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The quantum transport in mesoscopic structure: [ |1 ] Strain induced coupling of spin
current to nanomechanical oscillations; [ 11 ] Visibility of current and shot noise in electrical
Mach-Zehnder and Hanbury Brown Twiss interferometers; [ 111 ] dc spin current
generation in a Rashba-type quantum channel; [IV] Effects of elastic scatterer on the dc
spin current generation in a Rashba-type channel; [V] Spin Hall Effect on Edge
Magnetization and Electric conductance of a 2D Semiconductor Strip; [ VI ] Fano
resonance in transport through a mesoscopic two-lead ring; [VII] Connecting wave
functions at a three-legs junction of one-dimensional channels; [VII1] Spin cloud induced
around an elastic scatterer by the intrinsic spin-Hall effect.
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Abstract:

We study the spin and charge pumping in mesoscopic structures: [ | ] Strain induced
coupling of spin current to nanomechanical oscillations; [ 11 ] Visibility of current and shot
noise in electrical Mach-Zehnder and Hanbury Brown Twiss interferometers; [ 111 ] dc spin
current generation in a Rashba-type quantum channel; [1V] Effects of elastic scatterer on
the dc spin current generation in a Rashba-type channel; [V] Spin Hall Effect on Edge
Magnetization and Electric conductance of a 2D Semiconductor Strip; [ VI ] Fano
resonance in transport through a mesoscopic two-lead ring; [VII] Connecting wave
functions at a three-legs junction of one-dimensional channels ; [VI11] Spin cloud induced
around an elastic scatterer by the intrinsic spin-Hall effect.

[I] Strain induced coupling of spin current to nanomechanical oscillations :

We propose a setup which allows to couple the electron spin degree of freedom to the mechanical
motions of a nanomechanical system not involving any of the ferromagnetic components. The
proposed method employs the strain induced spin-orbit interaction of electron in narrow gap
semiconductors. We have shown how this method can be used fro detection and manipulation of

the spin flow through a suspended rod in a nanomechanical device.

[II] Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown Twiss
interferometers :

We investigate the visibility of the current and shot-noise correlations of electrical analogs of the
optical Mach-Zehnder interferometer and the Hanbury Brown Twiss interferometer. The electrical
analogs are discussed in conductors subject to high magnetic fields where electron motion is
along edge states. The transport quantities are modulated with the help of an Aharonov-Bohm
flux. We discuss the conductance (current) visibility and shot noise visibility as a function of
temperature and applied voltage. Dephasing is introduced with the help of fictitious voltage
probes. Comparison of these two interferometers is of interest since the Mach-Zehnder
interferometer is an amplitude (single-particle) interferometer whereas the Hanbury Brown Twiss
interferometer is an intensity (two-particle) interferometer. A direct comparison is only possible
for the shot noise of the two interferometers. We find that the visibility of shot noise correlations
of the Hanbury Brown Twiss interferometer as function of temperature, voltage or dephasing, is
qualitatively similar to the visibility of the first harmonic of the shot noise correlation of the
Mach-Zehnder interferometer. In contrast, the second harmonic of the shot noise visibility of the
Mach-Zehnder interferometer decreases much more rapidly with increasing temperature, voltage

or dephasing rate.



[IIT] dc spin current generation in a Rashba-type quantum channel:

We propose and demonstrate theoretically that resonant inelastic scattering RIS can play an
important role in dc spin current generation. The RIS makes it possible to generate dc spin
current via a simple gate configuration: a single finger gate that locates atop and orients
transversely to a quantum channel in the presence of Rashba spin-orbit interaction. The ac-biased
finger gate gives rise to a time variation in the Rashba coupling parameter, which causes
spin-resolved RIS and, subsequently, contributes to the dc spin current. The spin current depends
on both the static and the dynamic parts in the Rashba coupling parameter, oy and o,
respectively, and is proportional to ooo;> The proposed gate configuration has the added
advantage that no dc charge current is generated. Our study also shows that the spin current

generation can be enhanced significantly in a double finger-gate configuration.

[IV] Effects of impurity on the dc spin current generation in a Rashba-type channel:

We have investigated the effects of a single impurity on the dc spin current (SC) generation in a
Rashba-type channel. The dc SC could be generated via a single ac finger-gate (FG). Effects of
impurity have strong dependence of transverse-location and strength for the transport of dc SC in
the channel. The spin-resolved dip structures are broadened while the impurity is away from the
edge inside of the ac-FG. The effect of impurity is decreased for the impurity in the edge of the
channel. The impurity has small effect for the transport while the impurity is outside of the ac-FG.
The spin-resolved inter-subband transition is observed while the incident energy near each

subband threshold because the symmetry of transverse direction is broken by the impurity.

[V] Spin Hall Effect on Edge Magnetization and Electric Conductance of a 2D semiconductor
Strip:

The intrinsic spin Hall effect on spin accumulation and electric conductance in a diffusive regime
of a 2D electron gas has been studied for a 2D strip of a finite width. It is shown that the spin
polarization near the flanks of the strip, as well as the electric current in the longitudinal direction,
exhibit damped oscillations as a function of the width and strength of the Dresselhaus spin-orbit
interaction. Cubic terms of this interaction are crucial for spin accumulation near the edges. As
expected, no effect on the spin accumulation and electric conductance have been found in case of

Rashba spin-orbit interaction.

[VI] Fano resonance transport through a mesoscopic two-lead ring :

The ballistic transport through a one-dimensional two-lead ring at zero magnetic field is studied.
We have focused on the case in which the potential in the ring does not define closed cavities or
dots. Even in the absence of well-defined quasibound states, we find Fano profiles in the
transmission probability. Those Fano profiles appear at energies corresponding to the
standing-wave states in the ring, but their occurrence depends sensitively on the
commensurability of the system parameters. When the system parameters are commensurate, the
widths of the profiles at some energies are infinitesimally small. These findings suggest that the

conventional understanding of the Fano profiles as a result of the interference effect of the



transition through resonant states and nonresonant continuum of states, might not account for all
the Fano profiles seen in the transport measurements. Moreover, the sensitivity and tunability of
the resonance with respect to the system parameters may be usable in the fabrication of electrical

nanodevices.

[VII] Connecting wave functions at a three-leg junction of one-dimensional channels:

We propose a scheme to connect the wave functions on different one-dimensional branches of a
three-leg junction Y junction . Our scheme differs from that due to Griffith [Trans. Faraday Soc.
49, 345 (1953)] in the respect that ours can model the difference in the widths of the
quasi-one-dimensional channels in different systems. We test our scheme by comparing results
from a doubly connected one-dimensional system and a related quasi-one-dimensional system,
and we find a good agreement. Therefore our scheme may be useful in the construction of

one-dimensional effective models out of multiply connected quasi-one-dimensional systems.

[VIII] Spin cloud induced around an elastic scatterer by the intrinsic spin-Hall effect:

Similar to the Landauer electric dipole created around an impurity by the electric current, a spin
polarized cloud of electrons can be induced by the intrinsic spin-Hall effect near a spin
independent elastic scatterer. It is shown that in the ballistic range around the impurity, such a
cloud appears in the case of Rashba spin-orbit interaction, even though the bulk spin-Hall current

is absent.

Keywords:

Quantum transport, quasi-bound state, inelastic scattering, quantum channel, spin current, Spin
Hall Effect, Spin accumulation, spin cloud, Rashba spin-orbit interaction, Dresselhau spin-orbit
interaction, mesoscopic ring, Fano structures, persistent current, current visibility, noise visibility,
Mach-Zehnder interferometer, the Hanbury Brown Twiss interferometer, edge states,

Aharonov-Bohm flux, dephasing, Fano effect.



= ~ Motivations and goals

[1] Strain induced coupling of spin current to nanomechanical oscillations :

An ability to control the spin transport in semiconductors is a key problem to be solved towards
implementation of semiconductor spintronics into quantum information processing [1-3]. Many
methods have been proposed to achieve control of the electron spin degree of freedom using
magnetic materials, external magnetic fields and optical excitation [3]. Other promising ideas
involve the intrinsic spin-orbit interaction (SOI) in narrow gap semiconductors to manipulate the
spin by means of electron fields [4] and electric gates [5-7]. Recently, some of these ideas have
been experimentally confirmed [8,9].

In semiconductors the spin-orbit effect appears as an interaction of the electron spin with an
effective magnetic field whose direction and magnitude depend on the electron momentum. A
specific form of this dependence is determined by the crystal symmetry, as well as by the
symmetry of the potential energy profile in heterostructures. In strained semiconductors new
components of the effective magnetic field appear due to violation of the local crystal symmetry
[10]. The effective of the strain induced SOI on spin transport was spectacularly demonstrated by
Kato et. al. in their Faraday rotation experiment [9]. An interesting property of the strain induced
SOI is that the strain can be associated with mechanical motion of the solid, in particular, with
oscillations in nanomechanical systems (NMS), in such a way making possible the spin-orbit
coupling of the electron spin to nanomechanical oscillations. At the same time a big progress in
fabricating various NMS [11] allows one to reach the required parameter range to observe subtle
effects produced by such a coupling.

We will consider NMS in the form of a suspended beam with a doped semiconductor film
epitaxially grown on its surface (see Fig. 1). An analysis of the SOI in this system shows that the
flexural and torsion vibrational modes couple most effectively to the electron spin. As a simple
example, we will focus the torsion modes. The strain associated with torsion produces the
spin-orbit field which is linear with respect to the electron momentum and is directed
perpendicular to it. This field varies in time and space according to respective variations of the
torsion strain. Due to the linear dependence on the momentum, the SOI looks precisely as
interaction with spin dependent electromagnetic vector potential. An immediate result of this
analogy is that the time dependent torsion gives rise to a motive force on electrons. Such a force,
however, acts in different directions on particles with oppositely oriented spins, including thus
the spin current in the electron gas. The physics of this phenomenon is very similar to the spin
current generation under time dependent Rashba SOI, where the time dependence of the SOI
coupling parameter is provided by the gate voltage variation [6]. In the present work we will
focus, however, on the inverse effect. Due to the SOI coupling, the spin current flowing through
the beam is expected to create a mechanical torsion. The torque effect on NMS due to spin flow
has been previously predicted [12] for a different physical realization, where the torque has been
created by spin flips at nonmagnetic-ferromagnetic interface. They also suggested an
experimental set up to measure such a small torque. The torque due to SOI effect can be by 2
orders of magnitude stronger than the torque produced by the current flowing through the
FM-NM interface. Hence, the SOI effect can be measured by the same method as was proposed

[12]. Besides this method, other sensitive techniques for displacement measurements can be



employed [13].

Fig. 1 : Schematic illustration of electromechanical spin current detector, containing a
suspended semiconductor-mental (S-M) rectangular rod atop an insulating substrate (blue). A
spin current is injected from the left semiconductor reservoir (yellow) and then diffuses
toward the metallic film (green). While passing through the semiconductor film, the spin

current induces torque shown by the black arrow.
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[11] Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown
Twiss interferometers:

With the advent of mesoscopic physics, it has become possible to experimentally investigate
quantum phase coherent properties of electrons in solid state conductors in a controlled way. In
particular, in ballistic mesoscopic samples at low temperatures, electrons can propagate up to
several microns without loosing phase information. This opens up the possibility to investigate
electrical analogs of various optical phenomena and experiments. An investigation of such
analogs is of fundamental interest. On the one hand, it allows one to establish similarities
between the properties of photons and conduction electrons, a consequence of the wave nature of
the quantum particles. On the other hand, it also allows one to investigate the differences between
the two types of particles arising from the different quantum statistical properties of fermions and
bosons. For many-particle properties, such as light intensity correlations or correspondingly
electrical current correlations, noise, the quantum statistical properties are important. [1,2] Both
the wave-nature of the particles as well as their quantum statistics are displayed in a clearcut
fashion in interferometer structures. In this work we are concerned with the electrical analogs of
two well known optical interferometers, the single-particle Mach-Zehnder (MZ) interferometer
and the two-particle Hanbury Brown Twiss (HBT) interferometer.

The MZ-interferometer is a subject of most textbooks in optics.[3] In the framework of
quantum optics, considering individual photons rather than classical beams of light, the
interference arises due to the superposition of the amplitudes for two different possible paths of a
single photon. This leads to an interference term in the light intensity. The MZ-interferometer is
thus a prime example of a single particle interferometer.[4] Various electronic interferometers
with ballistic transport of the electrons have been investigated experimentally over the last
decades, as e.g. Aharonov-Bohm (AB) rings[5] and double-slit interferometers.[6] Detailed
investigations of dephasing in ballistic interferometers was carried out in Refs. [7,8]. Only very
recently was the first electronic MZ-interferometer realized by Ji et al.[9] in a mesoscopic
conductor in the quantum Hall regime. A high visibility of the conductance oscillations was
observed, however the visibility was not perfect. This led the authors to investigate in detail
various sources for dephasing. As a part of this investigation, also shot noise was measured. Still,
some aspects of the experiment are not yet fully understood. Theoretically, Seelig and one of the
authors [10] investigated the effect of dephasing due to Nyquist noise on the conductance in a
MZ-interferometer. The effect of dephasing on the closely related four-terminal resistance in
ballistic interferometers [11] was investigated as well. Dephasing in ballistic strongly interacting
systems is discussed by Le Hur. [12,13] Following the experimental work of Ji et al.,[9]
Marquardt and Bruder investigated the effect of dephasing on the shot-noise in
MZ-interferometers, considering dephasing models based on both classical [14,15] as well as
quantum fluctuating fields.[16] Very recently, Forster, Pilgram and one of the authors [17]
extended the dephasing model of Refs. [10,14] to the full statistical distribution of the transmitted
charge.

The HBT-interferometer [18-20] was originally invented for stellar astronomy, to measure
the angular diameter of stars. It is an intensity, or two-particle,[4] interferometer. The interference
arises from the superposition of the amplitudes for two different two-particle processes.

Importantly, there is no single particle interference in the HBT-interferometer. Consequently, in



contrast to the MZ-interferometer there is no interference in the light intensity, the interference
instead appears in the intensity-intensity correlations. Moreover, the intensity-intensity
correlation also display the effect of quantum statistics. Photons originating from thermal sources
tend to bunch, giving rise to positive intensity cross correlations. For the electronic analog of the
HBT-interferometer, it was the corresponding anti-bunching of electrons that originally attracted
interest. It was predicted [1] that the electrical current cross correlations in mesoscopic
conductors would be manifestly negative, i.e. display anti-bunching, as a consequence of the
fermionic statistics of the electrons. Negative current cross correlations were subsequently
observed in two independent experiments.[21,22] Recently, anti-bunching for field emitted
electrons in vacuum was also demonstrated.[23] The two-particle interference in the
HBT-experiment has received much less attention. We emphasize that while the bunching of the
photons was necessary for obtaining a finite, positive cross correlation signal, it was the
two-particle effect that was of main importance to HBT since the angular diameter of the star was
determined from the two-particle interference pattern. In electrical conductors, two-particle
effects in AB-interferometers were investigated theoretically in Refs. [24-26]. Only very recently
two of the authors and Sukhorukov [27] proposed a direct electronic analog of the optical
HBT-interferometer which permits to demonstrate two-particle interference in an unambiguous
way.

In this work we investigate and compare in detail the current and and zero-frequency noise
in electronic MZ and HBT interferometers. We consider interferometers implemented in
mesoscopic conductors in the integer Quantum Hall regime, where the transport takes place along
single edge states and Quantum Point Contacts (QPC's) serve as controllable beam splitters. The
effect of finite temperature, applied bias and asymmetry, i.e. unequal length of the interferometer
arms, is investigated. The strength of the interference contribution is quantified via the visibility
of the phase oscillations. The dependence of the visibility on the beam splitter transparencies as
well as on the temperature, voltage and asymmetry is discussed in detail. Of interest is the
comparison of visibility of the shot-noise correlation of the MZ-interferometer and the
HBT-intensity interferometer. Shot noise correlations in the MZ-interferometer exhibit two
contributions, one with the fundamental period of h/e and a second harmonic with period h/2e.
The shot noise correlations in the HBT-interferometer, even though they are due to two particle
processes, are periodic with period h/e. Thus the Aharonov-Bohm period can not be used to
identify the two particle processes which give rise to the HBT effect. It is therefore interesting to
ask whether the HBT two-particle processes have any other signature, for instance in the
temperature or voltage dependence of the visibility of the shot-noise correlation. We find that this
is not the case. To the contrary, we find that the shot noise correlations in the HBT intensity
interferometer behave qualitatively similar to the h/e shot noise correlation in the
MZ-interferometer. In contrast the h/2e contribution in the shot noise of the MZ-interferometer
decreases more rapidly with increasing temperature, voltage or dephasing rate than the h/e
oscillation in the MZ- or HBT-interferometer.

We investigate dephasing of the electrons propagating along the edge states by connecting
one of the interferometer arms to a fictitious, dephasing voltage probe. In all cases, the current
and noise of the MZ-interferometer as well as the noise in the HBT-interferometer, the effect of

the voltage probe is equivalent to the effect of a slowly fluctuating phase.
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[111] dc spin current generation in a Rashba-type quantum channel:

Spintronics is important in both application and fundamental arenas.[1,2]. A recent key issue of
great interest is the generation of dc spin current (SC) without charge current. Various dc SC
generation schemes have been proposed, involving static magnetic field, [3—-5] ferromagnetic
material, [6] or ac magnetic field. [7] More recently, Rashba-type spin-orbit interaction (SOI) in
two dimension electron gas (2DEG) [8—10] has inspired attractive proposals for nonmagnetic dc
SC generation. [11-13] Of these recent proposals, including a time-modulated quantum dot with
a static spin-orbit coupling, [11] and time modulations of a barrier and the spin-orbit coupling
parameter in two spatially separated regions, [12] the working principle is basically adiabatic
quantum pumping. Hence, simultaneous generation of both dc spin and charge current is the
norm. The condition of zero dc charge current, however, is met only for some judicious choices

for the values of the system parameters.
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[1V] Effects of elastic scatterer on the dc spin current generation in a Rashba-type channel :
Recent interest in spintronics has been prompted by its great potential in physical realization of
quantum computation [1-3]. One of the important issue in spintronics is the generation of DC
spin current (SC).Various schemes for the DC SC generation have recently been proposed, which
involve a non-uniform magnetic field [4] or an oscillating magnetic field [5]. An alternate way to
control the electron spin dynamics is via Rashba-type spin-orbit interaction (SOI) [6]. Several

proposals have been suggested to generate DC SC with a time-varying Rashba-type SOI

[1,7,8]. The Rashba term can be described by H, = a( px 2)-6 where a denotes the spin-orbit

(SO) coupling parameter and & stands for the Pauli spin matrices. That o can be tuned by an
external gate voltage in the InAs-based heterostructure has been demonstrated experimentally
[9,10]. In the presence of such an oscillating a induced by an AC-biased gate, it was found that
AC SC is generated in a ballistic quantum channel [7] or in a diffusive 2DEG [8]. Rectification,
such as introducing an additional oscillating barrier is needed for the DC SC generation [7,8].
Beyond linear response to a, we find that a DC SC can be generated via a single AC-biased FG
atop a ballistic Rashba-type quantum channel [1]. No charge current, however, is generated.

Resonance inelastic scattering (RIS) is found to contribute to the robustness in the DC SC [1].
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[V] Spin Hall Effect on Edge Magnetization and Electric Conductance of a 2D
semiconductor Strip:

Spintronics is a fast developing area to use electron spin degrees of freedom in electronic devices
[1]. One of its most challenging goals is to find a method for manipulating electron spins by
electric fields. The spin-orbit interaction (SOI), which couples the electron momentum and spin,
can be a mediator between the charge and spin degrees of freedom. Such a coupling gives rise to
the so-called spin Hall effect (SHE) which attracted much interest recently. Because of SOI the
spin flow can be induced perpendicular to the dc electric field, as has been predicted for systems
containing spin-orbit impurity scatterers [2]. Later, similar phenomenon was predicted for
noncentrosymmetric semiconductors with spin split electron and hole energy bands [3]. It was
called the intrinsic spin Hall effect, in contrast to the extrinsic impurity induced effect, because in
the former case it originates from the electronic band structure of a semiconductor sample. Since
the spin current carries the spin polarization, one would expect a buildup of the spin density near
the sample boundaries. In fact, this accumulated polarization is a first signature of SHE which has
been detected experimentally, confirming thus the extrinsic SHE [4] in semiconductor films and
intrinsic SHE in a 2D hole gas [5]. On the other hand, there was still no experimental evidence of
intrinsic SHE in 2D electron gases. The possibility of such an effect in macroscopic samples with
a finite elastic mean free path of electrons caused recently much debates. It has been shown
analytically [6—-11] and numerically [12] that in such systems SHE vanishes at arbitrary weak
disorder in dc limit for isotropic as well as anisotropic [10] impurity scattering when SOI is
represented by the so-called Rashba interaction [13]. As one can expect in this case, there is no
spin accumulation at the sample boundaries, except for the pockets near the electric contacts [7].
At the same time, the Dresselhaus SOI [14], which dominates in symmetric quantum wells, gives
a finite spin Hall conductivity [11]. The latter can be of the order of its universal valuee/8xz% .
The same has been shown for the cubic Rashba interaction in hole systems [12,15]. In this
connection an important question is what sort of the spin accumulation could Dresselhaus SOI
induce near sample boundaries. Another problem which, as far as we know, was not discussed in
literature, is how the electric current along the applied electric field will change under SHE. In
the present work we will use the diffusion approximation for the electron transport to derive the
driftdiffusion equations with corresponding boundary conditions for the spin and charge densities
coupled to each other via SOI of general form. Then the spin density near the flanks of an infinite
2D strip and the correction to its longitudinal electric resistance will be calculated for Dresselhaus
and Rashba SOI.
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[VI1] Fano resonance transport through a mesoscopic two-lead ring :

The Fano resonance or profile is conventionally understood as a result of the interference
between resonant and nonresonant processes. It was first observed and studied in nuclear
physics1l and atomic physics, [1] and later the effect was also observed in a wide variety of
spectroscopy such as atomic photoionization, [2] optical absorption, [3] Raman scattering, [4]
and also the scanning tunneling through a surface impurity atom.[5,6] As recent progress in the
fabrication technology of electrical nanodevices has achieved devices of the size of the order of
the various coherence lengths of the conduction electron, quantum mechanical effect and hence
the Fano resonance has also been seen in mesoscopic systems. For instance, it is seen in the
transport through systems which contain quantum dots [7-12] and carbon nanotubes.[13]
Moreover, it is proposed that the resonance can be used in the probe of the phase coherency of

the electrons in transport [14,15] and the design of mesoscopic spin filters.[16]
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[VI1] Connecting wave functions at a three-legs junction of one-dimensional channels:

For a system which comprises quasi-one-dimensional (Q1D) channels, when only the low-energy
regime at near the first subband bottom is considered, it can usually be modeled by a
one-dimensional (1D) system. When the system is multiply connected and consists of multileg
junctions, the wave functions on the branches are usually connected at the junctions by the
Griffith scheme, [1-4] the Shapiro scheme, [5—7] or similar schemes. Since such formulations
greatly reduce the calculational effort of complicated multiply connected mesoscopic systems,
they have been used widely in the literature. For example, see Refs. [8—19] and the references
therein. However, arguments which lead to these connecting schemes are kinematical, [1-7] and
it is not clear what kind of junction in practice they describe. Moreover, a comparison between
the results of these schemes and that of the exact calculation of Q1D systems has never been done.
It is the purpose of this paper to make a comparison between the Griffith result, the Q1D result,
and the result due to a scheme we propose in this paper. We find that for clean junctions of Q1D
channels, the Griffith result is not even qualitatively in accord with the exact result. The scheme

we derive gives a result that compares much better with the exact result.
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[VI1] Spin cloud induced around an elastic scatterer by the intrinsic spin-Hall effect:

The spin-Hall effect attracts much interest because it provides a method for manipulating electron
spins by electric gates, incorporating thus spin transport into con- ventional semiconductor
electronics. As it has been initially predicted, the electric field E induces the spin flux of electrons
or holes flowing in the direction perpendicular to E. This spin flux can be due either to the
intrinsic spin-orbit interaction (SOI) inherent to a crystalline solid [1], or to spin dependent
scattering from impurities [2]. Intrinsic spin-Hall effect corresponding to the former situation has
been observed in p-doped 2D semiconductor quantum wells [4], while the extrinsic effect related
to the latter scenario has been detected in n-doped 3D semiconductor films [3]. Most of the
theoretical studies on the spin-Hall effect (SHE) has been focused on calculation of the spin
current (for a review see [5]). On the other hand, since the spin current carries the spin
polarization, one would expect a buildup of the spin density near the sample boundaries. Such a
spin accumulation near interfaces of various nature was calculated in a number of works [6, 7, 8].
This accumulated polarization is a first evidence of SHE that has been observed experimentally in

Ref. [3, 4]. In fact, measuring spin polarization is thus far the only practical way to detect SHE.
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A).

