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Dynamic Origin-Destination Estimation and Its Parallel 

Implementation 

Yow-Jen Jou, David Bernstein, Chien-Lun Lan 

Abstract —Origin-Destination (O-D) information is important in many transportation 

related domains, such as transportation planning, urban and regional planning, traffic 

assignment, and so on. Historical studies assumed that the transition matrix is known 

or at least approximately known, which is unrealistic for a real world network. To 

obtain real-time O-D information in a reasonable way, state space model with Gibbs 

sampler and Kalman filter is then introduced by researchers. The Gibbs sampler 

method mentioned above requires considerable quantities of iterations and takes 

massive computation time, thus parallel computing method has been introduced to 

increase the computing power. This paper implements parallel computation for the 

O-D estimation algorithm on a Linux cluster and gives a numerical example which 

shows a satisfying result. 

Keywords — dynamic origin-destination, state space model, Gibbs sampler, traffic, 

PC cluster 

 

1. Introduction 

 Origin-Destination (O-D) information is in many transportation related domains, 



such as transportation planning, urban and regional planning, traffic assignment, and 

even pedestrian simulation (Bernstein, 1996, 1997, 2001; Chang, 1994, 1999, 2004, 

2005; Jou, 2001,2002; Gao 2002; Lee 2001). The O-D matrix provides a planner with 

the basic information for planning a transportation system (Nanda, 1993). Traditional 

ways of acquire actual O-D information can be obtained by an extensive traffic survey, 

including license plate recognizing, automatic vehicle identification, and so on; this is 

not only a cumbersome process but also very costly. Real-time O-D information, 

which plays an important role in Intelligent Transportation System (ITS), is not 

possible to obtain by the traditional method. With real-time O-D information, 

numerous high-value ITS applications e.g., just-in-time delivery, time shortest path 

emergency vehicle routing and congestion avoidance would be feasible. Due to this 

reason, researchers have been seeking estimation methods to derive valuable O-D 

flow information from less expensive traffic data, mainly link traffic counts of 

surveillance systems. The existing studies on this subject can be roughly divided into 

two categories: 1) Assignment-Based Methods and 2) Non-Assignment-Based 

Methods (Chang, 1995).  

 The concept of assignment-based methods is mainly extended from static O-D 

estimation method. These methods based on the assumption of reliable descriptive 

model for network flow assignment. The dynamic models developed by this approach 



appears to address the complex time-dependent issues in urban networks effectively, 

if the descriptive model mentioned above exists and a time-series set of actual O-D 

information is available. Another approach is the non-assignment based method. The 

key concept of this approach is to assume that each O-D parameter remains 

approximately constant during consecutive intervals of measurements. Researchers 

proposed a variety of estimation methods in this subject, and the primary difference 

among all recursive algorithms for dynamic O-D estimation lies in their unique way 

of computing filter matrix. The main strength of non-assignment-based method is the 

capability of providing O-D information from surveillance system which would be 

relatively accurate and less expensive cost. 

 Jou introduced state pace model into dynamic O-D estimation which estimates 

both O-D matrices and transition matrix simultaneously without any prior information 

of state variables, while most of the aforementioned studies assume that the transition 

matrix is known or at least approximately known, which is unrealistic for a real world 

network. Gibbs sampler, a particular type of Markov Chain Monte Carlo (MCMC) 

method, has been introduced in the solution algorithm to overcome the shortcoming 

of the assumption of known transition matrix. The solution algorithm requires 

considerable quantities of iterations and takes massive computation time, thus parallel 

computing technique is then been introduced to improve the performance. 



The remainder of this paper is organized as follows, the dynamic origin-destination 

estimation (DODE) by state space model is introduced in section 2, the parallel 

implementation of DODE is addressed in section 3, and the conclusion is outlined in 

the last section. 

 

2. Dynamic Origin-Destination Estimation 

State space model is introduced to estimate O-D flow from link traffic counts. 

