form>k>d>1, M(m,k,d) is a v X n d-disjunct matriz with row
k
weight g(m — d, k — d) and column weight <d> .

Theorem 3.2 ([7, Corollary 12]) Given integers m > d > 1, the following hold:
(1) M(m,m,d) is d-error-detecting and |d/2]-error-correcting. Moreover,

(2) If the number of positives is known to be exactly d, then M (m,m,d) is (2d+1)-

error-detecting and d-error-correcting.



With an interpretation of matchings as 2-cliques of the Johnson graph J(n,2),
we will give some generalizations of Ngo and Du’s construction.

Find examples of I' C ([Z]) with dg(T') > 2r? study their properties?

Theorem 3.3 Letm >k >r >d > 1, then the matriz G(m,t,k,r) is a d°-disjunct

k—d
)—1 with a

matriz of order v x n where (v,n) = (u(m,r),u(m,k)) and e = <r Ny

k
constant row weight u(m — r,k —r) and a constant column weight ( )
r

Proof. By Lemma 2.2, G(m,t, k,r) is a v X n matrix with row weight u(m—r, k—r)
. k
and column weight .
r
Let Cj,,Cj,,...,C;j, be any d + 1 distinct columns of G(m,t,k,r). For each
i € [d], there is a t-subset V; of [tm] such that V; € C;,\C},. Let E = {V;|i € [d]}.
Then |E| < d and E C Cj, but E ¢ Cy, for each ¢ € [d]. If |E| = i, the number of
r-subsets of C}, containing F is <k B Z) Since (k B z> > (k B d), the number
r—1

r—i r—d
of t-cliques of size r contained in C, but not contained in C}, for each ¢ € [d] is at

k—d
least . g
eas <7“—d>

The following corollary shows the above e is optimal if m > k.

Corollary 3.4 Let m > k > r > d > 1, the matriz G(m,t,k,r) is d®-disjunct, but

k—d
not a d*t-disjunct matriz with e = < d) —1.
r —

Proof. In order to prove that G(m,t,k,r) is not a d°*!-disjunct matrix, we need
only to show that the maximum size of E is obtained. Since m > k, there exists a ¢-
clique T'= {A1, Ag, ..., Agy1} with size k+1. Let Cj, = T\{4,;} for each i € [d+1].
Then |E| = [{A; | i € [d]}| =d. O

The results in Theorem 3.3 and Corollary 3.4 hold for its g-analogues too as

shown below, their proofs are similar, and will be omitted.



Theorem 3.5 Let m > k > r > d > 1, then the matriz Gy(m,t,k,r) is a d°-

k—d
disjunct matriz of order vxn where (v,n) = (u[m, ]y, um,k]y) and e = < d) -1,
r—

k
with a constant row weight um — d, k — d|, and a constant column weight < )
r

Corollary 3.6 Letm >k > 1r > d > 1, then the matriz G4(m,t, k,r) is d®-disjunct,

k—d
but not a d°t'-disjunct matriz with e = ( d) — 1.
r —

An d-matching of Ky, is simply a family of size d of 2 -subsets of [n] which are
pairwise disjoint. A 2-clique of J,;(2m,2) of size [ is the g-analogue of an [-matching
of Kopp,.

Similar to Corollary 12 in [7], G(m,t, m,d) is d-error-detecting and |d/2| error-
correcting.

For fixed integers m > k > r, the test to item ratio (v/n) of G(m,t,k,r) (resp.
Gy(m,t, k,r)) is a strictly decreasing function in ¢.

Some more examples of d®-disjunct matrices.

k—
Theorem 3.7 Let 1 <s<d<k<n. Let1 < q and e = <d—z> —1. J(n,d, k)

18 s€-disjunct. proofs.
k—s k—s\ . . .
Note that = , it is a decreasing sequence.
d—s k—d
Theorem 3.8
1. G¢(n,d, k) is s°-disjunct.