[ 11 ] Visibility of current and shot noise in electrical Mach-Zehnder and Hanbury Brown
Twiss interferometers (Appendix B).

[ 111 ] dc spin current generation in a Rashba-type quantum channel (Appendix C).

[1V] Effects of elastic scatterer on the dc spin current generation in a Rashba-type channel
(Appendix D).

[V] Spin Hall Effect on Edge Magnetization and Electric conductance of a 2D
Semiconductor Strip (Appendix E).

[ VI ] Fano resonance in transport through a mesoscopic two-lead ring (Appendix F).

[VII] Connecting wave functions at a three-legs junction of one-dimensional channels
(Appendix G).

[VIH] Spin cloud induced around an elastic scatterer by the intrinsic spin-Hall effect
(Appendix H).



Appendix A:

PRL 95, 107203 (2005)

PHYSICAL REVIEW LETTERS

week ending
2 SEPTEMBER 2005

Strain-Induced Coupling of Spin Current to Nanomechanical Oscillations
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We propose a setup which allows us to couple the electron spin degree of freedom to the mechanical
motions of a nanomechanical system not involving any of the ferromagnetic components. The proposed
method employs the strain-induced spin-orbit interaction of electrons in narrow gap semiconductors. We
have shown how this method can be used for detection and manipulation of the spin flow through a

suspended rod in a nanomechanical device.

DOI: 10.1103/PhysRevLett.95. 107203

An ability to control the spin transport in semiconduc-
tors is a key problem to be solved towards implementation
of semiconductor spintronics into quantum information
processing [1-3]. Many methods have been proposed to
achieve control of the electron spin degree of freedom
using magnetic materials, external magnetic fields, and
optical excitation [for a review see Ref. [3]]. Other prom-
ising ideas involve the intrinsic spin-orbit interaction (SOI)
in narrow gap semiconductors to manipulate the spin by
means of electric fields [4] and electric gates [5-T].
Recently, some of these ideas have been experimentally
confirmed [8,9].

In semiconductors the spin-orbit effect appears as an
interaction of the electron spin with an effective magnetic
field whose direction and magnitude depend on the elec-
tron momentum. A specific form of this dependence is
determined by the crystal symmetry, as well as by the
symmetry of the potential energy profile in heterostruc-
tures. In strained semiconductors new components of the
effective magnetic field appear due to violation of the local
crystal symmetry [10]. The effect of the strain-induced SOI
on spin transport was spectacularly demonstrated by Kato
et al. in their Faraday rotation experiment [9]. An interest-
ing property of the strain-induced SOI is that the strain can
be associated with mechanical motion of the solid, in
particular, with oscillations in nanomechanical systems
(NMS), in such a way making possible the spin-orbit
coupling of the electron spin to nanomechanical oscilla-
tions. At the same time a big progress in fabricating various
NMS [11] allows one to reach the required parameter range
to observe subtle effects produced by such a coupling.

In this Letter we will consider NMS in the form of a
suspended beam with a doped semiconductor film epitax-
ially grown on its surface (see Fig. 1). An analysis of the
SOI in this system shows that the flexural and torsion
vibrational modes couple most efficiently to the electron
spin. As a simple example, we will focus on the torsion
mode. The strain associated with torsion produces the spin-
orbit field which is linear with respect to the electron
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momentum and is directed perpendicular to it. This field
varies in time and space according to respective variations
of the torsion strain. Because of the linear dependence on
the momentum, the SOI looks precisely as interaction with
the spin dependent electromagnetic vector potential. An
immediate result of this analogy is that the time-dependent
torsion gives rise to a motive force on electrons. Such a
force, however, acts in different directions on particles with
oppositely oriented spins, inducing thus the spin current in
the electron gas. The physics of this phenomenon is very
similar to the spin-current generation under time-
dependent Rashba SOI, where the time dependence of
the SOI coupling parameter is provided by the gate voltage
variations [6]. In the present work we will focus, however,
on the inverse effect. Because of the SOI coupling, the spin
current flowing through the beam is expected to create a
mechanical torsion. The torque effect on NMS due to spin
flow has been previously predicted by Mohanty ef al. [12]
for a different physical realization, where the torque has

Schematic illustration of electrome-

FIG. 1 (color online).
chanical spin-current detector, containing a suspended
semiconductor-metal (S-M) rectangular rod atop an insulating
substrate (blue). A spin current is injected from the left semi-
conductor reservoir (yellow) and then diffuses toward the me-
tallic film (green). While passing through the semiconductor
film, the spin current induces torque shown by the black arrow.

@ 2005 The American Physical Society
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been created by spin flips at the nonmagnetic-
ferromagnetic interface. They also suggested an experi-
mental setup to measure such a small torque. As it will be
shown below, the torque due to the strain-induced SOI can
be large enough to be measured using the experimental
setup proposed in Ref. [12]. Besides this method, other
sensitive techniques for displacement measurements can
be employed [13].

The system under consideration is a rectangular beam of
the total length L, width &, and thickness ¢. The coordi-
nate axes are chosen as shown in Fig. 1. The semiconductor
film with the thickness ¢/2 occupies the length L of the
beam. The rest part contains a metal film. It can also
include some additional elements for detection of the
torque, for example, in Ref. [12]. Here we will consider
an example when the spin current is created by diffusion of
the spin polarization from the left contact in Fig. 1.
Therefore, there is no electric current flow through NMS.
The spin polarization diffuses towards the metal film
which, due to its relatively high conduction, can play an
important role as a reservoir for the spin polarization
relaxation.

We start from the strain-induced SOI [10] described by
the Hamiltonian

Hso = alo(u k. — k) + ooyl ke, — k)
+ o iy ky — upk )]+ Blodk iy — 1)
+ ok, —uy,) + ok (g — uy,)] (n

where u;; are elements of the strain tensor, o; stand for
Pauli matrices, and k; denote components of the electron
wave vector. In the narrow gap semiconductors the pa-
rameter B is usually much smaller than « [10].
Therefore, the term proportional to S will be omitted
below. Besides the strain-induced Hgg, the total SOI
Hamiltonian also includes the strain independent interac-
tion Hgnp. Because of submicron cross-section dimensions
of the doped semiconductor film, Hgg, will be determined
by the bulk Dresselhaus term [14].

Hgop = 5Z|E”"|ir—(if —k2). (2)

ijn

This interaction, in the range of doping concentrations
10'7 em™ and higher, provides the main mechanism for
spin relaxation in bulk materials [10].

Since the S-M rod with total length L, > b and ¢, the
major contribution to the strain comes from flexural and
torsion motions of the rod [15]. Within the isotropic elastic
model, the flexural motions are represented by the diagonal
elements u,, and u,, [15] which do not enter into the first
square brackets of Eq. (1). On the other hand, due fo the
crystal anisotropy effects, the u,, components are not zero
for such sort of motion and could contribute to Eq. (1). We
will consider, however, the simplest example of torsion
mations of the rod within an isotropic elastic model. In this

case the strain can be represented as [15]

Uy = T[x}%; U, = —'r(x]';—:; u,, =0 (3)
where Tix) = 40/dx stands for the rate of torsion deter-
mined by the torsion angle 4. The function y depends only
on z and y and is uniquely determined by the rod cross-
section geomefry.

The next step is to derive from the one-particle interac-
tion Eq. (1) a Hamiltonian which describes a coupling of
the spin current to the strain. The electron system carrying
the spin current can be described by a density matrix 4. In
the framework of the perturbation theory the leading cor-
rection to the electron energy due to the SOI induced strain
can be obtained by averaging Hg,; with p. In the semi-
classical approximation such a procedure can be repre-
sented as averaging over the classical phase space with
the Boltzmann distribution function £, (r). This function is
a 2 X 2 matrix in the spinor space. One can also define the
spin distribution function Py (r) = (1/2) Tr [Fy (r)e’]. Tt is
normalized in such a way that the local spin polarization
Pir) = 5, Py (r). We notice that, due to electron confine-
ment in y and z directions, the averages of Hgg, containing
k, and k_ turn to zero. Assuming that electron distribution
is uniform within the cross section of the semiconductor
film one thus obtains, from Eqgs. (1) and (3), the S50l energy

- L. o6 . v OX dx
ESO—Za—L dxagkxfdydz(.”k{xlﬂ—z+P‘I-’i(x]ﬂ—y),

4)

This expression can be further simplified taking into ac-
count that y turns to zero on a free surface [15]. Hence, in
the example under consideration y = 0 on the top and side
surfaces of the doped semiconductor film. Consequently,
the second term in Eq. (4) vanishes after integration over y.
Now Eq. (4) can be expressed in terms of the spin current

J¥(x) which is the flux in x direction of y-polarized spins.

Px) =8> v,Py(x), (5)
k

where § = be/2 is the semiconductor film cross section
and v, is the electron velocity in x direction [16]. Finally,
Eq. (4) can be transformed to

L a6
ESO = '}’f dx..”(x]_—. {6}
0 dx
Here the coupling constant y is given by
b2
y = Tﬂ.—[ xly,z =0)dy, (7)
—b/2

where yg = 2m*a /hS.

From the last equation, it is seen that the spin-polarized
flow imposes a distributed torque on the rod. In order to
study this effect in detail we will neglect, for simplicity, the
difference between elastic constants of semiconductor and

107203-2



PRL 95, 107203 (2005)

PHYSICAL REVIEW LETTERS

week ending
2 SEPTEMBER. 2005

metal parts of NMS. As such, the equation of motion for
the torsion angle can be then written as

%0 a%e a

— —K——y—|FnlL —x)] =0 8
ar ix’ yﬂx[ n ! )
where -.q{xl denotes the Heaviside function, K stands for
the torsion rigidity, and £ is the moment of inertia. It is easy
to figure out that the torque imposed by the SOI on NMS
can be expressed as

{

T — % f: dxl(x) = yJ¥, )

and, for the 5-M rod clamped on both ends, the torsion
angle at x = L

_ L, -0 T

X 10
L 2 X (10

i
where L, is the total length of the rod. From Eq. (8) one can
easily see that if the semiconductor film covers the entire
length of the beam (L = L,) and the spin current is homo-
geneous along it, the last term in Eq. (8) turns to 0.
Consequently, for a doubly clamped beam the solution of
Eq. (8) is A(x) = (. In this case, in order to obtain the finite
torsion angle, the NMS must include films with different
spin-orbit coupling parameters y, as in Fig. 1 where y = ()
in the metal film. On the other hand, if J7 depends on x, as
in the example considered below, the metal film is not so
necessary. In this example it is shown, however, that such a
film can be useful as a reservoir for fast spin relaxation,
enhancing thus the diffusive spin-current flow through the
beam.

In order to evaluate the torque, let us adopt the following
simple model, which is also convenient for an experimental
realization. Namely, we assume that the spin current is due
to spin diffusion from the left contact. The spin polariza-
tion P¥(0)) can be created there by various methods ranging
from absorption of circularly polarized light to injection
from a ferromagnet [3]. One more possibility is the electric
spin orientation [9]. For the steady state the diffusion
equation reads

y ¥
<r P—=U', (10

Fdxz_q',-

where D; and 7; are diffusion coefficients and spin relaxa-
tion times, with the subscript i indicating the physical
quantities in semiconductor () << x << L) (i = §) or metal
(x=L)(i=M) regions. At the semiconductor-metal in-
terface the diffusion current and magnetization P¥/N,(0)
must be continuous, where N;(0) is the semiconductor or
metal density of states at the Fermi energy [17]. We will
assume that the length of the metal part of the rod is larger
than the spin diffusion length [y, = /Dy 7. Therefore,
the spin current passes through the semiconductor film and
further decays within the metal film. Obviously, in the
considered example there is no charge current through

the system. Solving the diffusion equation for [ = L
and (ey L)/ (osly) > 1, where oy and o are the 3D
conductivities of metal and semiconductor, respectively,
we obtain

DgP*(0)S

Jv =
L

(12)

Since the ratio oy /og is very big, Eq. (12) is valid in a
broad range of not very small L.

For a numerical evaluation of the spin-orbit torsion
effect we take b = 400 nm and ¢ = 200 nm. The SOI
coupling constant a/h =4 X 10° m/sec in GaAs [18].
From Eq. (7) and Ref. [15], it is easy to obtain the spin-
current-torsion coupling parameter y = vyokab?, where k,
is a numerical factor depending on the ratio ¢/b. Ath/c =
2 the factor k; = 0.03. For such numerical parameters we
find ¥ = 2.4 X 1072 J sec. It is interesting to compare
the torsion effect from the strain-induced SOI with that
produced by spin flips at the FM-NM interface [12]. In the
latter case T = hi_, where [, is of the order of the spin
current injected at the FM-NM contact when the electric
current passes through it. Comparing this expression with
Eq. (9). it is seen that at the same spin currents the SOI
effect is much stronger, by the factor y /= 2.2 X 10%. On
the other hand, in [12] the FM-NM contact can be fabri-
cated from all metallic components, while our device must
contain the narrow gap semiconductor film. In the former
case NMS is able to carry much larger spin current, due to
the weaker, by the factor ~og/ory, Joule heating effect.
However, the measurement setup suggested by Mohanty er
al. [12] allows us to measure torsion effects produced by
quite weak currents. For example. at eJ* = 10~ Amp the
torque T = 1.5 X 107! Nm, which is within the sensi-
tivity claimed in [12]. Moreover, the measurement sensi-
tivity can be enhanced [19]. Within our model we can
evaluate the spin polarization P¥(0) which can produce a
measurable effect on NMS. From Eq. (12), taking L =
2 pm, the typical low temperature diffusion constant
300 cm?/sec, and n = 10" em™, one obtains eJ¥ =
10*[P*(0)/n] nA. Hence, a measurable 10 nA spin current
in NMS can be created by diffusion of spin polarization
from an adjacent reservoir containing only 0.1% of spin-
polarized carriers. Various methoeds [3,8,9] are able to
provide such and even much larger spin polarization.
Higher spin currents are, however, restricted by the heating
effects, which depend on the practical design of NMS.

It should be noted that the torsion measurement method
of Ref. [12] applies to a time-dependent torque in reso-
nance with a NMS oscillation. For such a measurement the
spin current could be modulated in time by a narrow gate
between the left contact and the rod, or by varying the spin
polarization in the left reservoir, for example, if it is created
by absorption of circularly polarized light with modulated
intensity.
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The static torsion angle at x = L can be found from
Eq. (10). On the other hand, the maximum torsion effect is
obtained for the time-dependent spin current in resonance
with the NMS fundamental oscillation. In this case, the
torsion angle @, in Eq. (10) must be multiplied by Q/2,
where (} is the resonance quality factor, which can be quite
large in NMS. To observe this torsion angle it must be
much larger than the mean amplitude of its thermal fluc-

tuations 4/ 86%. For a doubly clamped rod

— kpTL 1 . ,fwnL
567 = ﬂlerFSlnz( L, ) (13)

n=1

For a rectangular cross section with b Je =2, the torsion
rigidity K = 0.057ub’ [15], where jp=33X
10" N/m? in GaAs material. Taking L, = 5 pm and all
other parameters the same as in the previous paragraph,
@ = 10* and T = 100 mK, we obtain the ratio 568, /6, =
4 X 107% at e’ = 10 nA.

We have considered a simple example of the spin-orbit
torque effect produced by spin flux in a diffusive 3D
semiconductor film. It would be interesting to study other
systems, for example, a superlattice of remotely doped
high mobility quantum wells in the ballistic regime (L
is less than the elastic mean free path). In such a system
energy dissipation within the semiconductor film is
reduced and, apparently, larger spin currents are allowable.

In summary, we propose a nanomechanical system
where due to the strain-induced spin-orbit interaction the
electron spin degree of freedom can couple to NMS me-
chanical motions. We have shown that this coupling is
strong enough to induce the measurable torsion in NMS
when the spin polarization flows through the suspended
nanobeam. Besides a potential for other possible applica-
tions, such NMS can be employed as a sensitive detector of
spin currents and spin pelarizations. The basic structure
can be further modified to create devices for eventual use in
spintronics as well as spin information processing.

This work was partly funded by the Taiwan National
Science Council and RFBR. Grant No. 03-02-17452.
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We investigate the visibility of the current and shot-noise correlations of electrical analogs of the optical
Mach-Zehnder interferometer and the Hanbury Brown Twiss interferometer. The electrical analogs are dis-
cussed in conductors subject to high magnetic fields where electron motion is along edge states. The transport
quantities are modulated with the help of an Aharonov-Bohm flux. We discuss the conductance {current)
visibility and shot noise visibility as a function of temperature and applied voltage. Dephasing is introduced
with the help of fictitious voltage probes. Comparison of these two interferometers is of interest since the
Mach-Zehnder interferometer is an amplitude (single-particle) interferometer, whereas the Hanbury Brown
Twiss interferometer is an intensity (two-particle) interferometer. A direct comparison is only possible for the
shot noise of the two interferometers. We find that the visibility of shot noise correlations of the Hanbury
Brown Twiss interferometer as a function of temperature, voltage or dephasing. is qualitatively similar to the
visibility of the first harmonic of the shot noise correlation of the Mach-Zehnder interferometer. In contrast, the
second harmonic of the shot noise visibility of the Mach-Zehnder interferometer decreases much more rapidly
with increasing temperature, voltage or dephasing rate.

DOIL: 10.1103/PhysRevB.72. 125320

L. INTRODUCTION

With the advent of mesoscopic physics, it has become
possible to experimentally investigate quantum phase coher-
ent properties of electrons in solid state conductors in a con-
trolled way. In particular, in ballistic mesoscopic samples at
low temperatures, electrons can propagate up to several mi-
crons without loosing phase information. This opens up the
possibility of investigating electrical analogs of various op-
tical phenomena and experiments. An investigation of such
analogs is of fundamental interest. On the one hand, it allows
one to establish similarities between the properties of pho-
tons and conduction electrons, a consequence of the wave
nature of the quantum particles. On the other hand, it also
allows one to investigate the differences between the two
types of particles arising from the different quantum statisti-
cal properties of fermions and bosons. For many-particle
properties, such as light intensity correlations or correspond-
ingly electrical current correlations, noise, the quantum sta-
tistical properties are important.' Both the wave-nature of
the particles as well as their quantum statistics are displayved
in a clearcut fashion in interferometer structures. In this work
we are concerned with the electrical analogs of two well
known optical interferometers, the single-particle Mach-
Zehnder (MZ) interferometer and the two-particle Hanbury
Brown Twiss (HBT) interferometer.

The MZ-interferometer is a subject of most textbooks in
optics.” In the framework of quantum optics, considering in-
dividual photons rather than classical beams of light, the in-
terference arises due to the superposition of the amplitudes
for two different possible paths of a single photon. This leads
to an interference term in the light intensity. The MZ-
interferometer is thus a prime example of a single particle

1098-0121/2005/72(12)/125320013)/523.00
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interferometer.* Various electronic interferometers with bal-
listic transport of the electrons have been investigated ex-
perimentally over the last decades, as e.g. Aharonov-Bohm
(AB) rings® and double-slit interferometers.® Detailed inves-
tigations of dephasing in ballistic interferometers was carried
out in Refs. 7 and 8. Only very recently was the first elec-
tronic MZ-interferometer realized by Ji er al.” in a mesos-
copic conductor in the quantum Hall regime. A high visibil-
ity of the conductance oscillations was observed, however
the wvisibility was not perfect. This led the authors to inves-
tigate in detail various sources for dephasing. As a part of
this investigation, also shot noise was measured. Still, some
aspects of the experiment are not yet fully understood. Theo-
retically, Seelig and one of the authors!® investigated the ef-
fect of dephasing due to Nyquist noise on the conductance in
a MZ-interferometer. The effect of dephasing on the closely
related four-terminal resistance in ballistic interferometers!!
was investigated as well. Dephasing in ballistic strongly in-
teracting systems is discussed by Le Hur!2!* Following the
experimental work of Ji et al..® Marquardt and Bruder inves-
tigated the effect of dephasing on the shot-noise in MZ-
interferometers, considering dephasing models based on both
classical™!® as well as quantum fluctuating fields.'® Very
recently, Férster, Pilgram and one of the authors!? extended
the dephasing model of Refs. 10 and 14 to the full statistical
distribution of the transmitted charge.

