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We developed the Adomian’s decomposition method to work for the electromagnetically induced transpar-
ency �EIT� problem. The method is general and capable to solve the coupled nonlinear partial differential
equations for a light pulse passing through a three-level �-type coherent medium. This EIT system is described
by the coupled Maxwell-Schrödinger equations and optical Bloch equations. In the weak probe field case, the
results agree with perturbation solutions and experimental data. In the stronger probe field case while pertur-
bation may fail, our results reproduce experimental data well. With the techniques of spatial and time parti-
tions, we extend the decomposition method that will be versatile for the investigation of the light pulse
propagating through a coherent atomic medium.
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I. INTRODUCTION

Recent progress for the control of light pulse propagations
through a coherent medium inspires interesting discoveries.
Namely, the electromagnetically induced transparency �EIT�
�1� and the frozen of light �2� are two of the amazing phe-
nomena. The technique to manipulate properties of light
pulses �3� can be used to create large populations of coher-
ently driven atoms. Types of optoelectronic devices �4� may
be invented by this kind of technology. The basic principles
involved in the two problems are delicate quantum interfer-
ences. To our knowledge, except for the perturbational solu-
tions, the general way of solutions to the system is still de-
manding. We aim in this paper to develop a general tractable
method to solve the related partial differential equations for
the system. So, some realistic experimental physical param-
eters are used and the results of the experiment and numeri-
cal calculations are compared.

The method we developed here is the Adomian’s decom-
position method �ADM�. ADM solves nonlinear differential
equations with decompositions; neither linearization nor per-
turbation is necessary for the nonlinear part. The method has
been widely applied to various domains in science and engi-
neering. Adomian himself treated many physical topics such
as the Navier-Stokes equations, Burger’s equation, the
advection-diffusion equation, Korteweg–de Vries equation,
nonlinear Schrödinger equation, etc. �5�. ADM is extremely
powerful for nonlinear physical problems, but no general
treatments for eigenvalue problems are found. We recently
developed a general ADM method for either linear or non-
linear eigenvalue problems �6�. Some of the techniques de-

veloped in the previous paper are adopted here, also.
The ADM treatment of the quantum optical propagation

problem is valuable to computational physics. It provides
nonperturbative, semianalytical solutions. So the solution
may be used to analyze the behaviors when the physical
parameters change. This advantage is by no means beyond
the capacity of usual numerical grids methods. Thus, the
ADM method will enhance the understanding of EIT and
related problems.

Consider a coherent medium consisting of �-type three-
level atoms with two metastable lower states �1�, �2�, and an
excited state �3�. In a typical experiment �7�, the medium
contains one billion of ultracold 87Rb atoms produced by a
magneto-optical trap. The three states are chosen as hyper-
fine levels of �5S1/2 ,F=1�, �5S1/2 ,F=2�, and �5P3/2 ,F�=2�. A
weak probe pulse Ep�x , t�=�pe−i�pt+c.c. couples state �1�
and the excited state �3�, and a stronger control field
Ec�x , t�=�ce

−i�ct+c.c. couples state �2� and state �3�, where
the pulse envelopes are slowly varying. Due to the long
wavelength condition, the spatial dependence e±ikx of electric
fields is neglected, however �p and �c still depend on x.

The Maxwell-Schrödinger equations �MSE� with the Rabi
frequencies �p�d13�p /q and �c�d23�c /q for the probe
field and control field are

1

c

��p�x,t�
�t

+
��p�x,t�

�x
= i� Im��31� , �1�

1

c

��c�x,t�
�t

+
��c�x,t�

�x
= i� Im��32� , �2�

where dij is the dipole-matrix element between states i and j,
�=3�2�N / �8	�, and � is the spontaneous decay rate of the
excited state �3�. The decay rates from �3� to �1� and to �2� are
usually assumed equal �8�. N is the number density of the
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medium, and � is the wavelength of the probe laser. We
consider that the coupling frequency and the carrier fre-
quency of the probe pulse are tuned resonantly. The density
matrix elements �ij are obtained from the optical Bloch equa-
tions �OBE� under the rotating-wave approximation �9,10�:

