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Real-Time Hardware Implementation of
Intelligent Adaptive Fuzzy Neural Network Controller
For Uncertain Nonlinear Systems

Abstract- In the thesis, true hardware implementation of
an on-line intelligent adaptive TSK FNN controller is
performed to control the planetary inverted pendulum. The
hardware platform is dSPACE DS 1104 R&D control
board under Windows XP running with MatLab. Excellent
agreements have been obtained between theoretical
simulation and hardware implementation. The effects of
computational time delay for controller is also investigated
through both software simulation and hardware emulation
and by building SimuLink blocks in MatLab. The
estimated maximum computational time delay can be quite
practical for the industrial applications to choose cheaper
hardware platform with less cost

Keywords: Fuzzy Neural Network, TS-type FNN Model,
On-line Inteligent Adaptive Control, Delay Time.

1 Introduction

When we want to control a system, it usually has to be
identified to have a mathematical model. But, in fact, it is
often difficult to get the mathematical model, because the
mathematical models of most systems are complex. Fuzzy
neural network such as Takagi-Sugeno(TS)-Type FNN
Model can simplify the process of identification of a
system, and then the identified model can be controlled by
the control technique. An on-line intelligent adaptive
control was proposed in [1], which uses optimally trained
TS-type FNN model [2] to identify an uncertain nonlinear
system and then designs the controller with pole placement
technique. Theoretically, applying the approach can obtain
the TS-type FNN model of an uncertain nonlinear system
in real-time environment and get a good controller to
achieve the control specifications. The results of
simulating some examples in [1] are good. But, it needs a
large amount of computation to accomplish the training
model, even though the optimal training [3] and the least
square initialization [4] have shortened the process of
training. In the implementation, computational delay will
be an important factor in time delay.

The theme of the thesis is to implement a controller
to control a system with on-line intelligent adaptive
control for uncertain nonlinear system using TS-type FNN
models. The planetary inverted pendulum [7] will be
controlled within the hardware platform, DS 1104 R&D

control board. As the excellent results of some examples
presented in the thesis [1], our simulation for the planetary
inverted pendulum controlled by the on-line intelligent
adaptive control approach is fine, too. For implementation
of the on-line optimal training controller, the design of on-
line training process and the estimation for initial matrices
for TS-type FNN model are the two major problems. The
first one is how to train TS-type FNN model on-line. We
use the “memory” and “pulse generator” blocks to build a
training block to achieve the on-line training. We can
determine the re-training time instant by setting the “pulse
generator” block. For the second problem, it will be
explained later.

2 TS-Type FNN Model for Uncertain
Systems

A system can be represented by the following rules of
TS-type FNN model [2], where F}; is the FNN set.

Rule 1:
If z(¢) is F; and...and z (1) is F,
then () = 4.x, (1) + Bu(t)
@)
Rule 7:
If z(¢) is F, and...and z,(¢) is F,,
then x (1)=4 x (t)+B.u(?)
The above FNN system should be inferred as [1]:
i)=Y O Ax, @)+ Bu)] .
i=1

=A;x,(6)+B,u(t)
where
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and r is the number of rules for the uncertain nonlinear
systems. Equation (2) shows that the system can be
represented by a linear dynamical equation at any time
instant, which can be inferred from the TS-type FNN
model. The following Figure 1 shows the TS-type FNN
model explained above.
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Figure 1. TS-type FNN model for Uncertain Systems

In Fig. 2-1, z/(1), zx(¢), ..., z,(f), are the premise variables
and » is the number of if-then rules and the 4; and B;
matrices are the locally linearized well-specified systems.
The A and B; matrices in Fig. 1 are called Jacobian
matrices [1] with

x,(1) = 4,(6) + Ba(r) &
In the on-line intelligent adaptive control method in [1],
the TS-type FNN model will be trained, so that the
matrices A, and B, will be different at different time
instants. Furthermore if better initial 4, and B, matrices
are chosen, it can take less time to converge. Hence, the
least square estimation-technique [4] is chosen to estimate
the initial value of the 4, and B, [1]. Assume the order of
the linear subsystems of TS-type FNN model is » and the
number of input is m, then we must measure n+m outputs
to get the estimated initial matrices [1].

W,-(O){Z";}

Y = 0W,(0)+e ®)
w,(0)=(0"0)0"Y
Where the € is the noise matrix, and & and the set of
outputs Y are presented as follows.
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The TS-type FNN model for uncertain systems can be
trained by using the on-line optimal training [1]. Because
the dynamic optimal training [3] is very powerful for on-

line disturbance rejection, it will be utilized in the on-line
optimal training of TS-type FNN model for uncertain
nonlinear systems.
Let the input training matrix R be
R=[x0) %) . %0 w@® .. @] R ()
And the output matrix of the TS-type FNN model is
Y=%,0)=[i, () %, i, @O ew™ (8
And the output matrix of the uncertain nonlinear system is
D =x(t) =[x,(1) *,(t) x,@O1eR™  (9)
The overall weighting matrix to include the uncertain 4;
and B; matrices can be shown as [1]:

W = i=1

- _ ZP‘IW' and W, =
Iu.B.T i=1
.:1 1 1

i

} (10)
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Therefore the output of TS-type FNN model Y can be
shown as:

Y=R"W (12)
It is therefore the purpose of on-line training to obtain the
weighting matrix .
First, the squared error J and the error function £ have to
be defined:

1

J=——|li, -x|f (12)
2mn
E=x,(t)-%()=R"W-D (13)
From (12) and (13), we can have
P Tr(EE") (14)
2mn

Then the dynamical learning rates £, for each iteration &
can be determined by the dynamical optimal training in [3].
Define

‘]k+1_Jk:aﬁ2+bﬂ (15)

where
a= %(mn)*3Tr[RTREkE[RTR] >0 (16)
b=—(mn)*Tr|ETR"RE, ]< 0 (17)

The roots of a/f* + b= 0 are (B, ,/3). The optimal learning
rate /3, will be

Bon = (BABY2 = B, (18)
This learning rate will not only guarantee the stability of
the training process, but also have the fastest speed of
convergence. Then, the on-line training rule for each
subsystem is shown as

W h+D =) i RE, (19)

The 4;and B; matrices for each subsystem of TS-type FNN
model can be updated simultaneously by using (20) at the
beginning of each time interval. The final linear dynamic
equation, (4, B, of the uncertain nonlinear system has
been inferred from (2) at the beginning of any time
interval. Then, the pole placement technique can be used



to design the controller [1]. The overall design process can
be seen from the following Figure 2, which is from [1].

Uncertain Nonlinear

Reference Input — f System 0
u, () g(f) .| Confroller . =,
+ nk, X(0) =/ (@) u(®)
T X0

Design of tracking On-line Optimal

controller ¢ Trained TS-type
FNN Model
» Adaptive Rules

Figure 2. Overall design process

3 Design Algorithm

Step (1)
Step (2)

Specify desired stable poles.
Define the » nominal operating points and the
corresponding membership functions

for x() and x(¢) . Use any input u() to excite
the uncertain nonlinear system and measure
sufficient data information of x(¢)and x(z) .

In real implementation, it is easier to use step
commands to trigger the system to get
sufficient response data. Apply (5) to find the
initial  weighting matrix w(0) of each
subsystem for i=1, ..., r.

Apply pole placement to design the controller.
If the norm of tracking error > ¢, a specified
threshold, GOTO Step (2), Else GOTO Step
().

Measure on-line x(¢) and x(¢) . For i=1,..., r,
applying (18) to find the optimal learning
rates to train the weighting matrix of each
subsystem. The optimal training must
continue until relative errors of W, are less
than another pre-defined threshold e,.

GOTO Step (3)

Step (3)
Step (4)

Step (5)

Step (6)

Adaptive Rules for updating the closed-loop system in
Figure 2-2
If || £(¢) ||> Threshold
Apply all Steps to update the TS-type FNN
model, us(t) and Kp
Else
Stand Still
End.

4 Real-Time Control of
Inverted Pendulum

We perform the simulation for the inverted pendulum
system in SimuLink. The control objective of this control
system is to stabilize the inverted pendulum. The dynamic
equation of the planetary train type inverted pendulum is
shown in (20) [7].

50 =149.3003sin 6, +2214.3u (20)
The control system model and the controller are shown in
Figures 3 ~ 5. Figure 6 illustrates the trajectory for 6, with
the initial condition[d, 6, |=[-2 0.17].
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Figure 3. Simulation model of the planetary inverted
pendulum system

Figure 4. Block diagram of “Design Controller” in
Figure 3

Planetary



Figure 5. Block diagram of “Trained TK-Model” in

Figure 3
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Figure 6. Trajectories for @, in Figure3

we consider the effect of time delay on the angular control
system of planetary inverted pendulum. We can find that

g, and @, are always oscillatory and the longer is the
delay time, the more oscillatory the responses will be.
From Figure 7, the time delay of 0.022s is almost the
maximum time delay for the inverted pendulum system
with the on-line optimal trained controller.
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Figure 7. Trajectories of @, with delay time = 0.022s
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Figure 8. Trajectories of &, with delay time = 0.023s

5 Hardware Implementation

We design the controller in SimuLink and generate the
control program and then sent it into the hardware
platform, DS 1104 R&D control board, to control the
inverted pendulum system. The overall control process is
shown in Figure 9.
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Figure 9. Overall hardware configuration using DS 1104

For the implementation of the controller for the planetary
inverted pendulum system, we build the control block in
SimuLink and generate the C code, and then sent the C
code into the dSPACE hardware. We will operate the
hardware to control the planetary inverted pendulum
through the dSPACE system interface.