The HBT-interferometer'®2° was originally invented for
stellar astronomy, to measure the angular diameter of stars. [t
is an intensity, or two-particleﬁ interferometer. The interfer-
ence arises from the superposition of the amplitudes for two
different two-particle processes. Importantly, there i1s no
single particle interference in the HBT-interferometer. Con-
sequently, in contrast to the MZ-interferometer there is no

@2005 The American Physical Society
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interference in the light intensity, the interference instead ap-
pears in the intensity-intensity correlations. Moreover, the
intensity-intensity correlation also displays the effect of
quantum statistics. Photons originating from thermal sources
tend to bunch, giving rise to positive intensity cross correla-
tions. For the electronic analog of the HBT-interferometer, it
was the corresponding antibunching of electrons that origi-
nally attracted interest. It was predicted! that the electrical
current cross correlations in mesoscopic conductors would
be manifestly negative, i.e., display antibunching, as a con-
sequence of the fermionic statistics of the electrons. Negative
current cross correlations were subsequently observed in two
independent experiments.’'?? Recently, antibunching for
field emitted electrons in vacuum was also demonstrated.™
The two-particle interference in the HBT-experiment has re-
ceived much less attention. We emphasize that while the
bunching of the photons was necessary for obtaining a finite,
positive cross correlation signal, it was the two-particle ef-
fect that was of main importance to HBT since the angular
diameter of the star was determined from the two-particle
interference pattern. In electrical conductors, two-particle ef-
fects in AB-interferometers were investigated theoretically in
Refs. 24-26. Only very recently two of the authors and
Sukhorukov? proposed a direct electronic analog of the op-
tical HBT-interferometer which permits to demonstrate two-
particle interference in an unambiguous way.

In this work we investigate and compare in detail the
current and and zero-frequency noise in electronic MZ and
HBT interferometers. We consider interferometers imple-
mented in mesoscopic conductors in the integer quantum
Hall regime, where the transport takes place along single
edge states and quantum point contacts (QPC's) serve as
controllable beamsplitters. The effect of finite temperature,
applied bias and asymmetry, i.e., unequal length of the inter-
ferometer arms, is investigated. The strength of the interfer-
ence conftribution is quantified via the visibility of the phase
oscillations. The dependence of the visibility on the beam-
splitter transparencies as well as on the temperature, voltage
and asymmetry is discussed in detail. Of interest is the com-
parison of visibility of the shot-noise correlation of the MZ-
interferometer and the HBT-intensity interferometer. Shot
noise correlations in the MZ-interferometer exhibit two con-
tributions, one with the fundamental period of fife and a
second harmonic with period h/2¢. The shot noise correla-
tions in the HBT-interferometer, even though they are due to
two particle processes, are periodic with period h/e. Thus the
Aharonov-Bohm period can not be used to identify the two
particle processes which give rise to the HBT effect. It is
therefore interesting to ask whether the HBT two-particle
processes have any other signature, for instance in the tem-
perature or voltage dependence of the visibility of the shot-
noise correlation. We find that this is not the case. To the
contrary, we find that the shot noise correlations in the HBT
intensity interferometer behave gualitatively similar to the
hie shot noise correlation in the MZ-interferometer. In con-
trast the fi/2e contribution in the shot noise of the MZ-
interferometer decreases more rapidly with increasing tem-
perature, voltage or dephasing rate than the h/e oscillation in
the MZ-or HBT-interferometer.

We investigate dephasing of the electrons propagating
along the edge states by connecting one of the interferometer

PHYSICAL REVIEW B 72. 125320 {2005)

arms to a fictitious, dephasing voltage probe. In all cases, the
current and noise of the MZ-interferometer as well as the
noise in the HBT-interferometer, the effect of the voltage
probe is equivalent to the effect of a slowly fluctuating
phase.

II. MODEL AND THEORY
A. Optical analogs in the quantum Hall regime

In the paper we consider implementations of the MZ and
HBT interferometers in mesoscopic conductors in strong
magnetic fields, in the integer quantum Hall regime.?® The
typical system is a two-dimensional electron gas in a semi-
conductor heterostructure, with the lateral confinement of the
electron gas controllable via electrostatic gating. The trans-
port between reservoirs®® connected to the conductor takes
place along edge states.™ The edge states, quantum analogs
of classical skipping orbits, are chiral, the transport along an
edge state is unidirectional. Scattering between edge states is
suppressed everywhere in the conductor except at electro-
statically controllable constrictions, QPC's.*'** For a mag-
netic field that does not break the spin degeneracy of the
edge states, each edge state supplies two conduction modes,
one per spin.

These properties make conductors in the integer quantum
Hall regime ideal for realizing analogs of optical experi-
ments. First, the edge states correspond to single mode
waveguides for the light. The unidirectional motion along the
edge states allows for “beams” of electrons to be realized.
Second, the QPC's work as electronic beam splitters with
controllable transparency. Moreover, due to chirality the
beamsplitters are reflectionless, a property essential for the
MZ and HBT interferometers but difficult to achieve for
beam splitters in conductors in weak (or zero) magnetic
fields.”>* These properties of conductors in the guantum
Hall regime have been demonstrated experimentally in a
number of works, see e.g., Refs. 9, 21, and 34.

Theoretically, several works have been concerned with
the conductance and noise properties of beamsplitters and
interferometers in quantum Hall systems, for a recent re-
views see, e.g., Refs. 2 and 35, Recently, it was proposed to
use these appealing properties of edge states in the context of
orbital® quasiparticle entanglement in static?™"®  and
dynamic?®* systems as well as for quantum state transfer.*!

It is interesting to note that the edge state description also
hold for conductors at even higher magnetic fields, in the
fractional quantum Hall regime. As examples, the fractional
charge has been determined in shot-noise experiments*2+?
and the quantum statistical properties of the fractionally
charged quasiparticles have been investigated theoretically in
beamsplitter,** and HBT (Ref. 43) geometries. Various inter-
ferometer structures have also been considered.*—** Very re-
cently, a MZ-interferometer in the fractional Quantum Hall
regime was proposed.’® In this work we however consider
only the integer quantum Hall effect, where the quasiparti-
cles are noninteracting and the electrical analogs to optical
experiments can be directly realized.

B. Scattering approach to current and noise

This discussion leads us to consider single mode, multi-
terminal conductors with noninteracting electrons. The prin-
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ciple aim of this work 1s a comparison of the MZ and HBT-
interferometers. In reality in both interferometers interactions
{screening) play a role both for the voltage and temperature
dependence. A noninteracting scattering approach is not
gauge invariant but requires a treatment of screening.™ How-
ever, these effects are expected to be simhar in the two in-
terferometers and will not affect the main conclusions of this
work. Therefore, below we treat noninteracting quasiparticle
interferometers. The conductors are connected to several
electronic reservoirs, biased at a voltage eV or grounded. The
current® and the noise'”? are calculated within the scattering
approach for multiterminal conductors. We first introduce the
creation and annihilation operators for ingoing, &L(E) and

d,(E). and outgoing, I;L(E) and E;D.(E), particles, at energy E
in terminal @. For simplicity we suppress spin notation. Con-
sidering a conductor with N terminals, the in- and ocutgoing
annihilation operators are related via the NXN scattering
matrix, as

N
bolE) = 2, saa(E)iglE). (1)
B=1

where s54g(F) is the amplitude to scatter from terminal 8 to
terminal a. The current operator in the lead a has the form®!

L0 = ;gﬁ
Y
X Ag (E.E"a(EYa (E"), (2)

with the notation

dEAE" expl(i[E — E'lt/h)

AGUE.E") = 88y = 5o E)sarl E'). (3)
The average current is given by""
{fa}=JdEja(E), (4)

where the spectral current density is
. 1
JalE)= =2, Gog(EFHE). (5)
B

Here fg(E)=1/(1+exp[(E-eVg)/kgT]) is the Fermi Dirac
distribution of terminal 8, with Vg the corresponding applied
voltage. The spectral conductance G,p(E) is given by

2

GoplE) = %A;;ﬁ(g, E). (6)

The zero frequency correlator between current fluctuations in
terminals « and 8 is defined as

Sap= J d{ATL(0)AL (1) + Al (AT (0)). (7)

where Al A1) =1 L 1) —{1?,,(:)}. The current correlator is given
byl
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S.8= J dES 5(E). (8)

where

2

Sap(E) = Eﬁ AS(EE)AS(E EXfy(E)1 - fAE)] (9)
T

I

is the spectral current correlator.

C. Dephasing voltage probe model

There are several physical mechanisms that might lead to
dephasing of the electrons propagating along the edge states
(see e.g., the discussion in Ref. 9). In this work we are not
interested in any particular mechanism for dephasing but
consider instead a phenomenclogical model, a dephasing
voltage probe. The idea of using a voltage probe to induce
dephasing was introduced in Refs. 53 and 54. A voltage
probe connected to a mesoscopic sample was considered,
leading to a suppression of coherent transport due to inelastic
scattering. The probe model, originally considered for the
average current, was extended to treat the effect of inelastic
scattering on shot noise by Biittiker and Beenakker™ by con-
sidering a conservation of current fluctuations at the probe as
well. Later De Jong and Beenakker’® extended the voltage
probe concept and introduced a (fictitious) voltage probe
which breaks phase but does not dissipate energy. Scattering
in the voltage probe is (quasi-)elastic. This is achieved with
the help of a distribution function in the voltage probe which
conserves not only total current like a real voltage probe, but
conserves current in every small energy interval. Such a
probe provides a model of pure dephasing. The different
probe models have been used as qualitative models in a num-
ber of works, see Refs. 2 and 57 for a review. For an appli-
cation to quantum Hall systems, see Ref. 58.

In this work we consider the dephasing voltage probe
model, which conserves the current at each energy. The
maodel is based on the assumption that the current is con-
served on a time scale 7o, much shorter than the time of the
measurement but much longer than the time between injec-
tion of individual electrons, here of the order of fi/eV. One
could however consider a more general voltage probe model
that takes into account a more complicated dynamics of the
probe. A detailed discussion of such a general model in the
light of recent work 133260 js however deferred to a later
work. Here we only note that below we find that the voltage
probe in both the MZ and HBT-interferometers only gives
rise to a suppression of the phase dependent terms in con-
ductance and noise, just as one would naively expect to be
the effect of pure dephasing.

The condition of zero current into the fictitious probe  at
each energy is fulfilled by considering a time dependent dis-
tribution function of the probe

FAED) = FAE) + 8f (E.1), (10

where df,(E,1) fluctuates to conserve current on the times-
cale 7o As a consequence, the spectral current density at
each energy in lead « fluctuates in time as
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FIG. 1. {Color online) An optical Mach-Zehnder interferometer.
A beam of light incident from [ is split in two partial beams at the
semitransparent beamsplitter A. The two partial beams acquire geo-
metrical phases ¢, and ¢, respectively, and are rejoined at the
second beamsplitter B. The light intensity is measured in detectors 3
and 4.

ju(E!r):J‘u{E)"'Aju(Es:)! (ll)

where the fluctuations Aj E.t)=8j,(E.t)
+(11e)G, (E)Sf (E.t) consist of two parts, the intrinsic
fluctuations & (E.r) and the additional fluctuations due to
df AE.1). The requirement of zero average current into the
probe, j (E)=0, leads to the averaged distribution function at
the probe reservoir y

- G, (E) _
Ey=- Y —r "’y (E). 12
FAE) ETGW(E} (E) (12)

The average spectral current density jip(E) is then found
from Eq. (5).

The fluctuating part of the distribution function, 5f}.(E )
is obtained from the requirement of zero current fluctuations
into the probe, Aj (E.t)=8j (E.0)+(1/e)G, (E)Sf (E.1)=0.
The total current density fluctuation is then given by

A ED=8En- 22D s by, (13)
G, (E)
As a result, in the presence of dephasing the total spectral
current correlation Sg.ﬁ;(E) is

GufE) GafE)
oo(E) = Sag(E) ~ SE S apl E) = XS (E)
T T W T

G E)Gg (E)
o
+ Gir(E] 5.(E), (14)

where S, 4(E) is the correlation function between the intrinsic

current fluctuations, &, and Jj,. of contact a and B, given
by Eq. (9). and G,glE) is the conductance, given by Eq. (6).

III. MACH-ZEHNDER INTERFEROMETERS

A schematic of the MZ-interferometer 1s shown in Fig. 1.
An incident beam of light from source | is divided in two
parts at the semitransparent beamsplitter A. The two partial
beams are reflected at mirrors and later joined at the second
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FIG. 2. {Color online) The electronic analog of the MZ-
interferometer, implemented by Ji et al. (Rel. 9) in a conductor in
the quantum Hall regime. The electronic reservoir | is biased at eV
and reservoirs 2—4 are kept at ground. The edge states {solid lines)
have a direction of transport indicated by arrows. The QPC's 4 and
B play the role of the beam splitters in Fig. 1. Geometrical phases
¢y and ¢ and the AB-flux ¢ are shown.

beamsplitter B. Beams of light going out from B are detected
in 3 and 4. The amplitude of the light in an outgoing beam is
the sum of the amplitudes for the two partial beams, A
=A explich )+ A; exp(ieh;). This gives an intensity |A|2
=|A P +]4,2+2 Re{AlA; exp(i[ ¢ —¢-])}. The interference
term 2 RB{AIA; expli[ @) —])} thus contains the difference
between the geomeirical phases, ¢ —db. Importantly, the
four terminal geometry together with the reflectionless beam-
splitters lead to an incident beam that traverses the interfer-
ometer only once. This is a defining property of the MZ-
interferometer.

We then turmm to the electric analog of the MZ-
interferometer, shown in Fig. 2. As pointed out above, sev-
eral results for the current and noise are available in the
literature, "1 11417 Here we analyze the most general situa-
tion possible, with finite voltage. temperature, and interfer-
ometer arm asymmetry as well as different beamsplitters 4
and B with arbitrary transparency. When we consider limit-
ing cases, e.g., small temperature, bias or asymmetry, known
results are recovered. This detailed analysis of the MZ-
interferometer is of importance when comparing to the HBT-
interferometer below.

We first discuss a fully coherent interferometer, the effect
of dephasing is investigated below. An electric potential eV
is applied at terminal 1, all other terminals are kept at zero
potential. The mnjected electrons propagate along single edge
states. Scattering between the edge states can take place only
at the two QPC’s, acting as beamsplitters with controllable
transparency. The beamsplitters j=A.F are characterized by
the scattering matrices
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(f\"& VT ) (15)
VT iR

where T; and R;=1-T; are the transmission and reflection
probabilities, respectively. We note that any additional
phases of the beamsplitters just give rise to a constant phase
shift of the oscillations in the interference terms and are
therefore not considered.

Propagating along the edge states, the electrons pick up
geometrical phases ¢ and ¢, as well as phases ¢ and
due to the AB-flux @ through the center of the interferom-
eter. For example, the amplitude for scattering from terminal
1 to 4 is given by

541 = iVTpR "B+ 4 T, R et (16)

For the geometrical phases, to be specific we consider the
case when the potential landscape ¢/(x,y) of the conductor
in Fig. 2 is varying smoothly on the scale of the magnetic
length Ig=(#/e|B|)""2, with BZ the applied magnetic field per-
pendicular to the plane in Fig. 2 (the effect of selfconsistency
of the potential® is neglected). This allows for a semiclassi-
cal treatment.®* In a high magnetic field the edge states at
Fermi energy Ep follow equipotential lines determined by
el(x,v)=Ep-fiwAn+1/2) where w,=e¢B/m is the cyclotron
frequency and m the effective electron mass. We are con-
cerned here with the case where there is only one edge state
and thus n=0. Suppose the x-axis is a line intersecting quan-
tum point contacts A4 and B in Fig. 2. Excluding self-
intersections we can express the edge state in terms of func-
tions vi{x) and vi(x) for the left and right path of the
interferometer. Working in the svmmetric gauge, the geomet-
ric phases can be written®’ ¢‘-:—f§2 JBdxy(x), where x4 and
xg are the locations of the QPC’s. Importantly, ¢ — ¢, cor-
responds to the total area A enclosed by these two paths
divided by the magnetic length squared, or ¢ —d,
=2wBA/ D, where BA is the total flux through the enclosed
area and ®y=h/e the elementary flux quantum. Note that the
Aharonov-Bohm flux @ adds an additional phase i and s,
with fr + ¢f=27®/ Dy, to each of the paths.

For the discussion of the temperature and voltage depen-
dence of the current and the noise. we also need to know the
energy dependence of the phases. First, instead of parameter-
izing the edge state through x we introduce the parameter s
which measures directly the path length, i.e.. x(s),y(s). In
addition at 5 we introduce local coordinates sy along and s
perpendicular to the equipotential line. In these coordinates,
an edge state that follows the equipotential line at a small
energy E away from Ep acquires the additional phase Ad=
—!}2 JdsAs | with e(dU/fds | )As, =E. The potential gradient
dU/ds, determines the local electric field F(s)=—dl//ds | at
5. But eF(s)l3=fvp(s), where vp(s)=F(s)/R is the drift ve-
locity of the guiding center of the cyclotron orbit at point s of
the edge state. Thus a small increase i energy leads to a
phase increment given by Ady=[ds[1/hup(s)]E. A rough
estimate using a drift velocity which is constant along the
edge gives Ady;==(L;/fivp)E with L; the length of the edge
state i. For the phase-difference of the two interfering paths
we have
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&IE) — ol E) = Ad(ER) + EIE, (17)

with Ad(Ep)=dh(Ep)— d(Ep) the equilibrium phase differ-
ence. Formally, higher order terms in energy can be ne-
glected for characteristic energies kgT and eV much smaller
than (dU/ds J_)EI[dEUMSEJ_]. The asymmetry of the twao
edges thus gives rise to an energy scale E,
={[ds[1/hvp(s))]=Jds[1 Avp(s) ] which is due to the
mismatch of the edge state path lengths, ie., E,
=hvp/(AL) with AL=L, —L,. In principle, for a completely
symmetric interferometer one has £, — e,

Given the scattering amplitudes s, the spectral current
density is found from Egs. (3), (5), and {6). For example,
terminal 4, one gets

JHE)=(e/W)LAE) - fl EY[TaRp + TpR 4
+ 23T TR 4Ry cos(E/E, + ©)], (18)

where we introduce the total, energy independent phase &
=Ad(Ep)+27®/ Dy Here fi( E) is the distribution functions
of the grounded terminals 2, 3, and 4 and f(E)=fu(E-eV)
the distribution function of terminal 1. The current is then
given from Eq. (4), as

Iy= %|:(T§RB + TpRy)eV + T, TgR 4Ry

X 4mksTesch| 217 ) [ﬂ [ﬂ @II']
wkp CSCIL £ JSID-._EEC_.-COS-._2EC+ g

(19)

Current conservation gives [3=(e>/h)V—1,. The current con-
sists of two physically distinct parts. The first term in Eq.
(19) is the phase independent, incoherent part, the current in
the absence of interference, while the second, phase depen-
dent term is the interference contribution. We note that a bias
eV of the order of the asymmetry energy E_ leads to the
phase shifts of the oscillation. The strength of the interfer-
ence can conveniently be quantified via the visibility as

Toge = Tin 4
I} max + ] min (‘r)
which gives for the current in the MZ-interferometer
N'I'IATE;RARB AakgT (kpTay| [ eV
Vinz = chL J sm[ — ] .
TaRp+ Tghy eV E, \2E,/
(21

The wvisibility is a product of a term containing the QPC
scattering probabilities and a function depending on the en-
ergy scales kpT, eV, and E.. The scattering probability term
is maximum for identical QPC’s, T;=Tp. The energy scale
dependence is shown in Fig. 3 where the visibility for iden-
tical point contacts is plotted as a function of the normalized
temperature, kgl/E,. We note several interesting features
from Fig. 3 and Eq. (21). (i) the visibility shows decaying
oscillattons as  a  function of voltage vz
o |sinfeV/2E)|/eV for arbitrary temperature. (i) A symmet-
ric MZ-interferometer, E,=kgT, eV, has unity visibility (for
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FIG. 3. (Color online) Current visibility of the Mach-Zehnder
interferometer vy versus normalized temperature kgT/E,. for Ty
=T

Ty=Tg). i.e., shows perfect interference. (iii) The visibility
decays monotonically with increasing temperature. For large
temperatures, kpl'® E_, the visibility decays exponentially
with the temperature as vryz = kgl exp(—wkgT/E.).

It 1s interesting to compare the calculated visibility to the
experimentally measured one in Ref. 9. As already shown in
Ref. 9, the measured scattering probability dependence of
vrpz 15 well reproduced by Eq. (21). For the energy scale
dependence, no information about the drift velocity vp or the
asymmetry AL needed to determine E_ is provided in Ref. 9.
However, to obtain the order of magnitude of E_, considering
as a rough estimate a typical drift velocity® vp~ 10* m/s at
a magnetic field B~1T and an asymmetry AL~—~0.1 gm
gives an E_ corresponding to an applied bias ~10 pV or a
temperature ~ 100 mK. These values are typically of the
same order of magnitude as the ones considered in the ex-
periment. As a first approximation, one would thus expect
asymmetry effects to be of importance. The observed tem-
perature dependence, a strong decrease of the visibility for
increased temperature, is also qualitatively described by Eq.
(21) with an E./kp~50 mK. This is however not the case
with the voltage dependence. Ji ef al. find a differential vis-
ibility, i.e., the visibility of dI{V)/dV. which decays strongly
with applied voltage, while Eq. (19) predicts a constant, volt-
age independent differential visibility. There are several pos-
sible explanations to why the voltage dependence in contrast
to the temperature dependence is not reproduced by the
theory. Ji er al. themselves point out two voltage dependent
dephasing mechanism: low frequency noise of 1/f type due
to moving impurities, induced by a higher current and fast
fluctuations of the potential landscape (and hence of the
phase via the enclosed area) caused by screening of the ad-
ditional charges injected at higher current. Screening might
also, for the nonlinear current-veltage characteristics pre-
dicted by Eq. (19), lead to a voltage dependent renormaliza-
tion of the transmission probabilities, mtroducing a voltage
dependence in the differential visibility. 3% We also note that
in the model of Ref. 16, inducing dephasing by coupling the
MZ-mterferometer to a quantum bath, gives a dephasing rate
that increases with increasing voltage. Clearly, further inves-
tigations are needed to clanfy the origin of the dephasing in
the experiment in Ref. 9.

Turning to the noise, we focus on the cross correlator
between currents flowing in terminals 3 and 4 (the autocorr-
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elator can be obtained analogously). This allows for a
straightforward comparison to the result of the HBT-
interferometer, for which the cross comelator was Investi-
gated in Ref. 27. From Eqgs. (8) and (9) and the expressions
for the scattering amplitudes, we arrive at the noise spectral
density

- 26" 3 'E
Su(E)= T[f(E} —fO{E]]"{CU +cg COS(E + @)

o

+cwcos(2{§+®b}. (22)

©

with coefficients

co=TaRy+ TyRy — 6TyRy TpRp.
co=2(Ty— Ry)(Ty~ Rp\T TgR4Rp.

29 =2T4TgR4Rp. (23)

Performing the energy integrals in Eq. (8) we find for the
cross correlator

Sq=— E{ngo +Cada cos[ﬂ =Y, + 9]
h \2E, /
s eV
+f29539c05|:2l12—&+9):|}, (24)
where we mtroeduce the functions
St T (25)
2kgT

and

\

o ' makpT ((eV ' v
Sma=211'k3Tcsch( ng ]{coll}[%]sin(%)
/ 2kgT) ’

t "

kgl A"A
S cos( — ) (26)
E, \2E,

with m=1,2, containing the dependence on the energy scales
eV, kg7, and E,.