��11

�t
=

�

2
�33 −

i�p

2
��13 − �31� ,

��22

�t
=

�

2
�33 −

i�c

2
��23 − �32� , �3�

and

��12

�t
= − 
�12 −

i�c

2
�13 +

i�p

2
�23,

��23

�t
= −

�

2
�23 −

i�p

2
�21 −

i�c

2
��22 − �33� ,

��31

�t
= −

�

2
�31 +

i�c

2
�21 +

i�p

2
��11 − �33� , �4�

where �ij are functions of x, and t and are complex in gen-
eral. In the OBE, 
 is the relaxation rate of the ground-state
coherence. It can affect the amplitude of the output probe
pulse significantly. The 
 is a practical physical parameter
but was usually neglected in other calculations. For example,
in Ref. �8� the authors calculate the problem nonperturba-
tively. Merely, they did not consider the relaxation rate of
ground-state coherence. In Ref. �11�, the authors treat the
probe pulse as the perturbation, since they do not have the
equations of populations. However, a constant population
distribution is only valid for the perturbative calculation, i.e.,
the ground-state population of the probe field, �11�1. Our
goal is to solve the combined MSE and OBE by ADM with
practical experimental parameters that may lie beyond the
perturbative regime.

The paper is organized as follows. In Sec. II we introduce
the scheme to decompose the spatial variable. In Sec. III we
describe the decomposition of the time variable. In Sec. IV
the time domain partition method is used to overcome the
trouble of divergence in the series expansion of t. In Sec. V,
for a stronger probe pulse case, we use the spatial domain
partition method to resolve the convergent problem of x and
present the results. Section VII is devoted to the concluding
remarks.

II. DECOMPOSITION OF THE POSITION VARIABLE

In the following, we denote the probability of the excited
state as �e=�33, and the reduced probability of the ground
state as �g=1−�11 for convenience. The conservation of
probability requires �22=�g−�e. We find from Eq. �4� that
�12 is real and �23 and �31 are imaginary. We denote
�12=��, and �23= i��, �31= i�
, where �e, �g, ��, ��, �
, �c,
and �p all are real functions. Thus the coupled MSE and
OBE become

��g

�t
= −

�

2
�e + �p�
,

��e

�t
= − ��e + �p�
 − �c��,

���

�t
= − 
�� −

�c

2
�
 −

�p

2
��,

���

�t
= −

�

2
�� −

�p

2
�� −

�c

2
��g − 2�e� ,

��


�t
= −

�

2
�
 +

�c

2
�� +

�p

2
�1 − �g − �e� , �5�

and

1

c

��p�x,t�
�t

+
��p�x,t�

�x
= − ��
, �6�

1

c

��c�x,t�
�t

+
��c�x,t�

�x
= ���. �7�

The ansatz of ADM is to expand the unknown solutions
�p�x , t�, �c�x , t�, and �i�x , t� in infinite series:

�p�x,t� = 	
n=0



�p
n�t�xn,

�c�x,t� = 	
n=0



�c
n�t�xn,

�i�x,t� = 	
n=0



�i
n�t�xn, �8�

where the superscript n designates the order of decomposi-
tion. The initial conditions in this problem are

�p
0�t� = lim

t→0+
�p�x = 0, t � 0� ,

�c
0�t� = �c�const� ,

�i
0�t = 0� = �i�x = 0, t = 0� = 0. �9�

Let Lx represent � /�x and Lt represent � /�t. By the as-
sumption of Eq. �8�, we rewrite the OBE in the form