In the real planetary inverted pendulum system, the
input is voltage. The mathematical relation between torque
and voltage is unknown, so that the mathematical relation
between the voltage and the angle of inverted pendulum is
uncertain and nonlinear.
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Figure 10. Block diagram of “FNN controller”

In Figure 10, the “Trained TK-Model” block produces the
inferred (4, B;) system matrices to represent the inverted
pendulum system and the “Design Controller” block
applies pole placement technique to design the controller.
Figure 11 shows the detail of the “Trained TK-Model”
block and the detail of the “Design Controller” block can
be seen in Figure 12. Figure 13 shows the trajectory for

g,

Figure 12. Block diagram of “Design Controller”
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Figure 13. Trajectory of 6, during the stabilization of the
pendulum

Figure 14 shows the trajectory of 9, for the stabilization of
the pendulum with time delay = 0.019s.
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Figure 14. Trajectory of 6, to stabilize the pendulum with
time delay = 0.019s

Figure 15 shows the trajectory of 9, for the stabilization of
the pendulum with time delay =0.020s.
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Figure 15. Trajectory of 6, to stabilize the pendulum with
time delay = 0.020s

From Figure 14, 0.019s is almost the maximum allowed
time delay for the real inverted pendulum control system
with on-line optimal trained controller in the dSPACE
control platform. The maximum allowed delay time for the
inverted pendulum control system in simulation is about



0.022s. If we assume the maximum time delay from
simulation is correct, then the computational time for the
on-line controller is less than 0.003s (=0.022s-0.019s).
This will change when different hardware platform is
applied. Thus it is obvious that we can still use slower
hardware platform to control the planetary inverted
pendulum system to reduce the cost.

6 Conclusion

The on-line adaptive intelligent control for uncertain
nonlinear systems by using TS-type FNN models proposed
in [1] has been fully implemented using real hardware
platform, i.e., DS 1104 R&D control board, under MatLab
SimuLink. The planetary inverted pendulum was adopted
as the real example to be controlled. The initial
perturbation was done by various step commands to get
the initial TS-type FNN model matrices. Then the on-line
optimal training algorithm was implemented in SimuLink
to drive the DS 1104 R&D control board to control the
planetary inverted pendulum. Excellent results have been
obtained to show the feasibility of hardware
implementation of the control algorithm in [1]. The
computational time delay to obtain the control signal has
also been studied using real hardware emulations. The
computational time delay of the planetary inverted
pendulum using DS 1104 R&D control board has been
estimated to be less than 0.003 seconds. This is within the
maximum allowable computational time of 0.022 seconds,
which is assumed to be correct by a pure computer
simulation. This result can be very meaningful for
industrial applications by choosing cheaper hardware
platform with less cost to achieve the same control
purpose.

References

[1] Shi-Hao Ker, “On-Line Intelligent Adaptive Control
for Uncertain Nonlinear Systems using Optimally
Trained TS-Type Fuzzy Models”, MS Thesis,
Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsin-Chu, Taiwan,
2002.

[2] T. Takagi and M. Sugeno, “Fuzzy ldentification of
Systems and Its Applications to Modeling and
control,” IEEE Trans. Syst., Man, Cybern., Vol. 15,
pp. 116-132, Jan./Feb. 1985.

[3] Chi-Hsu Wang, Han-Leih Liu, Chin-Teng Lin,
“Dynamic optimal learning rates of a certain class of
fuzzy neural networks and its applications with
genetic algorithm”, IEEE Transactions on Systems,
Man and Cybernetics, Part B, Vol. 31, p.p. 467 -475
June 2001.

[4] T.C. Hsia, “System Identification”, Lexington Books,
1977.

[5] Shing-Jen Wu and Chin-Teng Lin, “Optimal Fuzzy
Controller Design: Local Concept Approach,” IEEE
Trans. On Fuzzy Systems, Vol. 8, No. 2, pp. 171-183,
April 2000.

[6] Shing-Jen Wu and Chin-Teng Lin, “Optimal Fuzzy
Controller Design in Continuous Fuzzy System:
Global Concept Approach,” IEEE Trans. On Fuzzy
Systems, Vol. 8, No. 6, pp. 713-729, Dec. 2000.

[7] Shuang-Yuan Chen and Chen-Ren Lin, “Design and
Control System Simulation of a Planetary Train Type
Inverted Pendulum Mechanism,” 27+ @ﬁ%ﬁ?ﬁﬁﬁ
/ii, 3‘5/’3771/;7‘/@ gﬁé/%ﬁyﬁ/ﬁfﬁf/%ﬁ‘ﬁ Nov.

[8] “DS1104 R&D Controller Board, Installation and
Configuration Guide”, dSPACE, July 2001.

[9] “DS1104 R&D Controller Board, ControlDesk
Experiment Guide”, dSPACE, July 2001.

[10]M. Malek-Zavarei and M. Jamshidi, “Time-Delay
Systems, Analysis, Optimization and Applications,”
Elsevier Science Publishers B.V., 1987

[11]R. N. Bateson, “Introduction to Control System
Technology,” Prentice Hall International, Inc, 2002

[12] ﬁ?ﬁﬁfﬁ%’ “ giéﬁ}%ﬁﬂ#;ﬁ?ﬁ‘é’ MATLAB D—iﬁ?, E3
= R AEH A E I L 1999

[13]William J. Palm 111, “Introduction to MATLAB 6 for
Engineers,” McGraw-Hill Education, Jan. 2003.

[14] Simon Haykin, “Neural Networks, A Comprehensive
Foundation, Second Eedition,” Prentice Hall
International, Inc, 1999.