Just as the current in Eq. (19), the noise consists of a
phase independent, imcoherent part and a phase dependent,
interference part. However, in contrast to the current, the
phase dependent part of the noise contains two terms with
different periods in @, corresponding to oscillations periodic
in hie and h/2e. These terms result from two-particle scat-
tering processes which enclose the AB-flux one and two
times respectively. Similarly to the current, the phase of the
oscillations are shifted for a bias eV of the order of the asym-
metry energy E..

It is important to note that in the MZ (in contrast to the
HBT) interferometer, two particle and higher order scattering
processes are just products of single particle scattering pro-
cesses. The full distribution of current fluctuations!” is thus a
function of single particle scattering probabilities only. In
particular, the noise spectral density Sw(E) in Eq. (22) is
proportional to —|s41|2|.r-31|2_. i.e.. partition noise’ with phase
dependent scattering probabilities. As a consequence, the
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phase independent. incoherent part of the noise cannot be
understood as partition noise from incoherent single particle
processes, i.e., {[sq1| inc(l531/Vine # (531 531| Pinc- This is for-
mally clear since the term proportional to cos® @=[1
+cos(26))]/2, from two coherent scattering processes, obvi-
ously contribute to the phase independent part of the noise.
As a consequence, as shown by Marquardt and Bruder,'*!1% a
model? with a filled stream of classical particles injected
from reservoir | correctly reproduces the incoherent part of
the current but fails to reproduce the incoherent part of the
noise. In contrast, as found m Ref. 15 and further discussed
helow, the completely dephasing voltage probe model cor-
rectly reproduces the incoherent part of both the current and
the noise.

To quantify the strength of the oscillations we introduce
two separate quantities, VRMZ and Vi%;z, here simply called
visibilities, which in close analogy to the current visibility in
Eq. (21) are defined as the ratio of the amplitudes of the
noise oscillations and the average noise. They become

|f-‘9§e|
INMZ= (27)
cpSg

and

g
ﬁh=bﬁ@= (28)

Sy

Similarly to the current, both visibilities are products of a
term containing the scattering probabilities and a function of
the energy scales eV, kgT, and E_. We first focus on the
scattering probability dependent term by considering the vis-
ibility in the limit of a symmetric interferometer, £, =eV,
kgT. where the energy-scale dependent terms are unity. This
gives

2|(Ta— Ra)(Tz - Rp)NTaToR 4Ry

A 29
PNMZ = T R+ TyRp— 6 TR TaRs @9)
and
) YT TeRAR
V;_ue ALBNANRE (30)

MZ™ ToRy + TRy 6T, R, ToRy

The two visibilities are plotted in Fig. 4. Both visibilitnes are
symmetric under the substitutions T+ R4 and Tg+— Rp. The
visibility ngz 1s zero for Ty=R,=1/2, i.e., for a symmetric
setting of any of the QPC's. The visibility increases for in-
creasing QPC asymmetry, reaching a maximum for 0<T,
<0.5 and 0 < T <<0.5 {(unity only in the limit Ty, Tz 1) and
then decreases again toward zero at Ty=0 or Tg=0. Interest-
E i ) = % E
ingly. the visibility ¥,z shows an opposite behavior. It is
maximum, equal to unity, at Ty=Tz=1/2 and then decreases
monotonically for increasing QPC asymmetry, reaching zero
at Ty=0 or Tp=0. This different dependence on the scatter-
ing probabilities makes it possible to investigate the two os-
cillations independently by modulating the QPC transparen-
cies.

Turning to the energy scale behavior, we consider for sim-
plicity VﬁMZ in the limit Ty, Tp<€1 and 1{;"'\,%{2 in the limit
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FIG. 4. (Color online) Noise visibility vf%_uz (a) of the h/e and
vi%,,z (b} of the h/2e oscillations in the shot noise of the Mach-
Zehnder interferometer versus transmission T, of beamsplitter A for
E_=FkgT, eV for various transmission probabilities Tz of beamsplit-
ter B.

Ty=Tp=1/2 where respective scattering probability terms
are unity. For a svmmetric interferometer, 1.e., E =eV kT,
hoth visibilities are unity. Considering the situation when the
temperature is comparable to the asymmetry energy scale E,
but the voltage is small eV k5T, E_, we get the visibilities
(m=1,2)

kT kT " mikgT'\?
v’:}?{_g: mirkpg csch(mﬂ B ) 1+ mkg ) e
L E, E, \ E, /

The temperature dependence of the wvisibilities are
shown in Fig. 5. Both visibilities decrease monotonically

with increasing temperature. For large temperature
eV[E ()
4
w
[}
-]
=
B
=
>
5}
i
=)
=
4

FIG. 5. (Color online) Noise visibilities ",%.MZ (for Ty. Tp<€ 1) of
the ife oscillations (solid curve) and Vﬁtz (for Ty="Tg=1/2) of the
hi2e oscillations (dashed curve) in the shot noise correlation of a
Mach-Zehnder interferometer versus kgT/E. for eV <kpT, E.
(thick. red curve) and versus eV/E, for kgT<E_ eV (thin, blue
curve).
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FIG. 6. (Color online) The electrical MZ-interferometer, Fig. 2.
with a dephasing voltage probe, 5, attached along one edge.

kBT?E the wisibilities demy exponentlall}f as VEMZ
o (kyT) expl-mkpT/E,) and v = (kgT)® expl(-2wkgT/E).
The visibility v_%%{z is thus considerably more sensitivity to
thermal smearing than V‘?MT In the opposite limit, for a
small temperature but a v-:;ltage comparable to E_, 1e., kgT
< E_, eV, we instead get the visibilities

e 2E

c

HMZ™ eV

sin(%) ‘ ; (32)

Both visibilities show an oscillating behwnor_. decaymg as a
power law «=1/eV with increasing voltage. The period of
oscillations, in e\" is 27K, for VN'MZ but 7E_ for '”fqrmz’ half
the value for VNMZ The djfferem voltage depeudence gives
an additional possibility to investigate the two wisibilities
independently.

In the experiment of Ji et al.” the noise was measured in
the high voltage regime, with the interference terms in both
the current and noise completely suppressed. The depen-
dence of the incoherent noise on the transparencies T, and
T was investigated (T4 was kept at 1/2 and T was varied).
A good agreement was found with the first, incoherent term
in Eq. (24). Taken the open questions on the effect of deco-
herence on the average current, a detailed experimental in-
vestigation on the phase dependent, interference part of the
noise would be of great interest.

Effect of dephasing

Next we consider the effect of dephasing on the current
and noise. As discussed above, dephasing is introduced by
connecting one of the two arms of the interferometer to a
fictitious, dephasing voltage probe. The interferometer with
the probe, denoted terminal 5, is shown in Fig. 6. The
dephasing probe is connected to the edge via a contact de-
scribed by a scattering matrix
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.'\u'.: '\.'._ \
( S ) (33)

Ve 4l-¢g

where the dephasing parameter £ varies hetween 0 (no
dephasing. fully coherent transport) and | (complete dephas-
ing, fully incoherent transport). The presence of the dephas-
ing probe modifies the amplitudes for scattering between the
terminal 1. 2, 3, and 4. As an example, the scattering ampli-
tude 5. given in Eq. {16) in the absence of dephasing, now
becomes

s1(€) = iV TpR4e ™19 1+ iN1 — e T Rpe™ %) (34)

In addition, amplitudes for scattering into and out from
the probe terminal 5 have to be considered. The current is
obtained from Eqs. (4), (5), and (12). For the current in ter-
minal 4, we find

= E[(nﬂg + TgRa)eV

— — kgl
% 1 —e\,"I;‘TBRARgétrkBTcsch( ’;‘”)

a

Xsin:%Jcos(:%+9]:|. (35)

Comparison with the result in the absence of dephasing in
Eq. (19) shows that the effect of the dephasing is to suppress
the phase-dependent oscillations by multiplying the phase-

dependent interference term with a factor \-':. For com-
plete dephasing e=1, the phase dependent term is com-
pletely suppressed. The effect of dephasing can thus be
simply incorporated in the visibility as

iz = V1 - evpnz. (36)

where vypz is the visibility of the current oscillations in the
absence of dephasing, given by Eq. (21). As is clear from the
discussion above, to account for the experimental observa-
tions in Ref. 9, one would have to consider a voltage depen-
dent dephasing parameter &.

Turning to the noise. we obtain the cross correlator be-
tween currents in lead 3 and 4 in the presence of dephasing
from Eqs. (8) and (14). giving

sl L oo+ coSoll i E)I)
3 /1= —+
h Cpdp + Cada £ COos ZEC ;
_ Fed .
¥ csadanl] _s)co{z[ %+ @J} } (37)

Here the terms ¢y, cq C2g. Sp. Sg. and S, are defined above
in Egs. (23) and (25). Similarly to the current, the effect of
the dephasing is only to suppress the amplitude of the phase-
dependent oscillations. That is what one would naively ex-
pect to be the consequence of pure dephasing. The two
phase-dependent terms are however affected differently. the
cos 8 term is suppressed by a factor 1 —e while the cos 26
term is suppressed by (1—g). The cos 2® oscillations are
thus more strongly suppressed. The wisibilities of the two
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oscillations in the presence of dephasing can simply be writ-
ten

o =Vl —evyag (38)
and
Vi = (1 - Wiz (39)

where V,'G\{MZ and bﬁg{z are the visibilities for the noise oscil-
lations in the absence of dephasing, given by Eqs. (27) and
(28), respectively.

Importantly, both oscillating terms are fully suppressed
for complete dephasing, e=1. Complete dephasing within
the voltage probe model thus gives a noise expression that
only consists of the phase independent, incoherent term in
Eq. (22). We note already here that the same result is found
below for the HBT-interferometer. Since quantum interfer-
ence by definition is excluded from the model, i.e., all scat-
tering phases are neglected, the completely dephasing volt-
age probe thus constitutes a classical model that correctly
reproduces the incoherent part of the noise. As pointed out
above, a more detailed discussion of the physics of the volt-
age probe and a comparison with Refs. 14, 15, and 39 is
deferred to a later work.

It 1s interesting to note that the effect of dephasing intro-
duced with the voltage probe, both for the current and noise,
15 for arbitrary coupling to the voltage probe identical to a
phase averaging. The result in Eqgs. (38) and (39) can he
obtained by averaging the fully coherent expressions in Egs.
(27) and (28) with respect to a Lorentzian distribution p(€)
of slow fluctuations of the phase @ around the average value
By, as

J d®p(B)cos(n®) = (1 — )" cos(n®y) (40)

with the Lorentzian distribution

alw

PO =g e rra

a=—(112)In(1 -£). (41)

We note that, as pointed out in Ref. 15, a Gaussian distribu-
tion of the phase fluctuations gives a different result, not
consistent with the dephasing voltage probe approach for
arbitrary coupling to the voltage probe.

We emphasize that the results above are independent on to
which edge the probe is connected. Moreover, we also point
out that the effect of the voltage probes, for arbitrary &, 1s
multiplicative, i.e., attaching n voltage probes at arbitrary
places along the arms can be described by renormalizing
l—s—(l-g)" Writing (1—g)"=exp(n In[1-£])
=exp(—L/Ly), with Ly=-d/In[1-€] and L=nd with d the
distance between two probes, we can quite naturally incor-
porate the effect of a uniform distribution of probes into a
dephasing length L, The suppression of the visibilities of
the iife and h/2e oscillations due to dephasing in Eqs. (38)
and (39) are then modified as (1-&)"? —exp(—L/2L,) and
(1—&)—exp(—L/Ly).
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FIG. 7. (Color online} Two-source, four-detector optical Han-
bury Brown Twiss geometry proposed in Ref. 27. Two beams of
light incident from 2 and 3 are split in partial beams at the semi-
transparent beamsplitters C and D). The partial beams acquire geo-
metrical phases ¢ —dby and are rejoined in the beamsplitters A and
B. The light intensity is measured in detectors 5-8.

IV. HANBURY BROWN TWISS INTERFEROMETERS

The HBT-interferometer is less well known than the MZ-
interferometer and deserves some additional comments.®
The HBT-interferometer was invented as a tool to measure
the angular diameter of stars. The first measurement!® was
carried out on a radio star in 1954, Compared to existing
schemes based on Michelson interferometers. the HBT-
interferometer proved to be less sensitive to atmospheric
scintillations, which allowed for a more accurate determina-
tion of the angular diameter. After having demonstrated a
table-top version of the interferometer in the visual range,!°
the angular diameter of the wvisual star Sirius was
determined.””

The experimental results, both the two-particle interfer-
ence and the positive intensity cross correlations, were suc-
cessfully explained within a semiclassical framework. Soon
after the experiments, it was however shown by Purcell®
that the positive cross correlations could be explained in
terms of bunching of individual photons, emerging from the
star, a thermal source of light. This bunching was also dem-
onstrated  explicitly in  subsequent photo  counting
experiments.57%% The HBT experiment thus laid the founda-
tions for quantum statistical methods in quantum optics.®
The HBT approach has also been of importance in experi-
mental particle physics. ™ It is interesting to note that positive
intensity cross correlations between beams of light emerging
from a thermal source, according to some contemporary” 72
“would call for a major revision of some fundamental con-
cepts in quantum mechanics.” Purcell,®® however, providing
an elegant explanation of the bunching phenomena, pointed
out that “the Hanbury Brown Twiss effect, far from requiring
a revision of quantum mechanics, is an instructive illustra-
tion of its elementary principles.”

An  optical table-top version™* of the HBT
interferometer is shown in Fig. 7. A beam of light is emitted
from each one of the sources 2 and 3, completely uncorre-
lated with each other. The beams are split in two partial
beams at the semitransparent beam splitters C and I respec-
tively. The partial beams acquire phases ¢, to ¢y before
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FIG. 8. (Color onling) Two-source, four-detector electrical Han-
bury Brown Twiss geometry implemented in a conductor in the
quantum Hall regime. The electronic reservoirs 2 and 3 biased at eV
and reservoirs 1 and 4 o 8 are kept at ground. The edge states (solid
lines) have a direction of transport indicated by arrows. The QPC's
A and B play the role of the beamsplitters in Fig. 7. Geometrical
phases ¢, to ¢y and the AB-flux ® are shown.

scattering at the second pair of beam splitters A and B. The
resulting beams are collected in detectors at ports 5 to 8.

Importantly, there is no interference pattern in the inten-
sities at the detectors 5 to 8, instead the interference cccurs
only in the cross correlations between intensities at 5, 6 and
7. 8. The intensity cross correlations are sensitive to the two-
particle amplitudes: the interference is thus between two dif-
ferent two-particle scattering events, e.g. (i) one particle
from 2 scatters to 5 and one particle from 3 scatters to 8, with
an amplitude A, exp(i[¢h; + :]) and (ii) one particle from 2
scatters to 8 and one particle from 3 scatters to 5, with an
amplitude A4, expli[d;+ ¢,]). The amplitude to detect one
particle in 5 and one in 8 is then the sum of the two two-
particle amplitudes. This is the case since both scattering
processes have the same initial and final states and cannot
be distinguished. The (reducible} cross correlation between
intensities in 5 and 8§ is directly related to the corre-
sponding  two-particle  probability |4, expli[é +¢])
+ 4y explild+ By D) =|A [ +]A,2+2 RefA A} explil ) + &,
—dy—d,])}. The interference term 2 RefA A] exp(i[$,+ &,
—¢hy—hy])} contains the four geometrical phases & to .
The HBT-interferometer is thus, in contrast to the MZ-
interferometer, a two-particle interferometer.

The electrical analog of the HBT-interferometer, pre-
sented 1in Ref. 27, is shown in Fig. 5. It consists of a (rect-
angular) conductor with a hole in the middle, a Corbino ge-
ometry. Similar to the MZ-interferometer, the electrons
propagate along single edge states. Scattering between the
edge states take place only at the beamsplitters A —D. The
beamsplitters are described by scattering matrices given by
Eq. (15). We first consider the fully coherent case. In contrast
to the MZ-interferometer, the scattering amplitudes contain
the phases ¢ and o only via multiplicative phase factors. As
an example, the amplitude to scatter from terminal 2 to ter-
minal 5 is given by

PHYSICAL REVIEW B 72, 125320 (2005)

ssp= VT Tee %) (42)

As a consequence, the average currents which depend only
on the modulus squared of the scattering amplitudes [see
Eqgs. (4) and {6)] do not contain any scattering phases. We get
the currents at terminals 5-8 as

Is=(e*n)V (TyTc+RaRp).

=MV (TiRp+RyTo).
L=(EMV (TyRe+ RyTp).
Iy=(AM)V  (TyTp+RyRe). (43)

Turning to the current noise, the correlation between currents
in terminals 5,6 and 7.8 is given by Eq. (9). We find for the
spectral density for the correlators between terminal 5 and 8

2

22 ;
LAE) ~ o EXleoss + co cos(EVE. + @)

SsslE) =

(44)
with the coefficients
coss= TaRpTcRe+ TpRy TpRp:
co=2 Il VTR (45)

and for the correlator between terminal 5 and 7
-2 5
S5 E) = TU(E) ~folE)H{cq 57+ T cos(E/E, + @)}

(46)
with the coefficient
co57=TyTgTeRo+ RyRgTpRp. 47)

Performing the energy integrals in Eq. (9). we obtain the
corresponding current cross correlators

5

Ssg= _J_{fo,ssgo +7gSg cos
(

P
;?Jre” (48)

\2E,
and

-2

e o eV !
=3 5750 + Cadg cos ( E 4 @:) . (49)

S57=
Here S, and Sg are given by Egs. (23) and (26). The other
two correlators Sg7 and Sgg are given by the substitutions
Se7=853 (Te—Tp) and Sgg=Ss57 (T-— Tp). Here, as for the
MZ-interferometer we have ®@=Ad(Ep)+27@/ @, with
A=\ +dy— by and L, ¢ =27D/ Dy,

Several observation can be made from the results above,
put in comparison with the result for the noise correlations
for the MZ-interferometer in Eq. (24). Just as for the MZ-
interferometer, the noise consists of an incoherent, phase in-
dependent part, and a coherent, interference part. The phase
dependent part of the noise in Egs. (48) and (49) however
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contains only one term. The amplitude of the oscillating term
1s a product of a scattering probability term and an energy-
scale dependent function, just as for the MZ-interferometer.
This phase dependent term has the same dependence on the
phase ®, the same voltage dependent phase shift as well as
the same energy-scale dependence as the second term in Eq.
(24). This is the case since they both arise from processes
which enclose the AB-flux once. Despite the fact that in the
HBT interferometer the AB-effect results from two-particle
processes, the periodicity is determined by the single elec-
tron flux quantum h/e. The dependence on the scattering
probabilities is however different, a consequence of the MZ
and HBT interferometer geometries being different. Impor-
tantly, there is no term in the noise in Eqs. (48) and (49) that
corresponds to the last term 1n Eq. (24), describing processes
which enclose the AB-flux twice. We note that the elemen-
tary scattering processes in the HBT-interferometer, in con-
trast to the MZ-interferometer, are two-particle processes. An
important consequence of this is that the incoherent, phase
independent noise term in Eqs. (48) and (49) can directly be
reproduced by a model with filled streams of classical par-
ticles incident from reservoirs 2 and 3.

Since there i1s only one phase-dependent term, the visibil-
ity of the phase-dependent oscillations can again be directly

defined, giving for «=5,6 and B=7.8

Bal |EBS'8|
VN HET = =

€ u,a_eso

Since the energy-scale dependence of the visibilities is iden-
tical to uﬁm for the MZ-interferometer in Eq. (27), shown
in Fig. 5, we focus here only on the scattering probability
terms. We thus consider the limit of a symmetric interferom-
eter, E_=kgT, eV for which the energy-scale dependent part
1s unity. Several symmetries exists, e.g., all visibilities ngﬁ'g'r
are unchanged by the substitutions R-— T and Rp—Tp.

(50)

The visibility vﬁ_‘;sm is unity for scattering probabilities
obeying TyRpR-To=TpR4RpTh and similar relations hold
the wansmission probabilities approaching either zero or
unity. Focusing on the case with T-=Tp (or equivalently
Te=Rp). the visibilities are given by

2\ TR\ TpRy
YRBT= MRS TR g (51)
A
and
2 TR TR
pg.ﬂ @ 68 Viatalphp (52)

=¥ L — g
HET N.HET (I._-iq_B"'RARB
The two different visibilities are plotted mn Fig. 9 as a func-
tion of T for different Tp. The visibility vﬁﬁ%T has a maxi-
mum equal to unity for Ty=Tp. while vﬂ“g}i— instead has a
maximum equal to unity for Ty=Rp.

The effect of dephasing

Just as in the MZ-interferometer, the dephasing in the
HBT-interferometer is introduced by connecting a fictitious

PHYSICAL REVIEW B 72, 125320 (2005)
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FIG. 9. (Color online) Noise visibilities 1.53_'5?3—; and vﬁfé—l— of
shot noise correlations in the HBT geometry versus transmission
probability T, for various values of Tp. A symmetric geometry,
E, =kT, eV, and identical QPC’s C and D are considered.

voltage probe to an edge between any of the two point con-
tacts. The HBT-interferometer with the probe, denoted 9, is
shown in Fig. 10. Here the probe is connected to the edge
between contact C and A, we emphasize that the results dis-
cussed below do not depend on to which edge-state the probe
is connected.

The presence of the probe modifies the amplitudes for
scattering from terminals 2, 3 to terminals 5 to 8 As an
example, the scattering amplitude in Eq. (42) is modified

s52= V1 = eI Tee @90, (53)

In addition, we also have to consider amplitudes for scatter-
ing into and out from the probe terminal 9. The average
currents in the presence of dephasing, given from Egs.
(4)—(6) and (12), turn out to be given by the same equations
as in the absence of dephasing, i.e.. Eq. (43). This is what

FIG. 10. (Color online) The electrical HBT-interferometer, Fig.
8. with a dephasing voltage probe, 9, attached along one edge.
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one expects, lLe.. that dephasing affects only the phase-
dependent parts of the observables.

Turning to the current correlators, given from Egs. (8),
(9). and (14). we find for the correlators between terminal 5
and 8

—2é* _ _ — Jev
S = Te|:{‘g_5350 +CgSaVl —¢ cos[l.;—& + @] }
(54)
and for the correlators between terminals 5 and 7
-2 _ _ — eV
Sg% = T|:CD_5-;SD +TalSaVl — & cos [Q_EE + E‘)]:| .
(55)

The two remaining correlators are again given by the substi-
tutions Sg7=S55 (Tp—=Tp) and Sgz=Ss7 (Tp— Tp). We see
from Egs. (54) and (53) that just as for the MZ-
interferometer, the only effect of dephasing is to suppress the
phase-dependent term. The suppression factor is \-'E, just
the same as for the cos @ term in the noise for the MZ-
interferometer in Eq. (24). We can thus directly write the
visibilities in the presence of dephasing as

vNase = V1 - eol e (56)

This leads to the conclusion that the voltage probe for the
HBT-interferometer, just as for the MZ-interferometer, just
has the same effect as dephasing due to slow fluctuations of
the phase @, with the distribution of the phase fluctuations
obeying the relation in Eq. (40). Moreover, the voltage
probes have the same multiplicative property as for the MZ-
interferometer, allowing one to describe the effect of a con-
tinuum of probes along the edges (of total length L=L,+L,
+La+Ly) with a dephasing length Lg. The suppression of the
visibilities of the h/e oscillations due to dephasing are then
modified as (1-g)!? —exp(—L/2Ly), just as for the hle os-
cillations of the MZ-interferometer.