Lt�g
0 = −

�

2
�e

0 + �p
0�


0 ,

Lt�e
0 = − ��e

0 + �p
0�


0 − �c��
0 ,

Lt��
0 = − 
��

0 −
�c

2
�


0 −
�p

0

2
��

0 ,
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Lt��
0 = −

�

2
��

0 −
�p

0

2
��

0 +
�c

2
��g

0 − 2�e
0� ,

Lt�

0 = −

�

2
�


0 +
�c

2
��

0 +
�p

0

2
�1 − �g

0 − �e
0� . �10�

By solving Eq. �10� with conditions of Eq. �9�, we can get
�i

0�t�. If we write Eqs. �6� and �7� in the form

Lx�p = − ��
 −
1

c
Lt�p, �11�

Lx�c = ��� −
1

c
Lt�c, �12�

and operate with the inverse operators Lx
−1, we have

�p = − �Lx
−1�
 −

1

c
Lx

−1Lt�p, �13�

�c = �Lx
−1�� −

1

c
Lx

−1Lt�c. �14�

By the assumption of Eq. �8�, we get the ordinary differential
equation

�p
n+1�t� = −

1

n + 1
��


n�t� −
1

�n + 1�c
Lt�p

n�t� , �15�

�c
n+1�t� =

1

n + 1
���

n�t� −
1

�n + 1�c
Lt�c

n�t� , �16�

where n�0. Using �p
0�t�, �c

0�t�, �i
0�t� and Eqs. �15� and �16�

we can get �p
1�t� and �c

1�t�.
For the higher orders of �i, by Eq. �8� and the OBE, we

have

Lt�g
n = −

�

2
�e

n + Nx
n��p�
� ,

Lt�e
n = − ��e

n + Nx
n��p�
� − Nx

n��c��� ,

Lt��
n = − 
��

n − 1
2Nx

n��c�
� − 1
2Nx

n��p��� ,

Lt��
n = −

�

2
��

n −
1

2
Nx

n��p��� − 1
2Nx

n��c�g� − Nx
n��c�e� ,

Lt�

n = −

�

2
�


n +
1

2
Nx

n��c��� + 1
2 ��p

n − Nx
n��p�g� − Nx

n��p�e�� ,

�17�

where the nonlinear function Nx
n�CD� is the nth order decom-

position of function C�x , t� times D�x , t� with variable x; de-
fined as

Nx
n�CD� �

1

n!

� �

�x
�n

�C�x,t� � D�x,t��
x=0

. �18�

For example, if C�x , t�=	Cn�t�xm, and D�x , t�=	Dn�t�xm,
then Nx

1�CD�=C0�t�D1�t�+C1�t�D0�t�.

In summary, our iteration procedure is to first apply
the initial condition �i

0�t� to Eq. �10� and obtain �i
0�t�.

Then from Eqs. �15� and �16� we obtain �i
1�t�; the next

order �i
1�t� is given through Eq. �17�, and so on.

Schematically: �i
0�t�→�i

0�t�→�i
1�t�→�i

1�t�¯�i
k�t�→�i

k�t�
→�i

k+1�t�→�i
k+1�t�¯ . We finally construct the functions

�i�x , t� and �i�x , t� by Eq. �8�.
In the next section we show the method of solving differ-

ential equations with variable t by ADM.

III. DECOMPOSITION OF THE TIME VARIABLE

Expand the decomposition orders �p
n�t� ,�c

n�t�, and �i
n�t�

in series:

�p
n�t� = 	

m=0



�p
n,mtm,

�c
n�t� = 	

m=0



�c
n,mtm,

�i
n�t� = 	

m=0



�i
n,mtm, �19�

and with the initial conditions

�p
0�t� = 	

m=0



�p
0,mtm, �20�

�c
0�t� = �c

0,0 = �c �21�

�i
0,m = 0.

So the coefficients �i
0,m are all known.

Now, operate the inverse operators Lt
−1 on both sides of

Eq. �10�, we have

�g
0 = �g

0,0 + Lt
−1�−

�

2
�e

0 + �p
0�


0� ,

�e
0 = �e

0,0 + Lt
−1�− ��e

0 + �p
0�


0 − �c��
0� ,

��
0 = ��

0,0 + Lt
−1�− 
��

0 −
�c

2
�


0 −
�p

0

2
��

0� ,

��
0 = ��

0,0 + Lt
−1�−

�

2
��

0 −
�p

0

2
��

0 −
�c

2
��g

0 − 2�e
0�� ,

�

0 = �


0,0 + Lt
−1�−

�

2
�


0 +
�c

2
��

0 +
�p

0

2
�1 − �g

0 − �e
0�� .