2. 1,0, d, k is s°-disjunct for 1 < s < p, where y
(B (2 ) ]
e () 1) -



Theorem 3.9 ([/,/]) For 1 < d <k <mnand 1 <r <k, let K be a family of
k-subsets of [n] with the minimum Hamming distance dig(K) between any pair of

k-sets in K is at least 2r, then
1. J(n,d,K) is d*=1 - disjunct where aq = min(r*, k — d). (Theorem 2).
2. J(n,d,k,K,r) is s°-disjunct if 1 < s < p, where
I ([R] [Ek-r k—r] k=27
P=1\|a d d d ’
k k—r k—r k—2r
=Ll e ()
The following lemma is used in the proof of the following theorem.

Lemma 3.10 Let K be a family of k-subsets in [n] with |K (K'| <k —t for all K
and K" in K. Let d > 1 with t > 1 +t/(k — d) and set ag = min(t?,k — d). Then
given d + 1 k-sets {K;}¢_, C K, there are oy d-sets {D;}52, in [n] such that each

Dj is contained in Ko and no D; is connected in K; for 1 <i < d.

4 Parameters ¢; and e<, for error-correcting

For a binary matrix M of order ¢ x n, let B(D) denote the Boolean sum of those
columns indexed by elements of D C [n], and let dy(B(D),B(D’)) denote the
Hamming distance between B(D) and B(D') whenever D and D’ are two distinct
subsets of [n]. Suppose By(M) is the binary matrix consists of columns B(S) for
all S C [n] with |S| < d. Let dg(By(M)) be the minimum Hamming distance over
all pairs of columns of By(M). The minimum Hamming distance dg(Bg(M)) is
interesting for error tolerance; for example, Macula proved the following result:
Let

= min dy(B(D),B(D'
ca = pmin_ du(B(D), B(D),

10



and

du(B(D), B(D")).

€<d = m
- |DI=|D'|<d D,

in

/! are antichains
The larger the parameter e<4 is, the better its capacity of error correcting is.

Their values for the matrices G(m,t,k,r) and G4(m,t,k,r) will be considered in

this section. We first treat the case for G(m,t, k,r) by giving a specific example.

Example 4.1 Let m > k, and let T = {Ay, Aa,..., Ap11} be a t-clique of J(tm,t)
with size k+1. For each i € [d+1], suppose B; = T\{A;}. Then each B; is a t-clique
of J(tm,t) with size k. Let

D= {Bl,BQ, . -,Bd—lde} and D/ = {Bl,Bg, Ce 7Bd—laBd+1}'

Then

By
,

)
I
5
ey
!
I

|{R|‘R6 ( >7R,«Q_BhBQ?'”aBd—laBd-l-l}’

+

B
|{R‘R € ( C;,+1)7R g 317327"‘ 7Bd717Bd}’
= HR|{A1,42,...,A4-1,A4:1} C R C By}|
+ [{R|{A1,As,...,Aq-1,As} € R C By}
k—d
= 2 )
)
Theorem 4.1 Let m > k >r > d > 1. Then eq = e<q = 2(
G(m,t, k,r).

k—d

r—d> for M =

Proof. Given any two antichains D = {41, Ay, ..., Ag} and D' = {A7, A5, ..., AL}

11



We have

min [{R C A; for some i € [d] and R € A} for j € [d]}|

v

min |[{R C A} for some i € [d] and R € A; for j € [d]}|

k—d
2
(~a)
by Theorem 3.3.

On the other hand, Example 1 shows eg < 2(k B 3) Hence eq = 2<k B ;l) as
T — r=

AV o

required.

k—d
To show e<q = 2<

d) , we consider two antichains D = {A;, As, ..., A,} and

D' = {A}, A}, ... A} where u,v < d. Without loss of generality, we may assume
k—

that D, ¢ D' and D] ¢ D. By Theorem 3.3 there exist at least ( U) t-cliques
T

with size 7 contained in A, but not in A} for each j € [v]. By the symmetry, we

k— k— k— k—d
have e<q > < v) —i—( u) Note that < S) > < ) if s < d. Hence
> r— r—u rT— S T_d

—d k—d
e<q > 2( _4) On the other hand, by definition, e<q < eq = 2( B d>‘ This
yields e<q = Q(k B d). O
= r—d

Similar result holds for G4(m,t, k, 7). The proof is similar to that of Theorem 4.2
and will be omitted.

k—d
Theorem 4.2 Let m > k >r > d > 1. Then eg = e<cq = 2( d
< "

Gy(m,t, k,r).

)forM:
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