V. CONCLUSIONS

The MZ-interferometer is an amplitude interferometer: it
exhibits a visibility in the average current with period h/e

PHYSICAL REVIEW B 72, 125320 {2005)

and exhibits a visibility in the shot noise with periods of both
h/e and h/2e. In contrast, the HBT interferometer is an in-
tensity interferometer, it exhibits no AB-effect in the current
and exhibits only an h/e-effect in the shot noise correlations.
Interestingly, our investigation shows that the shot noise vis-
ibility of the HBT interferometer as a function of tempera-
ture, voltage and dephasing rate, 1s qualitatively similar to
that of the h/e-component of the shot noise of the MZ-
interferometer. This is contrary to the naive expectation that
the wvisibility of the two particle processes which lead to the
HBT effect should be similar to the visibility of the two
particle processes in the MZ-interferometer, that is the h/2e
component of the shot noise. Instead it is the number of
times the AB-flux is enclosed which determines the behavior
of the visibility.

In this paper we have investigated and compared in detail
the voltage, temperature and asymmetry dependence for the
current and noise visibilities in the MZ and HBT-
interferometers. The experimental realization of the HBT-
interferometer is of large importance since it allows for an
unambiguous demenstration of two-particle interference ef-
fects with electrons, to date not demonstrated. Moreover, a
successful realization of the HBT-interferometer would also
enable a first demonstration of orbital entanglement in elec-
trical conductors, a fundamentally important result. The re-
sults presented in this work should prove useful for the ex-
perimental work aiming to detect the HBT effect in electrical
conductors.

Note added in proof. Recently, I. Neder et al.™ presented
new measurements on the conductance in an electronic
Mach-Zehnder interferometer, indicating the importance of
screening effects in understanding the finite voltage proper-
ties of the interferometer.
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We propose and demonstrate theoretically that resonant inelastic scattering (RIS) can play an important role
in dc spin current generation. The RIS makes it possible o generate de spin current via a simple gate
configuration: a single finger gate that locates atop and orients transversely to a quantum channel in the
presence of Rashba spin-orbit interaction. The ac-biased finger gate gives rise to a time variation in the Rashba
coupling parameter. which causes spin-resolved RIS and. subsequently, contributes to the de spin current. The
spin current depends on both the static and the dynamic parts in the Rashba coupling parameter, oy and e,
respectively, and is proportional to fxoaf. The proposed gate configuration has the added advantage that no de
charge current is generated. Our study also shows that the spin current generation can be enhanced significantly

in a double finger-gate configuration.

DOI: 10.1103/PhysRevB.73.085304

I INTRODUCTION

Spintronics i1s important in both application and funda-
mental arenas.'? A recent key issue of great interest is the
generation of de¢ spin current (SC) without charge current.
Various de SC generation schemes have been proposed, in-
volving static magnetic field ™ ferromagnetic material,® or
ac magnetic field.” More recently, Rashba-type spin-orbit in-
teraction (SOI) in two dimension electron gas (2DEG)*
has inspired attractive proposals for nonmagnetic de SC
generation.!!=1? Of these recent proposals, including a time-
meodulated quantum dot with a static spin-orbit coupling,!
and time modulations of a barrier and the spin-orbit coupling
parameter in two spatially separated regions,!? the working
principle is basically adiabatic quantum pumping. Hence, si-
multaneous generation of both dc spin and charge cwrent is
the norm. The condition of zere de charge current, however,
is met only for some judicious choices for the values of the
system parameters.

It is known, on the other hand, that quantum transport in a
narrow channel exhibits resenant inelastic scattering (RIS)
features when it 1s acted upon by a spatially localized time-
modulated potential.'*!* This RIS is coherent inelastic scat-
tering, but with resonance at work, when the raversing elec-
trons can make transitions to their subband threshold by
emitting mA €415 Should this RIS become spin resolved in
a Rashba-type quantum channel (RQC), of which its Rashba
coupling parameter is time modulated locally, we will have a
simpler route to the nonmagnetic generation of de SC. Thus,
we opt to study, in this work, the RIS features in a RQC. This
requires us to go beyond the adiabatic regime and into the
regime when either g or w,~#h{. We solve the time-
dependent spin-orbit scattering (SOS) for all possible inci-
dent electron energies and obtain large RIS contribution. In
the adiabatic regime, however, with . g, = A8, we find that
the de spin-pumping effect from a sole SOI time-modulated
region is small. 2

II. SYSTEM CONFIGURATION

The system configuration considered is based on a RQC
that forms out of a 2DEG in an asymmetric quantum well

L098-0121/2006/73(8)/085 304(5)/$23.00

(085304-1

PACS number(s): 73.23.—h. 72.25.—b, 72.30.4q

by the split-gate technique. As is depicted in Fig. 1(a), a
finger gate (FG) is positioned above while separated from
the RQC by an insulating layer. A local fime variation in
the Rashba coupling parameter a(r.f) can be induced by
ac biasing the FG.'*'"* The Hamiltonian is given by
H=p? 12m+H,,(r,0)+V.(y) where the Rashba term

Hu(r.0)= M- 3[alr.0)p + pal(r.1)]. (1

Here, M=z X er, # 1s normal to the 2DEG, e is the vector of
Pauli spin matrices, and V_(y} is the confinement potential.
The unperturbed Rashba coupling parameter afr.r) is ay
throughout the RQC. but becomes ag+a; cos {1t in the re-
gion underneath the ac-biased FG. The Dresselhaus term is
neglected for the case of a narrow-gap semiconductor
system. 16

To demonstrate the pumping mechanism, we consider a
narrow RQC in which its subband energy spacing is much
greater than the Rashba-induced subband mixing. As such,
the unperturbed Hamiltonian, in its dimensionless form, is
Ho=-V4+ ago(id/dx)+ V (v). Appropriate units have been
used such that all physical quantities presented here, and
henceforth, are dimensionless.”® In particular, a is in unit of
v;f2, and spin in unit of #/2. The right-going (R) eigenstate
of Hp in the nth subband, is &, (v)f(x), where

T

W (x)=exp[ik] gpt]xo,. The wave vector kJ =1, + n,ao/2,

(a)

FIG. 1. (Color online) {a) Top-view schematic illustration of the
ROC. The ac-biased FG. of width [, is indicated by the gray area:
() the electron dispersion relation of an unperturbed RQC.

©2006 The American Physical Society
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while ,==+1 denotes the eigenvalue of x,_ to the operator
@, p, is the energy measured from the nth subband
threshold such that the energy of the eigentstate is
E=,u,,+s,,—a[2,f4, for £, =(nw/d)*. This dispersion relation is
shown in Fig. 1(k). The subband with g,~#£ is found to
contribute most to the RIS-enhanced spin pumpmg It is of
import to note that right-going electrons have |kR| > |k£.| and
that, at the subband threshold, k ka

HI. PHYSICAL PICTURE

In this section, we show that the physical origin of the dc
SC generation can be understood from two perspectives. A
weak pumping regime result is then obtained for an explicit
confirmation of our physical reasoning.

The first perspective is associated with the vector poten-
tial. In the ac- biased region, H="H,+H,, the transverse part
H, =/ v +V,(y), and the longltudmal part

alot)y, & ] - ia(x,:)z. 2)

H, ()= [ - r— +
The form of Eq. (2) suggests an effective vector potential,
f\(t}z%a(x,r)l\'l -¥, which depends on the spin and gives rise
to a spin-resolved driving electric field E=-#A/dr. However,
in K, the A? term does not depend on o, while for the term
linear in A, .:\x,:—%r},a(x,r)x, gives rise only to a trivial
spin dependence, which can be easily removed by a shift in
the origin of time for the case of an oscillatory afx, 7). Yet it
turns out that the full term linear in A, given by —i(a/dx)i- A,
manages to give rise to nontrivial spin-resolved transmis-
sions. In a perturbative sense, this term becomes kl?( DAI, for
the case of a right-going electron incident upon a spatially
uniform a(r). This renders the effective longitudinal driving
field to become spin dependent, through the factor k};”. The
difference in the current transmissions, for spin-up and spin-
down cases, is proportional to the difference in k}el , or ag,
and s found to be amplified by RIS. This breaking of the
longitudinal symmetry in the effective driving field by ay
leads to the generation of de spin current in a FG-RQC struc-
ture that has but an apparent longitudinal configuration sym-
metry, and with zero source-drain bias. No dc charge current
will be generated, however, in such a structure.

An alternate perspective for the understanding of the ori-
gin of the spin-resolved current transmission is associated
with a unitary transformation. By introducing a unitary trans-
formation ¥ (x,1)=exp[(i5,/2)[*yaa(x" 0)dx T, (x 1), the
Schrédinger equation [Eq. (2)] becomes

2 d
[— S+ Ui+ U&’(r)} bolr) =i dolr), (3)

of which the two time-dependent potentials are U, (1)
=—alx.)}4 and US(0)=(Qa/2)(x+1/2)cos(Qt+n,m/2).
Even though only U3 depends on spin, both the term in U)(t)
that oscillates with frequency {2 and U3 together constitute a
pair of quantum pumping potential that pump SC. This is our
major finding in this work: that spin pumping nature is
built-in even in a single FG configuration.
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The SC expression for a state ¥ _ is given by the 5C

density operator
N
= i[ g, - H.cl e, ML, (4)
x 2

The SC conservation 1s maintained by the supression of sub-
band mixing and the associated spin-flipping in a RQC. For a
scattering state 'V, the SC can be expressed in terms of the
transmission coefficients. More specifically, the ratio be-
tween the time-averaged transmitted and the incident SC
gives the spin-resolved current transmission T, where a, §,
are, respectively, the incident and the transmitting lead. Sum-
ming over contributions from all states in reservoirs R and L,
the 5C is

F=r-n,

where

- f AEF(E) Ty - Thl. )

and [7 is the number current due to electrons with spin %,
from both reservoirs that are under zero source-drain bias
condition. Here TH =X Em(ﬂ:}mﬂ"ﬂ and f(E) is the
Fermi-Dirac distribution. The transmission coefficient T} 57
=|eme P, denotes the current transmission that an
electron incident from terminal L in the spin channel o,
subband n, energy E, is scattered into terminal R, sideband
m, with kinetic energy wu=p,+mfl. The net charge
current is given by H=I1+/l. In a symmetric FG configura-
ton, we have T7p= T;? 7. so that the net spin current is
F=2 dEﬂE}(TI?L TRL) and the net charge current is identi-
cally zero.

In the weak pumping (WP) regime, when a| is small, we
can demonstrate analytically, and most unequivocally, that
spin-dependent reflection arises merely from the aforemen-
tioned linear A term in H (). We outline the derivation here
while leaving the detail in Appendix A. Tracing up to the
first order in ¢, our derivation retains the reflection ampli-
tudes to m==+1 sideband and drops that to the m=0 side-
band. Contribution to the total reflection includes thus reflec-
tion at either the left or the right edges of the time-modulated
region. For an electron incident from terminal L with wave
vector ky p(E), the reflection at the left edge is obtained from
the wave-function continuous condition and the boundary
condition

‘I’alx—( uz)++ ‘I’DL—( -

i
+ 5150y cos Wl yn=0. (6)

In the time-modulated region, the wave function W,

consists of one-sideband terms, given by the form

e n R Bl —EL0) a0 the m=0 term, given by the form

eftnalElx BT 4 9,/ (2Q)a k7 o ENe'™ —e7¥)]. The extra Q¢
dependence in the m=0 term is resulted from the time-
dependent driving effect of A, which is obwviated by the

(085304-2
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weighting factor that involves a k] p. The reflection ampli-
tude #7"7 at the left edge is obtained to be

am
2

a o .
Elk:_n(kn,k -kiR)+

LNy o

= sgn(m)%
= nR T "l

¢ itk gk L2 (7)

for m==+1. The first term in the numerator of Eq. (7) is
clearly due to A, because of the factor & k] 5. and the second
term is due to the scattering at the edge. Here the wave
vector kn gy =+(un )+ g,00/2, with upper (lower) sign
corresponds to the right-(left-) moving electron in the nth
subband, mth sideband, and with kinetic energy p. It is
clear then that wave-vector differences in both the numerator
and the denominator of r7*7 are spin independent. Hence, the

- s - \2
{1 —cos[(V e, + \";'-L:')!']}[ Li} - [ é(#n = Vptasty) + %]
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spin dependence arises solely from the ak} , factor in the
first term of the numerator in Eq. (7), or from A. This con-
firms our understanding of the physical origin of the de SC
generation.

Including the reflection at the right edge, we obtain the
total reflection amplitude

A=l - ety e. (8)

We note that the spin dependence of this total reflection
amplitude is associated with ap. In fact, it tums out that
the SC is proportional to ap The SC is related to the
current transmission, which, within the aforementioned
approximation, is given by Tp; = 1-Z,[RYG; + R 17], where
Ry =l i P u ., From Eq. (5). the energy derivative
of the zero-temperature SC is given by &FF/dE=24Tg;
=2(TLL—T}\,L) from which its explicit expression is given by

a1 5

ey X

dE 2 n m=xl
(gl =0)

That this expression diverges when g, =0. for m <0, exhib-
its the RIS feature unambiguously and also demonstrates the
need to go beyond the one-sideband approximation near the
RIS condition.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In the following, we present results obtained from solving
the time-dependent SOS exactly, in the numerical sense.
An outline of the method is presented in Appendix B.
Physical parameters are chosen to be consistent with the
InGaAs-InAlAs—based narrow-gap heterostructures such that
the electron density n,=13% 102 cm™, effective mass
m =0.04my. and ap=0.13 (fhag=3X% 107" &V m).” Accord-
ingly, the length unit ["=4.0 nm and the energy unit
E"=59 meV.

For the case of one FG (V=1), the energy dependence of
the spin-resolved transmission Tj; is plotted in Figs.
2(a}-2(c), and that of the corresponding dc SC is plotted in
Fig. 2(d). The FG width /=20 (80 nm), driving frequency
0=0.002 (r=0/27=28 GHz), and energy p=F—=,. Dip
features in Tf; at u/Q=1 are the quasi-bound state (QBS)
features, where electrons undergo coherent inelastic scatter-
ing to a QBS just beneath its subband bottom.'* Higher-order
QBS features at gx/0=2 are barely shown by the small
pealks. Of particular interest is the change in sign in the trans-
mission difference ATRL=TLL— T}EL across the dip structures,
namely, AT (pn=07)=>0 while ATgp(e=0%)<0. This
leads to a nonzero dc SC, peaked at /{1=1, and is exhibited
in Fig. 2(d).

T 9)
Vi,

It is also shown that the de SC increases with the oscil-
lating amplitude @, of the ac-biased gate voltage. More im-
portantly, all the above dc SC characteristics, including even
their order of magnitudes, are already captured by Eq. (9).
This lends strong support to our finding that RIS has played
a pivotal role in the generation of dc SC. Similar RIS-
induced peak in I° is found if we vary d instead of g

The nonlinear enhancement in the dc SC by two FGs
(N=2) is presented in Figs. 3(a)-3(c). The driving frequency

1.0F E 0.8 pE———y
' (a) @ .. o =04
0.3 o =005
0.0 -
=1.0f
S — -
2 | s (b) z
-sE_U.S 50_4
Z By
500 -
Eo0p
o7 2 0.2
NS © C
05k
—IIIGI
004 T | 00

1
L/

FIG. 2. (Color online) Spin-resolved current transmissions T,LL
(solid) and T;lu, (dashed) versus the incident energy g/} Param-
eters N=1, ap=0.13, 0=0.002, I=20, and a,=(a) 0.03, (b) 0.04,
and (c) 0.05. The corresponding de SC is plotted in {d).
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FIG. 3. (Color online) Current transmission versus u/(} for
N=(a) 1. and (b} 2. Pumped spins per cycle are plotted in (c) for
N=1 (thick curve) and N=2 (thin curve) with e =0.065, and driv-
ing frequency {2=0.001. Other parameters are the same as in Fig. 2.

is chosen to be =0.001 (r=14 GHz), and with (=22
(=88 nm). For comparison, the N=1 FG transmissions are
plotted along with that of the N=2 FG case, in Figs. 3(a) and
3(b), respectively. The corresponding dc SC, expressed in
terms of pumped spins per eycle Np=(2a/{})|F|, is shown in
Fig. 3(c). The pumping is optimized by a choice of the FG
separation, with the edge-to-edge separation Al=22. The
QBS dip structures are significant up to the fourth sideband
in Fig. 3(b). As indicated by arrows, the pumped spin-per-
cycle peaks at g/ Q2 =1.57 (1.92), with peak value 0.8 (0.1)
for the N=2 (N=1) FG case. The enhancement in Np is far
greater than doubling the Ny of N=1 FG. Finally, we discuss
the effectiveness of tuning a. Grundler showed that a static
FG bias change AVpg—0.075V can tune Aa—~0.25a.!°
This tuning ability should remain valid m ac FG bias
if the wave function in the asymmetric quantum well
responses adiabatically,. We esumate the gquantum-well
energy-level spacing AE~0.08 eV=A~0.06 meV, for
01/(2m)=14 GHz. Thus, the adiabatic response of the wave
function in the quantum well is established. Furthermore, the
ac FG biases, with amplitude AVp;—0.075 V, is estimated
to be within reach of coaxiable cable technology.!?

V. CONCLUSION

In conclusion, a nonmagnetic way of generating dc SC
has been established. The proposed Rashba-type quantum
channel driven by an ac-biased finger gate is a simple struc-
ture and should be within reach of recent fabrication capa-
bility. The spin pumping is studied, in detail, in both its
nature and its pumping mechanism. A resonant inelastic pro-
cess is the major factor that contributes to the robusiness of
the spin pumping. The coherent nature of the pumping sup-
ports further enhancement of the spin pumping by inveking
configuration consisting of more than one finger gate.
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APPENDIX A: WEAK-PUMPING (WP) REGIME

In the WP regime. we can obtain analytic results. The WP
regime refers to the case when the Rashba coupling param-
eter oscillates with a small amplitude a|. Keeping only up to
the lowest nonvanishing contribution of a|, it is simpler to
calculate the reflection amplitudes than the transmission co-
efficients. The reflection amplitudes to m= %1 sidebands are
first order in & and are the major objects of our calculation
here. The reflection amplitudes to m=10 sideband, however, is
second order in a and is neglected. When the Rashba cou-
pling parameter oscillates in time within a spatial region
=12 <Ix<<1/2, the longitudinal Hamiltonian is given by

i i [ 0\ aycos
,——&xg+cr00'}. Fé'x)+ 5 %
Er

| 812 = a]) a_—J o li—|au2-x |, (A1)
ax ax

where #(x) is the step function. For an electron incident from
terminal L with wave vector k] o(E), the reflection coeffi-
cients consist of contributions from reflections at the left and
the night edges of the time-modulated region. We first calcu-
late the reflection amplitudes due to reflection at x=-=[/2.
The wave function is given by

w::lr{x g ”2) =€¢'k:jfﬂx€—i.€r+ E ’JIU.I.D'FJ.}";;L"'A'E—!'(E+N|D)J,
m=%|
[FEi]]

(A2)

Y- <x<ll2)
_ E !‘E'a—elltlnli.lf?xg_im+"ﬂ)r
m=x]
(m#00)

3 ) n . .
+ rg—”g'kn.ﬂ(fkf“ﬂ 1+ ﬁal ?I'R[E)[t,iﬂr = e—:ﬂr} .

(A3)

Here, 17" and /4" denote, respectively, the transmission and
reflection coefficients at the left edge of the time-modulated
region. We have not included, in Eq. (A3), corrections to the
wave functions associated with the coefficients 77, for
m==+1, that arnse from the time-modulation of the Rashba
spin-orbit intraction (SOI). It is because the coefficients 7"
are already first order in a. These coefficients are solved
from the wave-function continuous condition and the bound-
ary condition in Eq. (6). The reflection coefficients are cal-
culated, and the expression is presented in Eq. (7). It is worth
noting that Igﬂz L. up to first order in a;.

Following a similar procedure, the reflection at the right
edge of the time-modulated region can be obtained from the
following wave function:
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Abstract

In this work, we consider a Rashba-type quantum channel (RQC) consisting of one AC-biased finger-gates (FG) that orient
perpendicularly and located above the RQC. Such an AC-hased FG gives nise to a local time-modulation in the Rashba coupling
parameter, and is shown recently to generate a DC spin current [L.Y. Wang, C.S. Tang, C.5. Chu, Cond-mat/0409291, 2004]. No charge
current, however, is generated in this configuration. We explore the robustness of such DC spin current generation against elastic
scattering in the RQC. The effect of backscattering is studied by introducing a static barrier that is uniform in the transverse dimension.
The effects of both backscattering and subband mixing is studied by introducing a static partial-barrier that is spatially localized and
non-uniform in the transverse dimension. In addition, we compare the cases of attractive and repulsive partial-barriers. It 1s found that
attractive partial-barrier gives rise to additional DC spin current structures due to resonant inter-subband and inter-sideband transition

to quasi-bound states formed just beneath subband thresholds.
€ 2006 Elsevier B.V. All rights reserved.

FPACS: 7220.=i; 72.20.Dp: 7225 Mk

Keywords: Rashba coupling parameter; Spin current; Inter-subband; Backscattering; Inter-sideband; Quasi-bound states

1. Introduction

Recent mterest in spintronics has been prompted by its
great potential in physical realization of quantum compu-
tation [1-3]. One of the important issue in spintronics is the
generation of DC spin current (SC).Various schemes for
the DC SC generation have recently been proposed, which
involve a non-uniform magnetic field [4] or an oscillating
magnetic field [5]. An alternate way to control the electron
spin dynamics 1s via Rashba-type spin-orbit interaction
(SOI) [6]. Several proposals have been suggested to
generate DC SC with a time-varving Rashba-type SOI
[1,7.8]. The Rashba term can be described by Hso =
a(fi x Z)- @ where 2 denotes the spin-orbit (SO) coupling
parameter and @ stands for the Pauli spin matrices. That =
can be tuned by an external gate voltage in the InAs-based

*Corresponding author. Tel.: +886 3 5712121x56127;
fax: + 88635725230,
E-mail address: cschu@ee.netu.edu.tw (C.5. Chu).

heterostructure has been demonstrated experimentally
[9.10]. In the presence of such an oscillating « induced by
an AC-biased gate, it was found that AC SCis generated in
a ballistic quantum channel [7] or in a difTusive 2DEG [8].
Rectification, such as introducing an additional oscillating
barrier is needed for the DC SC generation [7.8]. Bevond
linear response to «, we lind that a DC SC can be generated
via a single AC-biased FG atop a ballistic Rashba-type
quantum channel [I]. No charge current, however, is
generated. Resonance inelastic scattering (RIS) is found to
contribute to the robustness in the DC 8C [1].