�22�

Substitute Eq. �19� into Eq. �22�, we obtain
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�g
0,m+1 =

1

m + 1
�−

�

2
�e

0,m + Nt
m��p

0�

0�� ,

�e
0,m+1 =

1

m + 1
�− ��e

0,m + Nt
m��p

0�

0� − Nt

m��c
0��

0�� ,

��
0,m+1 =

1

m + 1
�− 
��

0,m − 1
2Nt

m��c
0�


0� − 1
2Nt

m��p
0��

0�� ,

��
0,m+1 =

1

m + 1
�−

�

2
��

0,m −
1

2
Nt

m��p
0��

0� +
1

2
Nt

m��c
0�g

0�

− Nt
m��c

0�e
0�� ,

�

0,m+1 =

1

m + 1
�−

�

2
�


0,m +
1

2
Nt

m��c
0��

0� +
�p

0,m

2
−

1

2
Nt

m��p
0�g

0�

−
1

2
Nt

m��p
0�e

0�� , �23�

where the nonlinear function Nt
n�EF� is defined as the nth

order decomposition of function E�t� and by multiplying F�t�
for variable t,

Nt
n�EF� �

1

n!

� d

dt
�n

�E�t� � F�t��
t=0

. �24�

For instance, if E�t�=	Emtm and F�t�=	Fmtm, then Nt
2�EF�

=E0F2+E1F1+E2F0. From the initial conditions and Eq.
�23�, the functions �i

0�t� are obtained.
Substitute Eq. �19� into Eqs. �15� and �16�, we get

	
m=0

�p
n+1,mtm = −

1

n + 1
�	

m=0
��


n,mtm�

− 	
m=0

� m

�n + 1�c
�p

n,m−1tm−1� , �25�

	
m=0

�c
n+1,mtm =

1

n + 1
�	

m=0
���

n,mtm�

− 	
m=0

� m

�n + 1�c
�c

n,m−1tm−1� , �26�

or

�p
n+1,m = −

1

n + 1
��


n,m −
m + 1

�n + 1�c
�p

n,m+1, �27�

�c
n+1,m =

1

n + 1
���

n,m −
m + 1

�n + 1�c
�c

n,m+1. �28�

With the initial conditions �

0,m, �p

0,m and �c
0,m, the next

order �p
1,k and �c

1,k for any k are derived from the above
equation. Then �p

1�t� and �c
1�t� can be derived. Similar pro-

cedures, �p
n�t� and �c

n�t� for n�2, can be found.
To find higher orders �i

m�t�, we operate the inverse opera-
tors Lt

−1 to both sides of Eq. �17�, then

�g
n,m+1 =

1

m + 1
�−

�

2
�e

n,m + Nn,m��p�
�� ,

�e
n,m+1 =

1

m + 1
�− ��e

n,m + Nn,m��p�
� − Nn,m��c���� ,

��
n,m+1 =

1

m + 1
�− 
��

n,m − 1
2Nn,m��c�
� − 1

2Nn,m��p���� ,

��
n,m+1 =

1

m + 1
�−

�

2
��

n,m −
1

2
Nn,m��p��� +

1

2
Nn,m��c�g

n,m�

− Nn,m��c�e
n,m�� ,

�

n,m+1 =

1

m + 1
�−

�

2
�


n,m +
1

2
Nn,m��c��� +

�p
n,m

2

−
1

2
Nn,m��p�g� −

1

2
Nn,m��p�e�� , �29�

where the nonlinear function Nn,m�CD� is defined as the nth
order in variable x and mth order in variable t of function
C�x , t�; multiply D�x , t�,

Nn,m�CD� � Nt
m�Nx

n�CD��

=
1

n ! m!

� �

�x
�n� �

�t
�m

�C�x,t�D�x,t��
x=0,t=0

.

�30�

For example, if C�x , t�=	Cn,mxntm, and D�x , t�=	Dn,mxntm,
then N1,2�CD�= �C0,0D1,2+C0,1D1,1+C0,2D1,0�+ �C1,0D0,2

+C1,1D0,1+C1,2D0,0�.
We now already have enough information to obtain all the

functions. For a known �p
k�t� and �c

k�t�, our procedure starts
from the initial condition �i

k,0, then proceeds schematically
�i

k,0→�i
k,1→¯→�i

k,m , . . . , to construct the functions �i
k�t�.

