行政院國家科學委員會補助專題研究計畫 □ 成 果 報 告 ■期中進度報告

(計畫名稱)

共軛高分子微結構與介面中之激子與極化(1/3)

計畫	類	到:		別	型計	畫		ğ	整台	型	計畫							
計畫	編号	烷:	NSC	94	-211	2-N	M -0	09-02	27-									
執行	期	谓:		(94 年	=	8	月		1 E	至		95	年	8	月	31	日
計畫	主	寺人	:孟	心	飛													
共同	主	寺人	:															
計畫	參見	與人	員:	廖	華	賢、	曾	信榮										
成果	報台	告類	型(/	依經	費木	亥定	ミ清	單規	定約	数る	٤):		精簡	報告	- [二完	整報台	告
本成	果幸	报告	包括	5以	下應	繳	交々	こ附付	牛:									
□赴	國多	小 出	差或	研	習心	得	報せ	告一份	分									
□赴	大	陸地	區出	1差	或研	習	心得	子報台 かんりゅう かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい	-	份								
出	席	國際	冬學 和	行會	議心	3得	報台	告及	發表	之	論文	各	一份	-				
	際	合作	研究	計	畫國	外	研究	ご報告	占書	_	份							
處理	方	式:	除產	[學	合作	研	究言	十畫	、扶	是升	產業	技	術及	人ス	上培	育研	究計	畫、
			列管	計	畫及	下	列信	青形者	皆外	,	得立	即	公開	查詢				
			□涉	及-	專利	或	其他	也智慧	惠財	產	權,		一年		年往	复可?	公開查	 室詢
執行	·單亻	立:	交通	大	學物	理	所											

中華民國 96年 7月 2日

共軛高分子發光二極體的載子遷移率與元件效益

摘要

高分子有機發光二極體(PLED)目前有兩大研究趨勢,第一為在多層結構上的改善,此在本實驗室使用緩衝層的作法提高效率,此結果發表在 Appl. Phys. Lett.,其高效率藍光發光元件,效率可達 7 cd/A,而亮度更是接近30000 cd/m2。例外一研究主題為高效率發光分子的選擇,就我們所知,效率高的材料掌握在少數的材料商手中,不僅價格昂貴,其普及亦不易,故我們實驗室所使用材料偏向普遍易取得的 MEH-PPV、PFO 等發光材料,由美國 American Dye Sourcecoporation 取得。

近年來在發光體上的研究已有小成,紅光、綠光已有不錯的效益值 與穩定度,其產品已可商業化,但最重要的藍光其效益一直不高,效益 較高的藍光其實光色偏近天藍,約 460 nm,較短波長的深藍光(435 nm) 其效益值一直都不高,僅約小於 1 cd/A,但市面上所販售藍光高分子甚 多,其光激發之外部量子效益也頗高,但其元件效益卻甚低,此次研究 目的即是在於選用四種不同藍光發材料,探討其內部物理機制,並針對 效益的比較做一系列的研究。

報告內容

有機發光二極體有著大量的優勢,不論是在製程、大面積化、材料 成本便宜等,故預期在照明、LCD 背光板或是顯示器產業中有一定的優 勢,尤其應用在顯示器上,有著廣視角、色彩飽和度佳,大面積製程容 易等多重優點,故目前在效益改進上是一重要課題,尤以本實驗室所發 展的雙層技術,其亮度與效益都可達到極高值。但除了多層結構的改善 外,材料的選擇上也是一個重要的課題,此次選用的四種不同藍光材料 分別是 poly(9,9-dioctylfluorenyl-2,7-diyl) end cappedwith dimethylphenyl poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), capped-with end 2,5-diphenyl-1,2,4oxadiazole (PF-OXD), poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(9,9'-spirobifluorene-2,7-diyl)] poly[(9,9-dioctylfluorenyl -2,7-diyl)-alt-co-(9-hexyl-(PF-Spiro), and 3,6-carbazole)] end capped-with dimethylphenyl (PF-Carbazole).其分子式如 圖一所示。

圖二所示為不同藍光材料效益比較圖,其結構為

PEDOT_PF_CsF_AI,另外我們選用一高效益但未知結構的材料,BP105,由此結果可看出,同結構與條件下,其效益為BP105 > PFO > PF-OXD > PF-Spiro > PF-Carbazole,扣除BP105為未知材料外,其餘皆為PF系列的分子,亦即主鏈為 poly-fluorene 的組成,而終端為不同的官能基,但較難理解的是,此幾種材料的PL (photo-luminescence) efficiency 卻非常的高,約在36%~56% (如表格一),故探討其內部的載子傳輸機制是非常重要的,而關於效益的影響約有載子遷移率、載子密度、分子純度和分子量等,而遷移率更是我們此次的重要研究主題,故我們採用不同方法量測電子遷移率與電洞遷移率,以下我們就先以電洞遷移率的量測做介紹。

電洞遷移率的量測方式是採用 TR-EL (transient-electroluminescence) spectrum,實驗方法為使用方波產生器產生一方波,其方波寬度約 3 μ s,如圖三所示,方波訊號為同步訊號,隨著電壓增加,所產生的光訊號由 PMT (photomultiplier tube)收集並將訊號送到示波器上,圖二所顯示的為在不同偏壓(6,7 和 10V)下所得光訊號,在此 TR-EL 光譜中,會有三段時間解析,第一為時間零點到光訊號起點的部份,to;第二部份為時間零點到快速上升時間點的部分,ti;第三段為時間零點到趨近飽和的時間部份,tz,而我們所採用的快速載子傳輸時間即為 ti,又在有機半導體中,電洞的遷移率比起電子遷移率要高出三個等級,故這快速載子即為電洞,而由圖四可知,電洞遷移率在四種不同的材料差異不大,故我們可斷定四種 PF 系列的材料其電洞遷移率相近,並非影響元件效益的主要原因。