In this work, we study the effect of elastic scattering on the
DC SC generation n a single FG configuration. The method
ol approach is time-dependent scattering matrix method
[1,11]. The backscattering eflect can be studied via a static
full-barrier locating either inside or outside of the AC-biased
FG. Strong barrer position-dependent effect on the DC SC
generation is found in our theoretical caleulation.

The elastic scattering effect is further studied by
considering a repulsive or attractive partial-barrier. The
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partial-barrier introduces intersubband scattering to the
system due to the fact that it covers only part of the
transverse dimension of the quantum channel. We have
studied the barrier position dependence of the DC 8C
generation. For an attractive partial-barrier, the intersub-
band transition into a quasi-bound state formed just
beneath the subband bottom causes the SC to have an
additional structure at p below the second subband
bottom.

In all the above elastic scattering effect on the DC SC, as
long as the barrier breaks the longitudinal symmetry of the
conliguration, the charge current (CC) will become
NONzZero.

2. Method of approach

The schematic structure shown m Fig. | 1s based on a
RQC that forms out of' a 2DEG in an asymmetric quantum
well by the split-gate technique, and a single barrier is
located in the RQC. This effective Hamiltonian is given by
H=p*/2m+ Hso( ¥, 1)+ Vely) + fo(0d(x — x), where
p = (pep,) 18 the in-plane momentum, Hsof ¥, 1) is the
Rashba term, and V,(v) 15 the conlinement potential. In the
case of a full-barrier, /() = Vi in the entire width of
the quantum channel 0<y<d. In the case ol a partial-
barrier, f4(v) = Vp in the region y <y<y,, with O0<y,
y=d, and fy(y) = 0 for other regions.

The unperturbed RQC we considered is narrow so that
its subband energy spacing 15 much greater than the
subband mixing due to the Rashba interaction. As such the
unperturbed Hamiltonian in the dimensionless form is
given by #g = —V% 4 2p6,{18/8x) + Vely). Here we have
chosen appropriate units for all physical quantities [1]. In
particular, « is in unit of vg /2, where vp denotes the Fermi
velocity, and spin is in unit of /2. The right-going (R)
eigenstate of #, in the nth subband, is ¢, (y) ] (x), where
iiix) :cxp[ikik_\');{a_ The wavevector k,.,k N/
N.%0/2 while 1, = £1 denotes the eigenvalue of 3, to the
operator o,. u, is the energy measured from the nth
subband threshold such that the energy of the eigenstate is

E=p, +éen zﬁ;‘ﬂ, for ¢, = Um,r"ce’)z. In the AC-biased FG
AC-biased
\_ Ly
7y
2DEG / d 2DEG

>

Fig. |. Top-view schematic illustration of the RQC with a static barrier.
The AC-biased FG, of width [, is indicated by the shaded area. The solid
ling at the left of the FG indicates the static barrier.

I

2 2

region, the Rashba coupling parameter becomes x(f) = ag
i cos Qf. Introducing a unitary transformation 7 (x) =
el [ @R/ 50 x) in this region. leads us to the time-
dependent longitudinal Schrédinger equation

E\_Q E\ r\
+ 1, o7 x :l— X (1
(- g5 o0 = 0500 )

b

Thus a general form of w:[_r) in the time-modulated region
15 given by

(x,1) = ZlAm oekr I miknR)
mp'

b BT ey ()™ e (2)

Here the sideband energy is denoted by p! = p,, + m€2, the
c.pnn dLPLIldLIlT. wavevector s denoted by R:IELJ

) b 4,00 /2, with the upper (lower) t‘.ngnwrrm[;ondt.
‘Lo Lhc. right- (left-) going electron, and K, R(L) =
(o1 /@) 7 1y- The wavefunction in Eq. (2) is to be matched
with that outside the ume-modulated region at all times in
order to obtain the transmission coelficients. At the
boundary of the time-modulated region, we apply the
wavelunction continuous condition, and the condition
connecting the slopes ol the wavelunction, which are
obtained from the Schrodinger equation.

3. Resulis and discussion

We first present numerical results for the case of a full-
barrier. The physical parameters are chosen to be
consistent with InGaAs-InAlAs based narrow gap hetero-
structure such that the electron density n, = 1 x 102 em=2,
effective mass m® = 0.04dmg, and w2 =0.13 (hxp =3x
10~ eV m) [I0]. The length unit is /* = 4.0nm, and the
energy unit 18 E* = 59meV. We present n Fig 2 the
dependence of the SC (empty-symbols) and the CC (filled-
symbols) on channel width & for a number ol barrier
positions. The driving frequency is @ = 0.002 (= 28 GHz),
the FG length { = 20 (80 nm), and the barrier strength is
o =0.1. For a fixed Fermi energy E. the nth subband
bottom matches E when E = (nn/d)* — o3 /4. Thus in Fig.
2, when E =0.0131, the first and the second subband
bottoms match that of E when o =23.86 and 47.73,
respectively. The SC (Ff) and CC (I°) are defined by
P=1"-r and 1€ =1" 4+ I}, where

= f EAE) [To

Here TEQ, depicts current transmission and «, [ denotes the
incident and the transmitting lead, respectively. The case of
a lull-barrier located cither inside or outside the time-
modulated region 15 given by Figs. 2(a) and (b), respec-
tively. The trend shown in Fig. 2 is that both the SC and
the CC are smaller when the barrer 18 located mside the
time-modulated region. This trend 18 consistent with
another feature in Fig. 2{a): namely that the current is
largest for xp = —9.9, when the barrier is closest to the edge

Tig. (3)
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Current (nA)

Current (nA)

Fig. 2. The SC and CC are plotted as a function of channel width 4. The
static full-barrier is located (a) inside and (b) cutside the FG with various
longitudinal positions. The empty-symbols and filled-symbols indicate the
SC and the CC, respectively. The Fermi energy is fixed at £= 0.0131 and
other parameters are oy =013, oy =003, /=20, @=0.002, and
Vo =0.1. The center and the edges of the time-modulated regions are at
x0 = 0, £10, respectively.

of the time-modulated region, and it 18 the smallest lor
xp = 0. when the barrier is centered. Outside the time-
modulated region, the SC and the CC continue to grow
with increasing separation between the barrier and the
time-modulated region, untl they saturate eventually to
certain values. Besides this overall trend. the channel width
dependence of the SC and CC exhibits distinet signatures
ol the coherent inelastic processes. The sharp rise in SC
occurs when the Fermi energy E aligns with a subband
bottom. More importantly. the SC peaks at = 25.37, and
50.75. when the effective Fermi energy p, of the highest
subband equals h€2. This is shown to be associated with the
coherent inelastic scattering to a quasi-bound state (QBS)
just beneath the subband bottom [1.12,13]. The sharp rises
of 8C in Fig. 2 thus demonstrate that coherent processes

have played an important role in the large enhancement of

the DC SC. These coherent processes come into ellect
through the reflections at the two edges of the time-
modulated region and through the interference between
these reflection amplitudes. A barrier located inside the
time-modulated region will therefore cause greater disrup-
tion to the alorementioned coherent processes than a
barrier located outside the time-modulated region, and
hence results in a smaller DC SC pumping.

We present, in Fig. 3, both the transmission and the DC
SC characteristics for a partial-barrier located inside the
time-modulated region. The partial-barrier has a delta-
prolile in the longitudinal direction and covers only a
[raction ol the channel width, which transverse range is

5§20} —1), ] 20—,
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Fig. 3. The repulsive, (a)-(c) and attractive, (d}-(f), partial-barrier is
located at the FG center but with various Fy. We choose Fy =01, 0.2,
—0.1, =0.2, in (a), (b), (d), (e}, respectively. The current transmission is
plotted as incident energy in the unit of p/Q. Other parameters are
g =013, 2; =003, @ = 0002, / = 20, and d = 40.

from y, =8 to v, = 12. For a RQC width of d = 40, the
center of the partial-barrier is at d /4. Of particular interest
here 1s the effect of the sign of the partial-barrier potential
to the SC. The partial-barrier is repulsive, attractive, in
Figs. 3{a)-(c). and in Figs. 3(d){I), respectively. For the
repulsive partial-barrier, the transmission coellicients are
spin-resolved and show both step-like structures, due to
the subband structures, and the dip structures, due to the
coherent inelastic scattering features. The dip structures are
broadened for larger V. Subsequently, the DC SC is
suppressed. For the attractive partial-barrier, the transmis-
sion coelficients show additional dip structures at the
subband bottom, when p/@Q = 9. These additional dip
structures are due to coherent elastic inter-subband
scattering into the QBS state just beneath the subband
bottom. On the other hand, the coherent inelastic scatter-
ing dip structures develop into dip-and-peak structures for
larger |V, Subsequently, the DC SC has an additional
shoulder, near /@ = 8, belore the SC sharp rise at the
subband bottom. Moreover, as is shown by the dotted
curve in Fig. 3(1), when the partial-barrier is more
attractive, the DC SC is suppressed around p/Q = 1 but
is enhanced around y/Q = 10.

4. Summary

We have studied DC SC generation m the presence ol
either a full-barrier or a partial-barrier in a RQC. In
general, a barrier inside the time-modulated region causes a
stronger suppression to the SC than it 1s outside the region.
Interestingly. we find that an attractive partial-barrier
induces inter-subband processes, gives rise to additional



L.Y. Wang et all [ Physica E 32 {2006) 450-433 453

QBS dip structures in the transmission coeflicients, and can
lead to the enhancement of the SC.
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Spin Hall Effect on Edge Magnetization and Electric Conductance of a 2D Semiconductor Strip
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The intrinsic spin Hall effect on spin accumulation and electric conductance in a diffusive regime of a
2D electron gas has been studied for a 2D strip of a finite width. It is shown that the spin polarization near
the flanks of the strip, as well as the electric current in the longitudinal direction, exhibit damped
oscillations as a function of the width and strength of the Dresselhaus spin-orbit interaction. Cubic terms
of this interaction are crucial for spin accumulation near the edges. As expected, no effect on the spin
accumulation and electric conductance have been found in case of Rashba spin-orbit interaction.

DOI: 10,1103/ PhysRevLett.95.146601

Spintronics is a fast developing area to use electron spin
degrees of freedom in electronic devices [1]. One of its
most challenging zoals is to find a method for manipulating
electron spins by electric fields. The spin-orbit interaction
(S0I), which couples the electron momentum and spin, can
be a mediator between the charge and spin degrees of
freedom. Such a coupling gives rise to the so-called spin
Hall effect (SHE) which attracted much interest recently.
Because of SOI the spin flow can be induced perpendicular
to the dc electric field, as has been predicted for systems
containing spin-orbit impurity scatterers [2]. Later, similar
phenomenon was predicted for noncentrosymmetric semi-
conductors with spin split electron and hole energy bands
[3]. It was called the intrinsic spin Hall effect, in contrast to
the extrinsic impurity induced effect, because in the former
case it originates from the electronic band structure of a
semiconductor sample. Since the spin current carries the
spin polarization, one would expect a buildup of the spin
density near the sample boundaries. In fact, this accumu-
lated polarization is a first signature of SHE which has
been detected experimentally, confirming thus the extrinsic
SHE [4] in semiconductor films and intrinsic SHE in a 2D
hole gas [5]. On the other hand, there was still no experi-
mental evidence of intrinsic SHE in 2D electron gases. The
possibility of such an effect in macroscopic samples with a
finite elastic mean free path of electrons caused recently
much debates. It has been shown analytically [6-11] and
numerically [12] that in such systems SHE vanishes at
arbitrary weak disorder in dc limit for isotropic as well
as anisotropic [10] impurity scattering when 501 is repre-
sented by the so-called Rashba interaction [13]. As one can
expect in this case, there is no spin accumulation at the
sample boundaries, except for the pockets near the electric
contacts [7]. At the same time, the Dresselhaus SOI [14].
which dominates in symmetric quantum wells, gives a
finite spin Hall conductivity [11]. The latter can be of the
order of its universal value e/8s#h. The same has been
shown for the cubic Rashba interaction in hole systems
[12.15]. In this connection an important question is what
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sort of the spin accumulation could Dresselhaus SOI in-
duce near sample boundaries. Another problem which, as
far as we know, was not discussed in literature, is how the
electric current along the applied electric field will change
under SHE. In the present work we will use the diffusion
approximation for the electron transport to derive the drift-
diffusion equations with corresponding boundary condi-
tions for the spin and charge densities coupled to each
other via SOI of general form. Then the spin density near
the flanks of an infinite 2D strip and the correction to its
longitudinal electric resistance will be calculated for
Dresselhaus and Rashba SOI.

Let us consider two-dimensional electron gas (2DEG)
confined in an infinite 2D strip. The boundaries of the strip
are at y = *d/2. The electric field E drives the dc current
in the x direction and induces the spin Hall current in the y
direction. This current leads to spin polarization buildup
near boundaries. Since d > ky', where ky is the Fermi
wave vector, this problem can be treated within the semi-
classical approximation. Moreover, we will assume that
is much larger than the electron elastic mean free path [, so
that the drift-diffusion equation can be applied for descrip-
tion of the spin and charge transport. Our goal is to derive
this equation for SOI of general form

Hsa:h.k'urs (1

where o = (¢, ¢, %) is the Pauli matrix vector, and the
effective magnetic field iy = —h_; is a function of the
two-dimensional wave vector k.

We start from determining linear responses to the mag-
netic B(r, r) and electric Vir, t) potentials. The magnetic
potentials are introduced in order to derive the diffusion
equation and play an auxiliary role. The corresponding
one-particle interaction with the spin density is defined as
H,, = B(r,t) - o. These potentials induce the spin and
charge densities, $(r, 1) and n(r, 1), respectively. Because
of SOI the charge and spin degrees of freedom are coupled,
so that the electric potential can induce the spin density
[16] and vice versa. Therefore, it is convenient to introduce

@ 2005 The American Physical Society
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the four vector of densities D,(r, 1), such that Dylr) =
alr,t) and D, (r,t)=S§,, .(r,f). The cormresponding
four vector of potentials will be denoted as @z, 1).
Accordingly, the linear response equations can be written
in the form

Dir, 1) = faQHdHZH,-J,(r, ro =)@, )
I

+Dr, 1), (2)

The response functions l'I,-J,ir, ¥ r— 1) can be expressed
in a standard way [17] through the retarded and advanced
Green functions G (r, ', £) and G*(r, ', t). In the Fourier
representation we get

do' Ing(e")
qo e (‘f  (Te[Gatr, r, )
i3]

[T, w) =iw
KEG v, o' + 0], (3)

where %=1, X; = ey at i =x,y, z, and nplw) is the
Fermi distribution function. The time Fourier components
of densities D?(r, t) at w < Ej are defined as

d !
Dlr, w) = i'[dzr’;d?j(r’, w}j%n;(w’)

XATe[Gr(r, F, ') E,G7(F, r, ') X
=G, r, 02,60 k, 0")E ] (4)

The trace in Eqs. (3) and (4) runs through the spin varia-
bles, and the angular brackets denote the average over the
random distribution of impurities. Within the semiclassical
approximation the average of the product of Green func-
tions can be calculated perturbatively. Ignoring the weak
localization effects, the perturbation expansion consists of
the so-called ladder series [17.18]. At small w and large
|r — r'| they describe the particle and spin diffusion pro-
cesses. The building blocks for the perturbation expansion
are the average Green functions G™ and G“, together with
the pair correlator of the impurity scattering potential
U,.(r). A simple model of the short-range isotropic poten-
tial gives (U, (r)U,.(r")) = T'8(r — ¥')/ 7Ny, where Ny is
the electron density of states at the Fermi energy and I' =
1/27. Within the semiclassical approach the explicit be-
havior of the electron wave functions near the boundaries
of the strip is not important. Therefore, the bulk expres-
sions can be used for the average Green functions. Hence,
in the plane wave representation

Gk, w) =[Gk, )]t = (w —E, —hy -or + i),
(5)

where B, = k*/(2m*) — Ep. Since the integral in (4) rap-
idly converges at |r — /| = k5", D%{(r, w) are given by the
local values of potentials. From (4) and (5) one easily
obtains the local equilibrium densities

DV, w) = —2Ny@,(r, w). (6)

In their turn, the nonequlibrium spin and charge densities
are represented by the first term in Eq. (2). Within the
diffusion approximation this term is given by the gradient
expansion of (3) [18]. Such an expansion is valid as far as
spatial variations of D, (r, w) are relatively small within the
length of the order of the mean free path [. The length scale
for spin density variations near the boundaries of the strip
is given by vp/hy,. Hence, the diffusion approximation
can be employed only in the dirty limit k<< 1/7. The
diffusion equation is obtained after the ladder summation
in the first term of Eq. (3) and multiplying this equation by
the operator inverse to IT;;(r, ¢, @), as it has been previ-
ously done in [19,20]. After some algebraic manipulations
one gets

Z:D"J(Dj - DY) = —iwD, N

J
where the diffusion operator D can be written as
DY = §IDV: — T + RimV, + MY, (8)

The first term represents the usual diffusion of the spin and
charge densities, while the second one describes the
D’ akonov-Ferel” [21] spin relaxation

I = 47,‘:%[5” - n}( nil (9

where i, j # (), the overline denotes the average over the
Fermi surface, and ny, = hy, /hy. The third term gives rise
to precession of the inhomogeneous spin polarization in
the effective field of SOI [19]

Rim =473 el vy, (10)
I

The nondiagonal elements of the form D' appear due to
spin-orbit mixing of spin and charge degrees of freedom.
They are collected in M/, For Rashba SOI M™ have been
calculated in [7,8]. In general case

o _ B i o
I? ok

When a time independent homogeneous electric field is
applied to the system one has @y =eEx and Dg =
—2Npe Ex. At the same time, ®; = 0 and, hence, D? =)
at i =, y, z. Because of charge neutrality the induced
charge density eDy = (. It should be noted that in the
system under consideration the charge neutrality cannot
be fulfilled precisely. The spin polarization accumulated at
the strip boundaries gives rise to charge accumulation via
the M™ terms in (7) and (8). The screening effect will,
however, strongly reduce this additional charge, because
the screening length of 2DEG is much less than the typical
length scale of spin density variations. We will ignore such
a small correction and set Dy = (0 in (7). In this way one

(1L
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arrives to the closed diffusion equation for three compo-
nents of the spin density. This equation coincides with the
usual equation describing diffusive propagation of the spin
density [19], for exception of the additional term
-MUDh = 7N09Eh’V*n J/T? due to the external electric
field. Its origin becomes more clear in an infinite system
where the spin density is constant in space and only I'/ and
M'I are retained in (7) and (8). Hence, the corresponding
solution of (8) at w = 0 is §; = 5, with

TSRS

where (I'™')/ is the matrix inverse to (9). Such a phenome-
non of spin orientation by the electric field was predicted in
Ref. [16] and recently observed in [22]. In the special case
of Rashba SOI b, = a(k){k X z) it is easily to get from
(12) the result of Ref. [16] S? = —NyeEar.

In addition to the diffusion equation one needs the
boundary conditions. These conditions are that the three
components of the spin flux I}, I}, £ flowing in the y
direction turn to 0 at y = *d/2. The linear response
theory, similar to (2), gives

NQE'E 3 r} .i

s =p0/2= (12)

I 1) = f FrdrY E e - OO, 0, (13)
1

where the response function E is given by

da: d'np(w )

E:j(r,r‘, w) = (Tr[Ga(r', r, ')

X LG (v, o + 0)3;]) (14)

with the one-particle spin-current operator defined by J! =
(erf'v; + vyor') 4 and the particle velocity
_ k4
/ + —h 15
=t kr( PRY/4) (15)
Taking into account (7) and (6), we obtain from (13) and
(14)

¥ -HS,- ify ) o

Eir)=-D % _ER (8; = 87) + 8. L. (16)
The first two terms represent the diffusion spin current and
the current associated with the spin precession. The third
term is the uniform spin Hall current polarized along the z

axis. It is given by

Iy=— L Rm st te E?’gv’p(dh"‘ Xhi)z (17
From (10) and (12) it is easy to see that for Rashba SOI
both terms in (17) cancel each other making I,z = 0, in
accordance with [6—12]. Therefore, in case of the strip the
solution of the diffusion equation satisfying the boundary
conditionis §; = & 5. Hence, the spin density is uniform

Jyye
and does not accumulate near boundaries. It should be

noted that such accumulation can, however, take place in
the ballistic regime of electron scattering [23]. At the same
time, as shown in Ref. [11], even in the diffusive regime
I,y # 0 for the Dresselhaus SOI. This inevitably leads to
the spin accumulation. Taking Dresselhaus SO in the form
= Bk — k)l k) =Bk - k"), (18)
one can see that the bulk spin polarization (12) has a
NONZero SE component, R # (), while R%* = (). Hence,
the solution of the diffusion Eq. (7) with the boundary
condition J(*d/2) = K(+d/2) =01is 5. 5§, #0 5, =
0. Let us define AS;(y) = 5;(y) — $*. The dependence of
AS;(*=d/2) from the strip width, as well as an example of
AS, coordinate dependence, are shown in Fig. 1. The
damped oscillation in the d-dependence of the spin accu-
mulation on the flanks of the strip can be seen for the §,
polarization. Similar oscillations take place also in the
coordinate dependence. The length scale of these oscilla-
tions is determined by the spin precession in the effective
spin-orbit field.
The arbitrary units have been used in Fig. 1. For a
numerical evaluation let us take =10 V/m,

hﬁpfr;'?; =01, and «/kr =08 for a GaAs quantum

— k=13

ASH

................
___________________________

ASE

FIG. 1 (color online). Spin densities AS,(+d/2) = AS. for
i = x, z on the boundaries of the strip, as functions of its width d,
for k/k =09, 1.0, and 1.3, respectively. The inset shows the
dependence of AS,(y) on the transverse coordinate y. Lengths
are measured in units of I, = v%-hﬁ[v;}.hh.}.
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well of the width w = 100 A doped with 1.5 % 10" m~
electrons. We thus obtain [AS_(*d/2)] =5 x 10" m~2.
The corresponding volume density AS /w=35 X
10" m™, which is within the sensitivity range of the
Faraday rotation method [4].

It should be noted that in the considered here “dirty™

limit hﬁp-r/ﬁ <€ | the spin Hall current is suppressed by

the impurity scattering. As shown in [I[1,12] for
Dresselhaus and cubic Rashba SOI, this current decreases

as E'rz /% down from its highest universal value. At the

same time, an analysis of the diffusion equation shows that
the accumulated at the flanks of the strip spin density

decreases slower, as (/k? /h. This explains why for the
F

considered above realistic numerical parameters, even in
the dirty case, the noticeable spin polarization can be
accumulated near the boundary.