We use �

k,m and �p

k,m+1 to obtain �p
k+1,m, and use ��

k,m and
�c

k,m+1 to obtain �c
k+1,m, to construct the higher decomposi-

tion function �p
k+1�t� and �c

k+1�t�.
Combine the decomposition x and t method, all the func-

tions �i�x , t� and �i�x , t�, and hence the solution to the
coupled equations are obtained.

IV. THE TIME DOMAIN PARTITION METHOD

To justify the convergence of series expansion of t, we
divide the time domain �0,T� into a union of q partitions
�Tm−1 ,Tm�, m=1,2 ,3 , . . . ,q. And the electric field function
�i

n�t� and density functions �i
n�t� in the mth partition are

denoted as �i,m
n �t� and �i,m

n �t� with t� �Tm−1 ,Tm�. The global
solution is given by
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�i
n�t� = 	

m=1

q

�i,m
n �t��m�t� ,

�i
n�t� = 	

m=1

q

�i,m
n �t��m�t� ,

t � �0,T� , �31�

where

�m�t� = �1, t � �Tm−1,Tm� ,

0, t � �Tm−1,Tm� ,
�32�

and

�0,T� = �
m=1

q

�Tm−1,Tm� . �33�

We reset the connection conditions at t=Tm as

�i,m
n ��mT� = �i,m+1

n �0� ,

�i,m
n ��mT� = �i,m+1

n �0� , �34�

where �mT=Tm−Tm−1 is the length of the interval �Tm−1 ,Tm�.
With this partition method, we overcome the problem of con-
vergence in time domain. The method was developed in our
previous treatment of ADM eigenvalue problems �6�.

In the following, we consider a Gaussian temporal pulse
passing through the coherent medium. The initial condition
of the field is

�p
0�t � 0� = �0exp
− � t − t0

�2�
�2 , �35�

�c
0�t� = �c. �36�

Our first example is a weaker field case so that we can
compare the results with perturbation theory. We take �0
=0.01� , t0=3� ,�=240/� ,
=0.001�, and �=9.06� /L,
where L is the length of the medium. Here L=780 �m, and
�=3.77�107/sec; �c=0.3� is the Rabi frequency of the
coupling laser.

Notice that the reset initial condition for each interval is

�p,m
0 �t� = �p

0�Tm−1 + t�

= �0e−��Tm−1 + t − t0�/�2��2
, t � �0,�mT� . �37�

We choose T=6�, and slice the time domain into
q=24 000 parts. The choice of the number q is related to the
size of time slice �mT. Assume the machine accuracy of a
numerical computation is �, then after propagation of q steps,
the accumulative error is estimated to be O�q���. Thus, the
smaller value of q provides higher accuracy than larger value
of q. On the other hand, smaller q means larger value of
�mT. To reach the expected accuracy, the ADM expansion
must go to higher order. For nonlinear PDE, higher order
terms are complicated. The compromise is to choose a larger
value of q and keep modest order in expansion so that proper
accuracy can be obtained. If the accuracy criterion is set to
O�10−10�, and �=10−16, we need q�O�106�.

In Fig. 1, we depict the results of �p�x , t� in Eq. �8� and
its associated decompositions up to the sixth order at the end

point of medium x=L. Note that �p
0 is the input pulse at the

beginning end x=0. The peak ratio of �p�x=0, t� to
�p�x=L , t� agrees with the spatial variation from the pertur-
bational theory and will be discussed later. We can also see
that the magnitude decreases from order to order and the
magnitude of the sixth order is negligibly small. Thus, the
convergence in expansion orders is justified. Figure 2 shows
the time evolutional results of states probabilities and the
coherence at the end x=L. During the calculation, the spatial
domain expansion order is 6 and the time domain expansion
order is 4. The numerical error in time is less than 10−9, and
is less than 10−3 in spatial expansion.