電子遷移率的量測是採用單電子電極元件量測電流,並以 SCLC 的公式來取得,結構為 Ag_PF_Ca_Al,因為接面處為歐姆接觸,並無能障的問題,使得其電子電流應遵守 SCLC (Space Charge-Limited Currents),公式為:

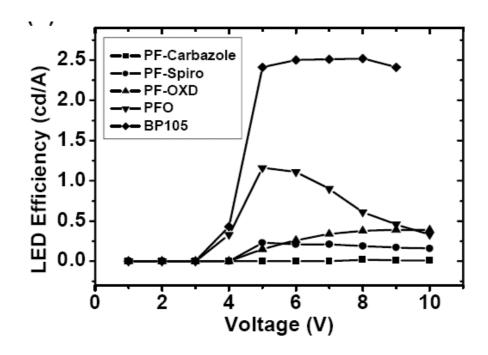
$$J_{SCLC} = \frac{9}{8} \varepsilon_0 \varepsilon_r \mu \frac{V^2}{L^3}$$

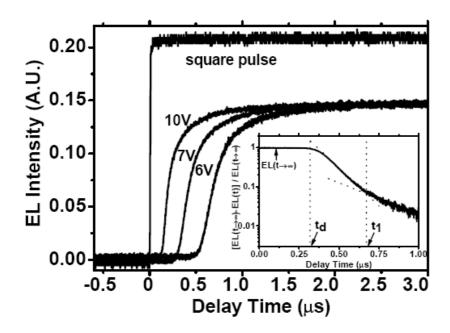
J為電流密度, ε_0 為真空中介電常數; ε_r 為高分子係數, μ 為遷移率,V為偏壓,L為膜厚。在陽極部分的金屬為銀,此可以在接面處擋住電洞,形成單電子電極元件。圖五(a)為電子電流密度與不同偏壓的關係,圖中清楚的顯現不同材料所表現的電子電流密度竟可以差到 3 個等級,其順序為 BP105 > PFO > PF-OXD > PF-Spiro > PF-Carbazole,換算成電子遷移率如圖五(b)所示,此與效益圖比較完全符合,顯示出材料雖有很高的光激發外部量子效益,其電洞遷移率也相差不遠,但太低的電子遷移率卻無法增進元件效益。

結論

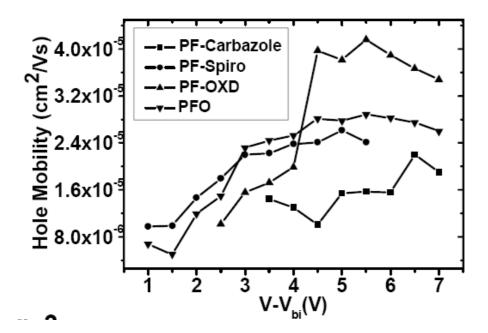
我們已成功的量測出四種光激發高效率的藍光發光材料,在元件效益上有很大的差異,而我們以瞬時電激發光譜來量測電洞遷移率,發現其電洞遷移率相差不遠,故主要的差異來自電子遷移率,我們以單電極的作法來量測電子遷移率,並發現較低的效益值來自較低的電子遷移率。

研究成果自評

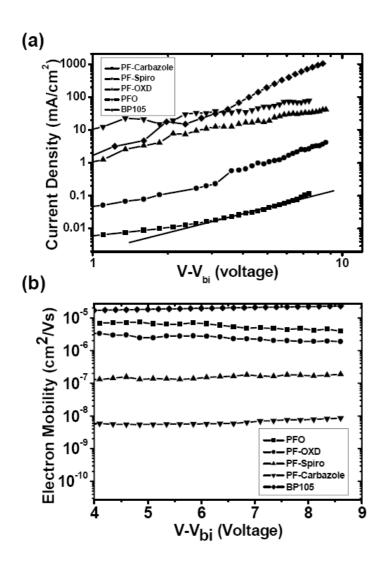

藍光材料不論是在研究上或是在商業應用上皆非常重要,所以要找 出一個具有商業應用價值的藍光是不可或缺的,在現階段研究中,我們 是第一位將易取得的藍光高分子做有系統的研究,並使用不同量測方式 量得電洞與電子遷移率,更進一步與元件效益做比較,此不僅可改善化 學合成上的缺點,亦是一重要研究成果。


表一 四種不同 PF 藍光高分子的 PL 與 EL 效益比較表。

	77 (77 (77				
Polymer	PF-Carbazole	PF-Spiro	PF-OXD	PFO	BP105
PL efficiency (%)	36.8	34.6	56.2	45.0	40.5
Max. EL efficiency (cd/A)	0.02	0.23	0.40	1.16	2.52
EL EQE (%)	0.01	0.16	0.38	0.82	1.50
$\mathrm{EL}\;\lambda_{max}\;(\mathrm{nm})$	425	425	432	435	470


圖一 四種 PF 系列藍光高分子的化學結構。

圖二 BP105 與四種 PF 系列藍光高分子的元件效益比較圖,其結構為 PEDOT_EML_CF_A1。



圖四 四種 PF 系列藍光高分子的電洞遷移率比較圖。

圖五(a)BP105 與四種不同 PF 藍光高分子材料的電子電流密度對電壓關係圖。(b)電子遷移率對電壓關係圖。