The standard state space model is coupled with two parts: transition equations and 

observation equations. First, the state equation which assumed that the O-D flows at 

time t can be related to the O-D flows at time t-1 by the following autoregressive 

form, 

ntuFxx ttt ,...,3,2,1,1 =+= −     (1) 

where tx  is the state vector which is unobservable, F is a random transition matrix, 

( )Σ,0~ pt Nu  is independently and identically distributed noise term, where pN  

denotes the p-dimensional normal distribution, Σ  is the corresponding covariance 

matrix. x the state variable, is defined to be the path flow belonging to an O-D pair.  

 Next, the observation equation, 

ntvHxy ttt ,...3,2,1, =+=      (2) 

where ty  is the 1×q  observation vector which means there are q detectors on the 



road network. The number of O-D pairs is denoted by p. H is a pq×  zero-one 

matrix, which denotes routing matrix for a network. tv  is also a noise term that 

( )Γ,0~ qt Nv . Both x and F are unobservable, thus Kalman filter is not suitable to 

directly estimate and forecast the state vector. Hence, Gibbs sampler is used to tackle 

the problem of simultaneous estimation of F and tx  by latest available information.  

 There are two major elements to be incorporated in the solution method, 1) 

filtering states by observations, and 2) sampling scheme of F and state variables. 

Since the observations ty  are not used in the conditional distribution, the Kalman 

filter and the Gibbs sampler must be combined.  

 

2.1 Kalman Filter 

 The Kalman filter is a system of recursions to estimate the state vector before a 

new observation arrives, to forecast the observation, and to update the state vector as 

the new observation is known. The structure of the filter can be derived in a Bayesian 

framework as follows. The first stage (i.e. t =1), there’s no observation exists, thus the 

state vector x0 must be generated by a prior distribution that ( )0 0 0~ ,x Normal Vµ , 

where 0µ  is the mean and V0 is the covariance matrix. By using equation (1), the 

distribution for the state vector in the first stage will be normal with parameters 

 1 | 1 1|t t t t tE x y Fµ µ− − −= =⎡ ⎤⎣ ⎦       (3) 



 1 | 1 | 1|t t t t t tVar x y V FV F− − − ′= = + Σ⎡ ⎤⎣ ⎦     (4) 

where | 1t tµ −  denotes the expect value of tx  and | 1t tV −  denotes the variance of tx  

when 1ty −  is observed. By the above information, the forecast observation would be 

normal distribution with parameters 

 1 | 1ˆ|t t t t tE y y y Hµ− −= =⎡ ⎤⎣ ⎦       (5) 

 1 1|t t t tVar y y M HV H− − ′= = + ϒ⎡ ⎤⎣ ⎦      (6) 

The above equation (3)-(6) holds for any t. 

 As the new observation ty  become available, the parameter vector would be 

updated according to Baye’s rule, 

 ( ) ( ) ( )1| | |t t t t t tp x y p y x p x y −∝  

by using Baye’s rule and standard Bayesian theory, the posterior will be normal 

distribution with parameters 

 ( )1
| | 1 | 1 | 1t t t t t t t t t tV H M y Hµ µ µ−

− − −′= + −     (7) 

 1
| | 1 | 1 | 1t t t t t t t t tV V V H M HV−

− − −′= −      (8) 

The algorithm of Kalman Filter is illustrated as follows, 

Algorithm Kalman Filter 
 
Input: 0µ , 0V , :ty observation sequence=  
Output: Filtered µ  and V 
 Begin 
  FOR each time step of the observation sequence 
   Generate prediction of the new observation by 
    1ˆt ty H F µ −= ⋅ ⋅  



    ( )1t tM H F V F H− ′ ′= ⋅ ⋅ ⋅ + Σ ⋅ + ϒ  

   Update the parameter by 

    ( )1
| | 1 | 1 | 1t t t t t t t t t tV H M y Hµ µ µ−

− − −′= + −  

    1
| | 1 | 1 | 1t t t t t t t t tV V V H M HV−

− − −′= −  
  END FOR 
 END 

 

2.2 Gibbs Sampler 

The Gibbs sampler is a technique for generating random variables from a 

distribution indirectly, without having to calculate the density. In this paper, we make 

the following assumptions, 1) The initial ( )0 0 0~ ,x N Vµ , 2) The covariance matrix Σ  

and ϒ  are known, and 3) Given F, the distribution tx  is Gaussian. 