A. The perturbation theory

In the previous calculation, the amplitude of control field
�c has the same order of magnitude of � and is 30 times of

FIG. 1. �Color online� The probe field in Eq. �8�. The curve
Input denotes the probe pulse at the beginning end x=0, and the
curve Output is at the end of medium x=L. Also shown are decom-
position orders. The labels �n are shorthand for �p

n in Eq. �8�. The
parameters are �0=0.01�, �c=0.3�, �=240/�, 
=0.001�, and
�=9.06� /L.

FIG. 2. �Color online� The density functions �i�t� as functions of
time at the end of medium x=L. Also shown are �i

0�t� at the begin-
ning end x=0. The parameters are the same as Fig. 1. The meanings
of indices are described in the text.
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the probe pulse �p. We have �p��c ,�. Due to the optical
pumping effect by the strong control field, all population is
nearly in the �1� state and, hence, �g ,�e�1. The optical co-
herence is qualitatively proportional to the Rabi frequency of
the driving field multiplied by the ground-state population.
The population in the �1� state is driven by the very weak
�p and the negligible �g is driven by the control field. It is
reasonable that �� ,�
��� and the change rates of �� and �


are much smaller than �c and �. Under the above conditions,
we neglect the term of �p�� /2 in the third equation of Eq.
�5�; 1−�g−�e�1 and the terms of ��
 /�t and ��
 /2 are
negligible in the fifth equation of Eq. �5�. We then have

���

�t
� − 
�� −

�c

2
�
,

0 �
�c

2
�� +

�p

2
. �38�

By using the results of Eq. �38� and the condition that �c is
a constant, we obtain

�
 �
2

�c
2

��p

�t
+

2


�c
2�p. �39�

Plug this expression �
 into MSE of Eq. �6�, the traveling
wave equation becomes

�1

c
+

2�

�c
2� ��p�x,t�

�t
+

��p�x,t�
�x

= −
2
�

�c
2 �p, �40�

so we find that the group velocity vg satisfies

1

vg
=

1

c
+

2�

�c
2 . �41�

The amplitude as a function of the position is

�p�x,t� = �p�t�exp�−
2
�x

�c
2 � . �42�

B. The comparison of ADM and perturbational results

If 2� /�c
2�1/c, with the physical parameters described

above, we then have

vg �
�c

2

2�
= 145.9 m/s. �43�

The traveling time of the pulse through the medium is L /vg,
in the dimensionless unit

r�t =
L

vg
= 201.5. �44�

At x=L, the decay factor is

exp�− 
�t� = exp�− 0.202� = 0.817. �45�

From the ADM data presented in Fig. 1, the decay in the
peak heights of the probe pulse at the input and output posi-
tion �curves labeled with Input and Output�, agrees quite

well with the perturbation formula of Eq. �45�. Our ADM
results also reproduce the experimental data as shown in Fig.
3 with parameters described in the captions of that figure.

V. THE SPATIAL DOMAIN PARTITION METHOD

In the next simulation, we increase the light pulse ampli-
tude but reduce the width of the pulse, so that the perturba-
tion theory may not work. The direct use of the same ADM
as described previously is divergent in spatial series. To guar-
antee the convergence of series expansion in x, we divide the
domain �0,X� into r partitions �Xm−1 ,Xm�, m=1,2 ,3 , . . . ,r,
just like the method we developed for the nonlinear eigen-
value problem of the Gross-Pitaevskii equation �6�. So the
field function �i�x , t� and density functions �i�x , t� in the mth
partition are denoted as �i,m�x , t� and �i,m�x , t� with
t� �Tm−1 ,Tm�. The global solutions are given by

�i�x,t� = 	
m=1

q

�i,m�x,t��m�x� ,

�i�x,t� = 	
m=1

q

�i,m�x,t��m�x� ,

x � �0,X� , �46�

where

�m�x� = �1, x � �Xm−1,Xm� ,

0, x � �Xm−1,Xm� ,
�47�

and

�0,X� = �
m=1

r

�Xm−1,Xm� . �48�

The connection conditions at x=Xm are

FIG. 3. �Color online� The comparison of the experimental data
and numerical simulation. �c=0.35±0.03�, �0=0.07±0.01�,
�=3.6±0.2� /L, 
= �3±1��10−3�, and �=240/� are determined
experimentally �7�. �c=0.35�, �0=0.07�, �=3.6� /L,