Usually, the spin Hall effect is associated with the spin
polarization flow, or the spin density accumulation on the
sample edges, in response to the electric field. On the other
hand, this effect can show up in the electric conductance as
well. To see such an effect we take O-projection of (13),
which by definition is the electric current. The current
flows along the x axis. The corresponding response func-
tion Eg} is given by (14) with J§ = v,. Using Eqs. (14),
(15), and (7), and expressing ®; from (6) one gets the
electric current density

a8

F=cE+A—L,
dy

(19)
where « is the Drude conductivity and
1 v (0l L[y
A= E’ﬁ[lﬂp(ﬁxhi)z + UF(WX}”)Z} {20}

The total current is obtained by integrating (19) over y.
Therefore, the spin Hall correction to the strip conductance

A 24
AG =F[8.(d/2) = 8.(=df2] = F=sdd/2. @)

Hence, the dependence of AG on the strip width coincides
with that of the spin density shown in Fig. 1(a).

In conclusion, we employed the diffusion approximation
to study the spin Hall effect in an infinite 2D strip. In case
of the Dresselhaus spin-orbit interaction this effect leads to
spin accumulation near the flanks of the sirip, as well as to
a correction to the longitudinal electric conductance. Both
the spin accumulation and the conductance exhibit damped
oscillations as a function of the strip width.

This work was supported by the Taiwan National
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M-009-010, and RFBR. Grant No. 03-02-17452.

1]

2]
3]

[4]
(3]

[6]

[17]

(18]

[19]

[20]

[21]

[22

146601-4

G. A. Prinz, Science 282, 1660 (1998); 5. A. Wolf et al.,
Science 294, 1488 (2001); Semiconductor Spintronics and
Quantum Computation, edited by D.D. Awschalom, D.
Loss, and N. Samarth (Springer-Verlag, Berlin, 2002); L.
Zutié, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76,
323 (2004).

M.I. Dyakonov and V.I. Perel, Phys. Lett. 35A, 459
(1971); J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).

S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301,
1348 (2003); J. Sinova ef al., Phys. Rev. Lett. 92, 126603
(2004); D. Culcer et al., Phys. Rev. Lett. 93, 046602
(2004).

Y. K. Kato et al., Science 306, 1010 (2004).

J. Wunderlich et al, Phys. Rev. Lett. 94, 047204
(2005).

I.L. Inoue, G.E. W. Bauer, and L. W. Molenkamp, Phys.
Rev. B 70, 041303 (2004); E. L. Rashba, Phys. Rev. B 70,
201309 (2004); O. Chalaev and D. Loss, Phys. Rev. B 71,
245318 (2005).

E. G. Mishchenko, A. V. Shytov, and B.1. Halperin, Phys.
Rev. Lett. 93, 226602 (2004).

A.A. Burkov, A. 5. Nunez, and A.H. MacDonald, Phys.
Rev. B 70, 155308 (2004).

0. V. Dimitrova, Phys. Rev. B 71, 245327 (2005).

R. Raimondi and F. Schwab, Phys. Rev. B 71, 033311
(2005).

A.G. Mal'shukov and K.A. Chao, Phys. Rev. B 71,
[21308(R) (2005).

B.A. Bernevig and S.C. Zhang, Phys. Rev. Lett. 95,
016801 (2005); K. Nomura et al., cond-mat/0506189
[Phys. Rev. B (to be published)].

Yu.A. Bychkov and E.I. Rashba, J. Phys. C 17, 6039
(1984).

G. Dresselhaus, Phys. Rev. 100, 580 (1955).

The cubic Rashba interaction should not be confused with
the conventional linear Rashba SOT with the wave-vector-
dependent coupling constant (k). In the latter case
SHE = ae(k)k/Ep < 1 [9,12].

V.M. Edelstein, Solid State Commun. 73, 233 (1990); J. L
Inoue, G.E.W. Baver, and L.W. Molenkamp, Phys.
Rev. B 67, 033104 (2003).

A.A. Abrikosov, L.P. Gorkov, and 1. E. Dzyaloshinskii,
Methods of Quantum Field Theory in Statistical Physics
(Dover, New York, 1975).

B.L. Altshuler and A.G. Aronov, in Electron-Electron
Interactions in Disordered Systems, edited by A.L.
Efros and M. Pollak (North-Holland, Amsterdam, 1985).
A.G. Mal'shukovand K. A. Chao, Phys. Rev. B 61, R2413
(2000).

A.G. Mal'shukov, K. A Chao, and M. Willander,
Phys. Rev. Lett. 76, 3794 (1996); Phys. Scr. T66, 138
(1996).

M. L. ’yakenov and V. I. Perel’, Sov. Phys. JETP 33, 1053
(1971) [Zh. Eksp. Teor. Fiz. 60, 1954 {1971)].

Y. K. Kato et al., Appl. Phys. Lett. 87, 022503 (2005).
B. K. Nikoli¢ et al., Phys. Rev. Lett. 95, 046601 (2005), Q.
Wang, L. Sheng, and C.S. Ting, cond-mat/0505576.



Appendix F:

PHYSICAL REVIEW B 72, 165307 (2005)

Fano resonance in transport through a mesoscopic two-lead ring
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The ballistic transport through a one-dimensional two-lead ring at zero magnetic field is studied. We have
focused on the case in which the potential in the ring does not define closed cavities or dots. Even in the
absence of well-defined quasibound states, we find Fano profiles in the transmission probability. Those Fano
profiles appear at energies corresponding to the standing-wave stales in the ring, but their occurrence depends
sensitively on the commensurability of the system parameters. When the system parameters are commensurate,
the widths of the profiles at some energies are infinitesimally small. These findings suggest that the conven-
tional understanding of the Fano profiles as a result of the interference effect of the transition through resonant
states and nonresonant continuum of states, might not account for all the Fano profiles seen in the transport
measurements. Moreover, the sensitivity and tunability of the resonance with respect to the system parameters
may be usable in the fabrication of electrical nanodevices.

DOL 10.1103/PhysRevB.72. 165307

L INTRODUCTION

The Fano resonance or profile is conventionally under-
stood as a result of the interference between resonant and
nonresonant processes. [t was first observed and studied in
nuclear physics' and atomic physics.” and later the effect was
also observed in a wide variety of spectroscopy such as
atomic  photoionization,” optical absorption,' Raman
scattering,” and also the scanning tunneling through a surface
impurity atom.®’ As recent progress in the fabrication tech-
nology of electrical nanodevices has achieved devices of the
size of the order of the various coherence lengths of the
conduction electron, quantum mechanical effect and hence
the Fano resonance has also been seen in mesoscopic sys-
tems. For instance, it is seen in the transport through systems
which contain quantum dots*'* and carbon nanotubes.™
Moreover, it is proposed that the resonance can be used in
the probe of the phase coherency of the electrons in
transport!*16 and the design of mesoscopic spin filters.”

Most studies of the Fano resonance in the electronic trans-
port have been along the conventional line, i.e., Fano profiles
are attributed to well-defined quasibound states which are in
degenerate and mixed with a continuum of states. For in-
stance, an attractive impurity or a quantum dot (QD) is
coupled to a quasi-one-dimensional (quasi-1D) transport
channel,'™2" a QD is placed on a one-dimensional (1D) or
quasi-1D ring connected to two leads,">** etc. In the case
of a quasi-1D transport channel with an attractive impurity,
some of the quasibound levels are degenerate, with the con-
tinuums of states due to the subbands below (e.g., see Ref.
18), and therefore an electron can either seep through the
impurity level or bypass it via the band continuums. [t is
noted that no Fano resonance can be found in singly con-
nected 1D systems,'® since resonant and nonresonant pro-
Cesses can never coexist in transport due to the topology. In
the above-mentioned cases, the problem is essentially the
problem of a single impurity that is embedded into a con-
tinuum of states, which was well studied by Fano.? Never-
theless, similar asymmetric Fano profiles are also
theoretically® =2 and experimentally®® seen in the transport
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in systems containing only open resonant cavities. Further-
more, in theoretical study, the width of the resonance can be
sensitive to the potential in the resonant cavity and can even
be tuned to approach zero. In those cases, the problem would
not be readily understandable in the conventional scheme
due to Fano.? By this, we mean a closed cavity or dot by a
cell isolated by repulsive potential barriers or constrictions in
the channels, else it is an open resonant cavity.

In order to gain understanding of the Fano profile in a
transport that has unusual sharpness at no well-defined qua-
sibound state, we explore the resonance in a 1D, but doubly
connected system at zero magnetic field. The system has a
topology the same as that of the frequently studied
Aharonov-Bohm ring, with!221-28 and without™ a QD on one
of the arms, but we have focused on the case in which the
potential defines only open resonant cavities in the ring. The
choice of this system for our study 1s based on the fact that
this is the simplest system that shows Fano resonance at no
well-defined quasibound state, and the resenance width can
also be sensitively tuned by the potential and can become
infinitely sharp or collapse. It is hoped that due to the sim-
plicity of this system more of the nature of the occurrence of
the resonance beyond the conventional Fano’s scheme? can
be revealed. We have found that when the system parameters
are commensurate, the Fano profiles at some energies can
become mfinitesimally sharp. We also have ventured to relate
the commensurability to the constructive interference along
the paths. The system parameters are, e.g., the location of the
impurity potential and the arm lengths of the ring. There are
also theoretical reports of the collapse of the Fano
resonance’ >+ analogous to ours, but these reports are ei-
ther on more complicated systems” > or the collapsing be-
havior is not discussed.™

In Sec. II we present our formulation, and in Sec. III we
present and discuss the results in several cases. We focus on
systems with only repulsive and pointlike & potentials. The
idealized &-potential model makes sense at the long-
wavelength regime, and it also facilitates analytical analyses.
Two aspects of the systems, open resonant cavity and com-
mensurate system parameters, are highlighted, and the occur-

@2005 The American Physical Society
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x=0 1
x=L,
x=L,

x=x=x=0

FIG. 1. The system we consider is a ring (with arms labeled by
1 and 2) connected to two leads (labeled by 0 and 3). The boxes on
the ring labeled by M, represent the scatterers on the arms. A
coodinate system x; is defined for the line segment labeled by i (i
=0, 1, 2, and 3). While the arrows denote the positive direction of
the coordinates. the right Y junction is defined at x;=x,=x3=0, and
the left Y junction is at xy=0, x\=L,, and x,=L,.

rence and collapse of the Fano resonance are investigated. In
the last section, Sec. IV, we give some remarks on our find-
ngs.

II. FORMULATION

We consider the ballistic transport through a two-lead ring
as shown in Fig. 1. Both the ring and leads are considered as
1D, an approximation that is valid when the transverse di-
mension of the channel 1s narrow enough to allow only the
lowest subband to be involved in the transport process. On
gach arm of the ring we include a scattering potential that is
described by a transfer matrix M;, where i=1,2 labels the
arm, and the wave functions on the opposite sides of a scat-
terer are connected by M, At the three-leg junctions or Y
junctions, the wave functions on the branches are connected
via the Griffith’s boundary condition™ which we will de-
scribe shortly. The overall wave function can thus be found
and the transmission probability be obtained.

At a given energy E(>0), the wave function on each line
segment in Fig. 1 can be expanded by the forward and back-

ward traveling waves™743 a5
b=Ae™iL Be™i i=0,1,2,and 3,
@y =Ale™ip Ble™i i=1and 2, (1)

where ¢y 5 are the wave functions before the scatterers and
& 5 are after the scatterers, k=+2mE/#%, and m is the effec-
tive mass of the traveling particle. The lengths of the arms of
the ring are chosen as L, , and the coordinate systems are as
defined in Fig. 1. Across the scatterers, the continuity of the
wave functions and their derivatives can be written as

A |4
{BJ'M‘[BJ )

and
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B,| B

At the Y junctions the wave function continuity
requirement™ and Griffith’s unitarity boundary condition®
demand that the wave functions are jointed at the left Y
Junction by

. (3)

Ag + Bg = Aleiﬂ'l + Ble_iﬂ'l . (4)
Ag+By=Ar ™24 By, (5)

(Ao - Bo) + (A1 — Be™ 1) + (Ape™2 - Bre~*2) = 0,

(6)
and at the right Y junction by
As+ Bi=A[+By, (7)
Ay + By=A;+B;, (8)
(A3 =B3) + (A - B))+(A;-By)=0. (%)

The Griffith’s boundary condition guarantees the net current
flowing into a junction is zero. Since we consider particles
incident from the left. we set Ay=1 and B;=0. Equations
(2)—(9) then constitute an equation set with ten linear equa-
tions and ten unknowns. It can then be solved, and the trans-
mission probability T= |Ag|2 be found. The transmission am-
plitude A; is found to be

C= Efkll(h_.lil _ I\-Ii?} n F—i}h(l\{[fl _ I‘_IEQ)
+(Ly = Ly and M, — M),

1.
D=1- ge'ml*iﬂ’(rﬂ I - 3MEME oMM
3 : q q a q a
+ Ee“j’u“l’l](h'l]lh'lgl —3MPME MM

l r il ) 7 bl .l
+ = LR M) VE + MP) - 4aM M
4 1 1 HM;3 7 1 M3

+(L; < Ly and My < M,), (10)

where we have used the fact that det M;=1 (see, e.g., the
discussion in Ref. 46). As the analytic expressions are cum-
bersome, most of the time we will proceed with our discus-
sion by plotting out the numerical values only.

III. NUMERICAL RESULT

The behaviors of the transmission probability in some
representative cases are studied in the following sections. We
will focus on the dip and peak-dip profiles in the spectra,
particularly, how they can occur or collapse when the system
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parameters are tuned. Mathematically, we will see that the
occurrence and collapse are related to the zeroes in the nu-
merator C and denominator I) in the transmission amplitude
A3 in Eq. (10). In turn, these zeroes are seen to be related to
the standing-wave resonance (SWR) and two-path interfer-
ence (2PI) in the arms of the ring.

PHYSICAL REVIEW B 72, 165307 (2005)

A. Unequal arm lengths

In this section we investigate the case i which the arms
and the leads are all at equipotential, but the arms have dif-
ferent lengths of L; and L,. This setup is described by M,
=M;=1 and the transmission amplitude A; in Eq. (10)
becomes

i(sin kL + sin kL,)

A=

Total reflection may occur when the numerator in Eq. (11)
vanishes. This requires k(L;-L;)=(odd integer) X & or
k(L +L;)=(even integer) X 7. The former equation is easily
seen to correspond to a perfectly destructive 2PI between the
arms. The latter equation is also easily seen to correspond to
a standing wave on an isclated ring with circumference L
+L,. Thus it is seen that though the ring 1s coupled to the
leads, the standing-wave states in the ring may still play a
role in the transport through the ring. Note also that the SWR
occurs without a red shift, in contrary to what one might
expect in an open system. For a wave number k& which cor-
responds to a perfectly destructive 2PI, the denominator in
Eq. (11) is always found to be nonvanishing, and therefore
there 1s always a total reflection under this condition. Fora &
i the SWR condition, the denominator in Eq. (11} vanishes
if it happens that k(L -L,)=(even integer) X, which is the
condition for a perfectly constructive 2Pl between the two
arms, and this can happen when L,/L; is a rational number.
When a k& meets the perfectly constructive 2PI condition, the
first order zeroes in the numerator and denominator in Eq.
{11) cancel each other and give a nonvanishing transmission
prebability, which is unity. In short, when a k meets the SWR
condition in the ring, a total reflection occurs when the k&
does not simultaneously meet a perfectly constructive 2PI
condition. Otherwise, there is a perfect transmission. On the
other hand, a total reflection always occurs at perfectly de-
structive 2PL The above findings can be summarized into the
following mathematical statements. Given a [,/L;, a total
reflection must occur at kL;=(odd integer) X ar(1 —Lo/L))™
{which corresponds to a perfectly destructive 2PI). A total
reflection can also occur at kL, =2na(1+Ly/L,)™!, where n
is an integer {which corresponds to a SWR in the ring), if
2n(14L,/L )" is not an integer. Otherwise, there is a perfect
transmission. Note that 2n(1+L,/L,)™" is always an integer
when Li=L; or L,=0.

The above findings can be illustrated by concrete ex-
amples. Figure 2 shows the wave number dependence of the
transmission probability for the case of almost equal arm
lengths. It is seen that at equal arm lengths, though the trans-
mission probability varies with the wave number, only total
transmission is possible and there is no total reflection. This
is because in any case there is no phase difference between

1 .
1 —exp[-ik(L,+Ly)]- Z[COS k(L) +Ly)—cosk(L, - L,)]

(11)

the two paths and hence there 1s always a perfectly construc-
tive 2P1. But at unequal arm lengths, total reflection is also
seen to occur. The dips in the transmission probability*? can
be very sharp. At the limit L, =15, the dips vanish by becom-
ing infinitely sharp but not by recovering the transmission
from zero. The spectrum does not progressively turn compli-
cated when L,/L, is detuned from 1. It becomes relatively
neat when L and L, are commensurate, 1.e., when L,/L 15 a
simple rational number and some of the resonance dips col-
lapse. For instance, the case of L,/L;~2/3 is depicted in
Fig. 3. In Fig. 3 we see equally spaced sharper dips at kL,
=2nw(1+Ly/L,)" [provided that 2n(1+L,/L,)™" is not an
integer] due to the SWR in the ring. In addition, we also see
equally spaced but smoother dips at kL,=(odd integer)
X a(1=Lo/L))™" due to the destructive 2PI. The 2PI effect
has also resulted in a pronounced envelope in the transmis-
sion probability. The dips due to the SWR at kL;(2a)™" ~3
and 6 collapse when L,/ L, is exactly equal to 2/3, i.e., when
KL/ w=2n(1+Ly/L,)" is exactly an integer. Interestingly,
though the SWR results in transmission dips, around the dips
the transmission is actually enhanced by the local minima of
D) [see Fig. 2(d)]. The behaviors of the transmission prob-
ability is thus seen to be related to the interplay between the
SWR and 2PL.

We have interpreted the behaviors of the numerator C and
denominator 1) in Eq. (10) by the notions of SWR and 2PL. A
closer look into the mathematical structures of them is also
iteresting. The very different natures of C and D) can ac-
count for the abrupt occurrence and collapse of the transmis-
sion dips. Owing to the symmetry in the transfer matrices
M!'=(M?)" and M*=(M?!)", i=1.2 (see. e.g., Ref. 46), C
has always a constant phase regardless of the wave number
and potential on the ring. Therefore, this phase can be peeled
off and C will behave like a real-valued number; whereas I
has a phase that depends on the wave number and potential,
and it is genuinely a complex-valued number. Therefore,
when a system parameter is slightly changed, the zeroes in C
will only be slightly shifted and will remain, whereas zeroes
in [} can be abruptly lifted since they require both the real
and imaginary parts to vanish simultaneously, which is a
much more stringent condition. A nonzero transmission at
delicately matched zerces of C and D, e.g., the nonzero
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FIG. 2. (Color online) This figure shows that dips appear in the
transmission probability T when L) and L, are slightly unequal. We
have plotted T versus the dimensionless wave number kL, /{2). for
the case of no potential on the ring, and arm-length ratios L,/L,
=1, 0.9, and 0.8 [from (a) o (c)]. To illustrate the mathematical
reason behind the formation of the transmission zeroes, the square
roots of the magnitudes of the numerator C and denominator D [see
Eq. (10)] of the transmission amplitude are plotted [in (d)] for the
case of Ly/L)=08. The zerces in C are seen to remain but the
zeroes in I (exist when Ly=L,) are lifled. and hence give rise to
T=0.

transmission at kL,=nw in the case of Li=L,, is kind of
“accidental.” It is at a point of delicately matched SWR and
perfectly constructive 2PL It is very fragile and a slight de-
tuning of an arm length can create a transmission zero (see
Fig. 2). In later sections we will see that such behaviors of C
and D are rather general and can abruptly create a Fano
profile with a peak-dip pair when, e.g., the location of an
impurity on the ring is shifted.

The above observation of the detuned zeroes in the nu-
merator C and denominator D immediately implies that the
numerical results can be casted into the Fano profile expres-
sion, and the dip’s width can be explicitly related to the
detuning from perfectly constructive 2Pl To be self-
contained, we first give a very brief review of the Fano reso-
nance. Consider a physical process which simultaneously in-
volves a nonresonant part and a resonant part at energy s
=0). Let the nonresonant part be energy independent and de-
scribed by a complex-valued amplitude f5, and the resonant
part be described by a complex-valued amplitude r=za/(=
+ia), where 7 is a complex-valued number, and @ is a real-
valued number characterizing the width of the resonant pro-
cess. The total transition amplitude f,=ty+1,=f(e+ga)/(e
+ia), where g=z/tp+i is the Fano parameter, results in a
total transition probability
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FIG. 3. For the case of no potential on the ring. the dips in the
transmission probability T at some wave numbers are seen 1o be-
come infinitely sharp or collapse when the arm lengths are com-
mensurate. This figure shows T versus the dimensionless wave
number kL/(27), for the case of no potential on the ring, and
arm-length ratios L,/L;=0.65, 2/3, and 0.68 [from {a) to (c)]. The
transmission dips at kL, /(2@)~ 3 and 6 are seen o close at the
limit L,/L;=2/3. Note also the transmission zeroes at kL,/(2w)
~1.5 and 4.5, and the overall envelope due to the two-path
interference.

e +qal®

tot—|0| T (12)

Roughly speaking, in the case of @0 and g #0, T, gives a
dip (peak) when the numerator (denominator) in Eq. {12) is
close to or equal to zero. When a#0 and g=0, T, has only
a dip at e=0. The case of a#0 and Im g=0 is discussed
comprehensively in Fano’s original paper. In the case of a
—0, the numerator and denominator in f,, become exact
zeroes at £=0), but they are first order zeroes and cancel each
other to give a finite transition probability. This is actually
the case of commensurate arm lengths we have discussed.
Since we know that a SWER dip can occur at k=k,,, where k,,
is defined by k,(L,+L:)=2mm, and m i1s an integer, we
expand the transmission amplitude Ay around a dip by letting
F={k—k,)(L,+L;). Since we also know that a dip appears
when k,(L,—L;)# 2nm, where n is an integer, we define a
detuning A from a perfectly constructive 2PI by k,(L-La)
=2nmw+A, where A is within [-7, +7] (note that given an
m, n is determined). Then we expand A at the vicinity of a
dip when both the dimensionless parameters & and A are
small. We have expanded Eq. (11) for the case of max(|8)
~|A| and |A| <7 We expand the numerator to the third or-
der and the denominator to the second order, and we obtain
an approximate transmission amplitude
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1 1L-L, 1 L+03

Ay=(=1)™| | ——A2- Ad-
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3 4L +L, 6(L+1;)°

The fraction part can be roughly viewed as a g=0 Fano
profile with a &-dependent width, and the other part can be
viewed as a slow-varying envelope function. It is seen that
within this range of & the line shape is not in the usual Fano
profile. But if we further restrict the range of & to an order of
magnitude smaller than A, i.e., max(|d]) ~ A% Eq. (13) can
be simplified to

e
A= 1= (14)
d+i—

8

1.e., near the minimum of a dip due to a SWR, the transmis-
sion probability profile is in the form of the g=0 Fano pro-
file. Note that the parameter & is a dimensionless wave num-
ber but not energy. When the SWR approaches a perfectly
constructive 2PI (i.e., A approaches zera), the width of the
dip (—A?) approaches zero and the dip vanishes. There are a
few noteworthy points here. If one adopts the conventional
understanding of the Fano profile with the notions of quasi-
bound states and their lifetimes, the “lifetimes” of the “qua-
sibound states” in our case might seem can be dramatically
tuned by a slight tuning of an arm length. Moreover, the two
arms of the ring are all the same except for their lengths, the
SWR at k(L;+L;)=2m7 also occurs in the entire ring, and
there is no obvious distinction between the “resonant” and
“nonresonant” transition paths in our case.