The state equation can be written 

1t t tx x F µ−′ ′ ′ ′= + , t=1,2,…,n 

that is 
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where ( ) 1
1 1 1 ( )î n n n n iF X X X X−
− − −′ ′ ′=  is the least square estimate of iF ′ , and ( )n iX  is 

the i-th column vector of nX . Consequently, 

( ) ( ) ( )1 1
?

i i n n j jS F A F F X X F F− −
′′ ′ ′ ′ ′ ′= + − −  

where A is a p p×  matrix, { }ijA a=  with 

( ) ( )( ) 1 ( ) 1
?

ij n i n i n j n ja X X F X X F− −
′′ ′ ′ ′ ′ ′= − −  

That means, A is proportional to the sample covariance matrix. From the general 

result in the Gaussian model, the posterior distribution of F ′  is then 
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The distribution in equation (9) is a matrix-variate generalization of the t-distribution. 

The following sampler for generating F ′  and X is then proposed. 

Sampling Scheme Generate from the conditional distributions 

 a. ( )1 1| , , ~ ,t t tx F x N Fx− −Σ Σ  

 b. ( ) ( )1 2 22
1 1 1 1| , ~ , , p nn p

n n n nF X k n p p A X X A FX X F
− −−

− − − −′ ′ ′ ′⎡ ⎤Σ +⎣ ⎦  

The above sampling scheme would be the key component of the Gibbs sampler. 

The Gibbs sampler is a Markovian updating scheme that proceeds as follows. 

Given an arbitrary starting set of values )0()0(
3
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visited in the natural order and a cycle requires k random variate generations. After i 

iterations we have ),...,,,( )()(
3
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i
k

iii ZZZZ . Under mild conditions, Geman and 

Geman showed that the following results holds(Robert, 1998).  
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as ∞→i . In fact a slightly stronger result is proven. Rather than requiring that each 

variable be visited in repetitions of the natural order, convergence still follows any 

visiting scheme, provided that each variable is visited infinitely often. 

Result 2 Rate 
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As Gibbs sampling through m replications of the aforementioned i iterations produces 

k tuples ( )( )mjZZZZ i
kj

i
j

i
j

i
j ,...,3,2,1,...,,, )()(

3
)(

2
)(

1 = , which the proposed density estimate 

for [ ]sZ  having form [ ] [ ]∑ =
≠=

m

j
j

rss srZZ
m

Z
1

)( ,1ˆ . 

 The above Gibbs sampling scheme on a random transition matrix and state 



variable forms the center part of the algorithm. In the process of generate state 

variables, Kalman filtering mechanism is added. While a simple monitoring of the 

chain (x(g)) can only expose strong non-stationarities, it is more relevant to consider 

the cumulated sums, since they need to stabilize for convergence to be achieved 

(Robert 1998).  The solution algorithm with the time-complexity of ( )2O n  is shown 

as follows, 

 

Algorithm Gibbs Sampler 
 
Input: :H path observation incidence matrix= − , :ty observation sequence=  
Output: X̂ , F̂  
 Begin 
  Initialize 

   (0) : pF I= , : pIΣ = , : PIϒ =  

   { }storeX = ∅ , { }storeF = ∅  
  SET GibbsCount (g) to 0 
  WHILE not Converge 

Generate ( )( ) ~ ,gx N Vµ  
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   CALL Kalman Filter with µ , V , and observation sequence 
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    APPEND ( )gF ′  to storeF  
 
   INCREMENT GibbsCount 
  END WHILE 
 
  READ last k items from storeX  and put in nX  

  COMPUTE 1ˆ
nX X

k
= ∑  

  READ last k items from storeF  and put in nF  

  COMPUTE 1ˆ
nF F

k
= ∑  

 END 

 

Accurate O-D information is difficult to obtain on a real road network, thus other 

O-D information must be considered for validation. A numerical test of the DODE 

algorithm with the real data has been conducted by Jou (Jou, 2003). The algorithm is 

implemented on the Mass Rapid Transit network in Taipei, which consists of nine 

stations. The results are generally satisfactory, showing that also in the unknown 

transition matrix case, significant estimates could be obtained. 