=2�10−3�, and �=240/� are used in the calculation.
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�i,m��mX,t� = �i,m+1�0,t� ,

�i,m��mX,t� = �i,m+1�0,t� , �49�

where �mX=Xm−Xm−1 is the length of the interval
�Xm−1 ,Xm�. With the spatial partition method, the conver-
gence problem in the series expansion of the spatial domain
is resolved. With the above condition for light pulse, we
divide the space into ten partitions and solve the coupled
OBE and MSE by ADM. We show in Fig. 4 the time evolu-
tions of a Gaussian pulse passing through a medium of
�-type three-level atoms at various positions in the medium.
In the simulation, �0 is 0.1� which is ten times larger than
the case in Fig. 1, and with much shorter width �=28/�.
Interestingly, we find that the stronger and narrower light
pulse is now more diffused by the medium than the case in
the previous section. Experiments show that the EIT fre-
quency transmission window is narrower compared to the
previous parameter set of a weaker field case. The narrower

frequency band transmitted causes the pulse shape to be
broader in the time domain. This phenomenon has not been
explained by the perturbation calculation.

Figure 5 depicts the time evolutions of the control field at
several places in the medium. At the beginning end �x=0�,
the field is fixed at the level of 0.3. The limiting case with

=0 was shown in �8�. Our results take 
 into consideration;

 can affect the amplitude of output probe pulses signifi-
cantly. The behavior of the output probe pulse in the medium
is quite different from those calculated with 
=0. To exhibit
the effect of 
, we show in Fig. 6 the results of 
=0, 0.001,
and 0.002� and the other parameters are set equal to those of
Fig. 1. The output probe pulse amplitude of the case with
nonvanishing 
 is significantly lower than the case with

=0.

Figure 7 shows the comparisons between calculation and
experimental results in real time. Significantly different from
the case shown in Fig. 3, the output probe pulse is broadened

FIG. 4. �Color online� The pulse shape of fields passing through
a medium of �-type three-level atoms at various places in the me-
dium. �p are shorthand for �p�x , t� at labeled positions. The
parameters are �0=0.1�, �c=0.3�, �=28/�, 
=0.001�, and
�=9.06� /L.

FIG. 5. �Color online� The time evolutions of the control field at
several places in the medium of �-type three-level system. �c are
shorthand for �c�x , t� at labeled positions. The parameters are the
same as Fig. 3.

FIG. 6. �Color online� The input �c �x=0, t� and output probe
pulses �c �x=L , t� at 
=0, 0.001, and 0.002�. The other parameters
are equal to those of Fig. 1.

FIG. 7. �Color online� The comparison of the experimental data
and numerical simulation. �c=0.30±0.03�, �0=0.10±0.01�,
�=3.6±0.2� /L, 
= �3±1��10−3�, and �=28/� are determined
experimentally �7�. The experimental data are taken through a
20-MHz low-pass filter. �c=0.33�, �0=0.10�, �=3.6� /L,

=2�10−3�, and �=28/� are used in the calculation.
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and asymmetrical with a longer tail. The agreement between
the experimental data and the theoretical prediction is satis-
factory. The agreements in both weak and stronger field
cases are excellent. This justifies that our ADM method
works well for either perturbative or nonperturbative cases.

VI. CONCLUSION

We show the Adomian’s decomposition method can pro-
vide semianalytical solutions for the problems of light pulse
passing through a medium of �-type three-level atoms. Un-
like other numerical grids methods, the ADM technique
gives explicit forms of solution. The direct use of the power
series expansion method �or modified decomposition
method� may not be able to solve the partial differential
equation straightforwardly. In that case, the spatial partition
method is a recipe to provide convergent results.

In summary, we have developed in this paper a new and
efficient algorithm to solve the coupled partial differential
equations of MSE and OBE for the three-level EIT problem.
All the computations reported here are carried out on a per-
sonal computer. The four levels are related to the problems;
such as photon switching by quantum interference �12�. It is
far more complicated than the three-level system but is in-
teresting. The method of the solution is currently under de-
velopment and will be reported in the future.
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