 

3. The Implementation of Parallel Computation and its Results 

 Computation power is crucial to achieve real-time information requirement, thus 

the parallel computing technique is then been introduced to satisfy this requirement. 

The solution algorithm should be modified to adopt the parallel implementation. It is 

then divided into several computing parts by dividing it at the WHILE-LOOP. With 



different random seed, each computing part will lead to a different solution chain. The 

chain in each computing part will then be gathered to check the convergence. In this 

situation, communication between computing nodes is minimum, and computing 

power can be easily increased without communication bandwidth limitation. Figure 1 

describes the parallel architecture; a similar architecture had been proposed by Li (Li, 

2002). In the pre-processor section, parameters used in our algorithm are initialized, 

so does the necessary input data. When assign jobs, these input data are sent to 

computing nodes in the cluster through TCP/IP base intranet with Message Passing 

Interface (MPI) Library. The computational procedure for the parallel process consists 

of: 

Step 1. Load input data and parameters. Initialize MPI environment. 

Step 2. Count the computing nodes exits in the cluster environment. Decide 

the count of samples should be generated by each computing nodes. 

Send data to each computing nodes. 

Step 3. Each computing nodes generate its own X̂  and F̂ ′  by given input 

data for given times. And then send the result to server. 

Step 4. After all the data been sent to server, the server check the convergence 

by each X̂  and F̂ ′ . If converge, the server estimate the global X̂  

and F̂ ′  by averaging X̂  and F̂ ′  of each computing node. 



Step 5. Stop MPI environment. Output data. 

 

 An empirical test is conducted on a part of real network located in Taiwan, the 

HsinChu Science-based Industrial Park. The network is a closed network, with 11 

entrances, which consists of 91 nodes and 244 links, shown as figure 2. There exist 17 

observation sites on the network; the observation site updates traffic count every 

minute.  

The parallel environment of this research consists of 16 computing nodes; each 

contains 2 Intel XEON 3.2GHz processors and 1 GB memory. Nodes are connected 

with a 1 Gigabits Ethernet switch for MPI protocol and a 100 Mbits PCI fast Ethernet 

switch for Network File System (NFS) and Network Information System (NIS). 

Figure 3 shows the speedups and efficiencies, where the speedups is the ratio of the 

code execution time on a single processor to that on multiple processors and 

efficiency is defined as the speedup divided by the number of processors(Gropp, 1999; 

El-Rewini, 1998), of the parallel computing for 100 samples on the 32 CPU 

Linux-cluster with MPI library. As shown in Figure 3, a quite good value of the 

speedup and efficiency of the parallel scheme is achieved. That means we can 

decrease the computation time easily to achieve the goal of real-time information.  

 



4. Conclusions 

 This paper introduced a dynamic origin-destination estimation method by state 

space model. With Gibbs Sampler and Kalman filter, the algorithm loosens the 

assumption of known transition matrix that exists in other studies. To satisfy the 

real-time computation requirement of this algorithm, a parallel implementation on a 

PC-based Linux cluster is conducted. The parallel implementation shows a good 

result of nearly 80% of computing power remains for each CPU under a 32 CPUs 

cluster environment. That leads to the conclusion: real-time estimation of O-D 

matrices can be achieved by increasing a reasonable amount of CPUs. 
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Figure 1. The flow chart of parallel algorithm 

Pre-processor (Server) 

Assign Jobs to Computing Nodes (Server) 

Computing 
Node Local 

Job 

Client Local 
X̂ & F̂ ′  

Send Local 
X̂ & F̂ ′  to 

server 

Computing 
Node Local 

Job 

Client Local 
X̂ & F̂ ′  

Send Local 
X̂ & F̂ ′  to 

server 

Computing 
Node Local 

Job

Client Local 
X̂ & F̂ ′  

Send Local 
X̂ & F̂ ′  to 

server

…

C
om

puting N
ode 1 

Post-processor (Server) 

C
om

puting N
ode 2 

C
om

puting N
ode n 



 

 

Figure 2. The test network. 

The solid line stands for the link.  
The dot stands for node. 
The camera icon stands for observation site. 
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Figure 3. Speedups and efficiencies for the parallel computing 

 