On the other hand, we also have investigated the trans-
mission amplitude A; for the case of Ly=L,=L, in the com-

plex wave number k plane. This is a common way o inves-
tigate the nature of the quasibound states on the transition
paths. In this special case of Ly=L,=L, we can readily find

poles at kL=nw—iIn 3, where n is an integer. Though the
Rek does correspond to a standing wave in an isolated ring
with circumference 2L, the Im k is large and comparable to

the spacing in the Re k. This indicates that these “quasi-
bound” states are vaguely defined and this is in congruence
with the fact that the ring is strongly coupled to the leads. It
15 therefore inappropriate to view these states as the quasi-
bound states in Fano’s original formulation.? But in contrary,
transmission dips are seen and can be very sharp as soon as
Ly # L, As we will see in the later sections, these standing-
wave states are also related to the formation of the peak-dip
pairs in the ransmission probability when an impurity poten-
tial is added. It is thus seen that the conventional Fano reso-
nance scheme with the notions of nonresonant and resonant
transition paths, and lifetimes of the quasibound states, might
be hard to provide a consistent understanding basis of the

(13)

S+iy —AT4— AS—

1 1L-L, 1 (LI—LE)E
8 4L1+L2 8

L1+L2

above results of equal arm lengths and slightly unequal arm
lengths. This reveals the following logic. Though it is true
that when there are resonant and nonresonant paths in a tran-
sition process there will be a Fano profile; the converse,
when there is a Fano profile there are resonant and nonreso-
nant transition paths in the transition process, may not be
always true. In other words, though the mathematical form of
the resulting transition probabilities can be unanimously in
the Fano profile form as in Eq. {12), the underlying physical
contents could be quite different.

B. With impurities

This section considers the case with a presence of point
impurities on the ring. An impurity is described by a Dirac-&
function potential, and this model should apply to the case in
which the extensions of the potentials are small compared
with the wavelengths of the incident particles and the arm
lengths of the ring. We first consider the case in which an
impurity is embedded into arm 1, by adding the potential
V,8(x;-X,). where V| is the strength of the impurity poten-
tial and X is the location of the impurity in coordinate x; on
arm 1. The corresponding transfer matrix is

- imV) i imV)
M Wk Wk 15)
= oy, imVy imVy (
e s
hk hik

Henceforth we will use the dimensionless parameter v
=mLV,/ (27#%) to characterize the impurity strength. It is
noted that the transfer matrix has the symmetry M}l
=(Mf2)* and Mizz(l\-lfl)*. Arm 2 has no potential added and
hence M,= 1. A few more words on how to relate the dimen-
stonless impurity strength vy to the experiments are worth-
while. A potential with a small spatial extension a and a

magnitude of ¥, can be approximated by a & potential with
Vi=aV,, and hence v,=mL,V,a/ (2a%"). For instance, if we
have m=mgua,=0.067 e, L1=3 pm, and a=0.03 gm,

vy =1 corresponds to V,=0.08 meV.

Figure 4 shows how the asymmetric Fano profile arises
when the strength of a repulsive impurity on arm 1 grows. In
Fig. 4 we have chosen Li=L; and X,/L;=0.3. The peak-dip
prefile 1s in contrast with the mere dip profile in the no-
impurity case in Sec. IIT A, but both of them are seen to
develop from zero widths. Mathematically the dips are also
due to the lift of zeroes in the denominator IJ [see Fig. 4(d)].
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FIG. 4. (Color online) Asymmetric Fano profiles are seen in the
transmission probability T when there is an impurity potential on
the ring. We have plotted T versus the dimensionless wave number
KL,/ (2} for the cases of Ly=L,. an arbitrarily chosen impurity
location X /L;=0.3, and increasing potential strengths p;=0.2. 0.8,
and 10 {cutoff limit) [from (a) to {c)] The Fano profiles are seen to
evolve from the v;=0 limit by increasing width. The square roots of
the magnitudes of the numerator C and denominator D [see Eqg.
{10)] of the transmission amplitude are also plotted [in (d)] for the
case of vy =0.8 to illustrate how the Fano profiles are formed.

It is noted that the dips are not necessarily at the eigenener-
gies of an isolated ring with a point impurity, since all the
locations of the impurity and Y junctions have substantial
effects on the standing waves in the ring. At the strong im-
purity limit [Fig. 4(c)]. the zero transmission dips are wide
and can also be analytically found to locate at kX, =integer
X or k(L =X, )=integer X a. This agrees with the result of
the transport through a 1D wire with a stub.® An arm is
essentially cut off when the impurity on it is very strong, and
the arrangement of our system for Fig. 4(c) is equivalent to a
1D wire with two stubs of lengths X} and L;-X|. There will
be zero transmission when the length of any one of the stubs
just matches an integral number of half-wavelengths.
Similar to the collapse of the dip profile in Sec. Il A, the
peak-dip profile here can also collapse. In Fig. 5 we have
illustrated the phenomenon by showing the transmission
probability for the case in which the impurity is on a special
location on an arm. We have chosen Lj=L, and X,/L,
= 1/3, and the resonant profiles at kL;/(27)=1.5 and 3 are
seen (o collapse when X,/L;=1/3. Though the formidable
expressions of C and D forbid a detailed analytical analysis,
it can be readily verified that at a & that simultaneously sat-
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FIG. 5. Even al appreciable impurity strength, the Fano profiles
in the transmission probability T at some wave numbers can col-
lapse when the impurity is located commensurately. To illustrate
this, we have plotted T versus the dimensionless wave number
kL,/(2) for the case of Lj=L,. impurity strength p;=2. and im-
purity locations X, /L, =032, 1/3, and 0.35 [from (a) to {c)]. The
Fano profiles at kL,/(27)~ 1.5 and 3 are seen to collapse when the
impurity is located at X,/L;=1/3.

isfies kL =n@, kLy=nym, kX|=n|w, where n, ny, and n|
are integers, and n;+n, is even [ie., k(L;+L,)=integer
X 2a), both € and D vanish but they give a nonzero trans-
mission amplitude Ay=C/D=(=1)"[1+imV,/(A*k)]™". The
above situation can arise when X /L, and L,/L; are simple
rational numbers. At such a mathematically “accidental”
nonzero transmission, it is expected that a slight detuning of
X| can generate a transmission zero such as in those cases
discussed in Sec. Il A. Note that the above-mentioned con-
ditions for k imply that k{(L;—L;)=integer X 2. Thus these
conditions are seen to be similar to those in Sec. Il A, and as
we will see, the conditions for the collapse of the profiles in
the two impurity case is also similar.

We can also obtain an approximate analytical expression
for the transmission amplitude at the vicinity of a peak-dip
profile when the impurity is at a location such that the profile
is very sharp and about to collapse. The relationship between
the resonance width and the detuning of the impurity loca-
tion will then be more explicit. In our previous discussion,
we have seen that if the ratios Lo/ L and X,/L, are rational,
the peak-dip profile at the wave number k; has a zero width,
where kg is defined by koL, =nm. kgLa=nym, n|+mn; is even,
and koX=n|m. We therefore can make an expansion around
kg for the case of a small detuning of the impurity location
and the resonance has a very small width. As before, we let
kogLi=nym, koLy=nym, and my+n; is even, but now we let
koX =njw+A. Defining a dimensionless wave number &
=(k—fko)(L,+L,). considering the regime of max(|8])~ A?
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and [A| <€, and also assumming that o =v,/[(n)+n3)7] is
at most of the order of 1, we can expand the numerator C and
denominator D to obtain an approximate transmission ampli-
tude A;. To the lowest nonvanishing order,

(-1)m 5-20,A
Ay = — — a2 P (16)
1+ml{ zvla.J 26%A
T | TR

The zero of the numerator is seen to occur at §=27,A%, while
the zero of the real part of the denominator is seen to occur at
S:Eﬁlﬁzf(Hﬁi). The locations of the two zeroes do not
coincide as long as ) and A are nonzero, and such situation
of detuned zero locations corresponds to the case of a non-
zero Fano parameter g. Since [l+f,7f):; 1, when v, >0 (the
impurity is repulsive), the peak appears to precede the dip; if
i1} <0 (the impurity is attractive), the order of appearance of
the peak and dip is swapped. This property 1s probably us-
able in the design of mesoscopic spin filters. For instance, if
the impurity potential is spin dependent, e.g., it is provided
by a magnetic impurity or magnetic scanning tunneling mi-
croscopic fip, the ransmission dip of the spin up (down)
electrons may coincide with the transmission peak of the
spin down (up) electrons. Therefore, at this incident energy,
the device is a spin filter. The overall width of the resonance
depends neither on the sign of the impurity potential (7)) nor
the detuning (A).

What we have learnt up to now is that the existence of
SWE in the ring provides only the possibility of dip or peak-
dip resonance in the transmission. Eventually, whether the
resonance will occur or not is contingent on the commensu-
rability of the system parameters. In the case of commensu-
rate system parameters, some would-be dips which meet the
condition of perfectly constructive 2Pl wall have infinitely
small widths, and the resonances are removed. In contrast,
the conventional Fano resonance? and Breit-Wigner (BW)®
resonance are robust against slight tuning of the system pa-
ramefers.

The case of two impurities on the ring resembles very
much the cases of no impurity and one impurity. The Fano
profile also collapses when it meets the perfectly construc-
tive 2PI condition. We will consider the case of each arm
with one impurity embedded. The impurity scatterings are
described by M and M., where M is the same as that in
Eq. (15), and M; is obtained from M; by the substitution
X=X,y and V| =V, Vi{i=1.2) is the strength of an impu-
rity, and X; is the location of an impurity in the coordinate x;
on arm . In such an arrangement, the two leads are always
separated by the impurities. When both impurities are away
from the Y junctions, the potential defines an open resonant
cavity in the ring but not a closed dot. We will use the di-
mensionless parameter v;=mL,V(2mh>)™" to characterize
the strengths of the impurity potentials {note that we have
used L, in the definitions of both v and v,).

Figure 6 shows the transmission probability for the cases
of symmetric and asymmetric potentials on the arms. For a
symmetric arrangement of the arms, ie., v;=v,, X,=X,. and
L,=L,, only broad structures are seen. But when the poten-
tials on the arms are asymmetric, e.g., either X, # X, or v,

PHYSICAL REVIEW B 72. 165307 (2005)

(a) XJ=X/L=0.3
v,=v=1

o

{b) XJL=X]L=03
v.=1
T '
05] %2
|
0
()
X /L=0.3
05| %/L=0.35
0 T -
0 1 2 3
kL, /(27)

FIG. 6. Fano profiles are seen in the transmission probability T
when the symmetricity of the two arms are disturbed. To illustrate
this, we have plotted T wversus the dimensionless wave number
KL, /(2m) for the case of L,=L,=L, and two impurities with
strengths v 5 at X; 5. The case of symmetric arms are illustrated by
(a) X/ L=X,/L=03 and p,=p,=1: whereas the case of asymmetric
impurity strengths are illustrated by (b) X,/L=X,/L=03, v,=1,
and v,=2: and the case of asymmetric impurity locations are illus-
trated by (c) py=va=1, X;/L=03, and X,/L=0.35.

#v,, Fano profiles are seen. The almost-perfect ransmission
peaks in the Fano profiles at low energies are rather surpris-
ing since the two leads are separated by the & potentials on
both arms. In a 1D system, there is no perfect transmission
through a single &-potential barrier at finite energy, whereas
perfect transmission through a double &potential barrier at
finite energy is possible, since the barriers create quasibound
states in between them and BW resonant tunneling can take
place. In our cases for Fig. 6, no region between the leads is
enclosed by the repulsive potentials and therefore one usu-
ally does not expect any perfect transmission at finite energy.
[t is thus seen that the doubly connected 1D system behaves
differently from the singly connected 1D system. The fact
that the Fano profile appears only at asymmetric potentials
on the arms indicates that the profiles are intimately related
to the constructive 2Pl between the arms. This is similar to
the case in which L, =L, but no potential is added onto the
arms studied i Fig. 2.

The collapse of the Fano profile also occurs in other
cases, particularly in cases where the system parameters are
commensurate. Figure 7 illustrates the collapse at a particular
wave number using a system with L,/L=2/3, X|/L,=1/3,
and X5/ Ly~ 1/2. To work out rigorously all the wave num-
bers at which the collapse can occur would be difficult due to
the complexity of C and D [see Eq. (10)]. but an ansatz
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FIG. 7. Collapse of the Fano profile can also occur at more
complicated system arrangements, as long as the system parameters
are commensurate. For instance, we have plotied the transmission
probability T versus the dimensionless wave number kL, /(2#) for
the case in which L,/L,=2/3 and an impurity is placed on each
arm. The strengths of the impurities on arms 1 and 2 are arbitrarily
chosen as vy=1 and vy= 1.3 respectively. The location of the impu-
rity on arm 1 is chosen as X, /Ly=1/3, while the location of the
impurity on arm 2 is chosen as X5/L,=048, 1/2, and 0.52 [from (a)
to (c)]. We note that the Fano profile at kL, /(2#)~3 collapses at
approaching the commensurate location X,/L,=1/2.

similar to that in Sec. IIl B is seen to work well. It can be
verified by direct substitution that at a k& which simulta-
neously meets the conditions kL;=nm, kXI;:nr-'*n', where n;
and n; are integers (i=1.2), and n+ny is even [Le., k(L
+Ls)=(even integer) X 7], both C and [} vanish, but the
transmission  amplitude  A;=C/D=(=1y"1[1+im(V,+V4)/
(£2K)]! is nonzero. Due to this mathematical structure, a
zero fransmission is anticipated at this & when any one of the
system parameters, the impurity locations or arm lengths, 1s
detuned. An illustration of the above mathematics is given in
Fig. 7, and the resonance is seen to be a peak-dip pair. Since
the above conditions for k also imply k(L,-L;)=integer
X 2ar, which is a perfectly constructive 2PI, this again sug-
gests that the phenomenon is related to the SWR and 2Pl on
the arms.

IV. CONCLUDING REMARKS

We have studied in this paper the ballistic transport
through a 1D ring in the regime of a comparable particle’s
wavelength and a ring’s dimension. In all cases, repulsive &
potentials are used, and no two & potentials are placed on the
same arm so that they do not create quasibound states. Nev-
ertheless, a Fano profile can still be found and is shown to be
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related to the standing-wave states in the ring. The Fano
profiles encountered in this paper grow or collapse by chang-
ing their widths, but not by changing their dips’ depths or
peaks’ heights. We also have checked the case of attractive
impurity potentials, and we have found that the results are
qualitatively the same.*

In our study, several aspects of the Fano resonance are
examined. Firstly, well-defined quasibound states which are
weakly coupled to a continuum of states may not be neces-
sary for the observation of the resonance. In other words,
though the simultaneous presence of resonant and nonreso-
nant processes in a physical process results in a Fano
profile.” it might not be true to say that the observation of a
Fano profile always implies the simultaneous presence of
resonant and nonresonant processes in the underlying mecha-
nism. Moreover, in our study the resonances are identified as
the standing waves on the entire ring but not on only one of
the arms (paths). Hence there is no clear distinction between
the “resonant” and “nonresonant™ paths. Secondly, commen-
surability is an important factor in the occurrence of the Fano
profile. When the system parameters are commensurate, the
Fano profiles at some energies can disappear by collapsing
their widths to zero. Hence the presence of standing-wave
resonance in the ring does not guarantee the occurrence of
the Fano profile. Since the commensurability is found to be
related to the constructive 2Pl between the two arms, the
width of the profile is seen to be controlled by the 2PI. While
collapse of the Fano profile is also seen in the theoretical
investigations of more complicated systems,”>* in the study
of our exceedingly simple system, the collapse can be further
seen as a result of the constructive 2PI. The abrupt occurence
or collapse of the profile also indicates that the problem
might not be equivalent to the conventional one discussed by
Fano,” since a slight change in the system should not create
or remove any quasibound states, or change their lifetimes
dramatically. In our case, the prominent behaviors of the
transmission probability are seen to be related to the SWR
and 2PI. How the understanding of this simple system can be
related or extended to the case of more complicated systems
will be an interesting subject.

The sensitivity of the Fano profile to the device geometry
and spatial details of the potential may imply that a naive
tight-binding formulation of the quantum coherent device is
not always viable. For instance, if a potential barrier is sim-
ply modeled by a hopping integral, or a resonance state is
simply modeled by a zero-dimensional state, the spatial in-
formation of the device will be lost, and the consequences of
the commensurability of the system parameters will be gone.
‘We point out that such sensitivity of the resonance might be
useful in the design of mesoscopic electrical switches, with
the impurity potential provided by, e.g.. a movable scanning
tunneling microscopic tip.

We have left out some issues. For instance, the finite
width of the transport channel has not been considered. We
believe the Fano profile will be still present (e.g., see a re-
lated study in Ref. 30), and the question is just how it will be
reshaped. Another issue is how the Fano profile will be af-
fected by the inelastic dephasing process along the transport
channel. These issues will be deferred to a later project.
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Connecting wave functions at a three-leg junction of one-dimensional channels
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We propose a scheme to connect the wave functions on different one-dimensional branches of a three-leg
junction (¥ junction). Our scheme differs from that due to Griffith [Trans. Faraday Soc. 49, 345 (1953)] in the
respect that ours can model the difference in the widths of the quasi-one-dimensional channels in different
systems. We test our scheme by comparing results from a doubly connected one-dimensional system and a
related quasi-one-dimensicnal system, and we find a good agreement. Therefore our scheme may be useful in
the construction of one-dimensional effective models out of (multiply connected) quasi-one-dimensional

syslems.

DOL 10.1103/PhysRevB.73.035307

L INTRODUCTION

For a system which comprises quasi-one-dimensional
{Q1D) channels, when only the low-energy regime at near
the first subband bottom is considered, it can usually be mod-
eled by a one-dimensional (1D) system. When the system 1s
multiply connected and consists of multileg junctions, the
wave functions on the branches are usually connected at the
junctions by the Griffith scheme,'* the Shapiro scheme,>”
or similar schemes. Since such formulations greatly reduce
the calculational effort of complicated multiply connected
mesoscopic systems, they have been used widely in the lit-
erature. For example, see Refs. 8-19 and the references
therein. However, arguments which lead to these connecting
schemes are kinematical,!7 and it is not clear what kind of
junction in practice they describe. Moreover, a comparison
between the results of these schemes and that of the exact
calculation of Q1D systems has never been done. It is the
purpose of this paper to make a comparison between the
Griffith result, the Q1D result, and the result due to a scheme
we propose in this paper. We find that for clean junctions of
Q1D channels, the Griffith result is not even qualitatively in
accord with the exact result. The scheme we derive gives a
result that compares much better with the exact result.

At a N-leg junction of 1D channels, the wave function
continuity condition is a requirement that must be respected.
Besides, the Griffith scheme!™* demands that the sum of the
derivatives of the wave functions on the different branches at
the junction is zero, 1.e.,

-0, (1)

.Mz
B

5
=t

i

where the directions of the coordinates are defined either
diverging from or converging to the junction. This is the
simplest way to impose the unitarity condition of no net
current flows into the junction, ie., Z; Re lﬁr:(—i& i ) =0.
When there is a magnetic field, the requirement is rephrased
as the sum of the covariant derivatives is zero, lLe.,
Zi(al &x,-—r'eAy)l‘b‘:O, where A"! is the component of the vec-
tor potential parallel to branch i at the junction. On the other
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hand, the Shapiro scheme™” directly demands that the scat-
tering matrix connecting the in-going and out-going waves at
the junction be unitary, and a general matrix with free pa-
rameters is written down. When the spin degree of freedom
is considered, these schemes are straightforwardly applied to
each spin channel. !> These schemes and the like have been
taken for granted and used widely in the literature.

II. FORMULATIONS AND MODELS

We approach the problem from another point of view. For
a Q1D system with equal-width channels (the “width” is an
ill-defined quantity in snaking channels but nevertheless we
may talk about it when the curvatures are small enough), we
may approximate a three-leg junction (¥ junction) and its
branches [e.g., see Fig. 1(a)] by a tight-binding (TB) model
as shown in Fig. 1(b).”

The tight-binding model is described by a second quan-
tized Hamiltonian

— i
H_g_‘,cinﬁc,-, (2)
i
where ¢; 1s the annihilation operator of a spinless particle on
site i, and Ji; is a matrix element which is complex in gen-

(a) [{+)]

=

= w e

FIG. 1. (a) The original ¥ junction of Q1D channels considered
in this paper. {b) the reformulated ¥ junction of tight-binding chan-
nels, and (¢} the effective ¥ junction of 1D channels affiliated with
the Griffith or our connection scheme.

@2006 The American Physical Society
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eral. The element /; is called a hopping when i#j, and an
onsite potential when i=j. Defining a basis set {]i)} by |i}
ECHO}, where |0) is the no-particle state, one can write the
time-independent Schrédinger equation H| )= E|¢), where E
15 the energy of the particle, into the form

2 (hy— E8)9,=0. (3)
J

where !I'iE{j |} is the TB wave function at site j. We define
that the hopping exists only between nearest-neighbor sites,
and is denoted by —i. The onsite potential at site i is denoted
by Vi+21.

The magnitude of the hopping —t is obtained by the fol-
lowing argument. Let a Q1D channel be approximated by a
finite-difference square grid, with three grid-points across the
channel, one at the center and each edge. Then the distance
between the grid-points will be w/2, where w is the width
of the channel, and the hopping in the finite-difference time-
independent Schrédinger equation® will be —r=-2#%/
(mw?). We will assume the same hopping in our TB formu-
lation.

Away from the junction, the TB tme-independent
Schrédinger equation reads”!

=t =) + (- i) + (Vi ENi =0, (4)

where E is the energy. In the long-wavelength limit it
reduces, as it should, to the 1D second order differential
time-independent Schridinger equation, —[ﬁ:f(gm}]é}iq{r(x)
+[V{x) = E]{x)=0.

At a Y junction, the TB time-independent Schrédinger
equation reads

_ _ - E-Vy+it-

(= o) + (o — ) + (s — tfig) + f'ﬁ‘bﬂl (5)
where the subscript “07 denotes the site at the junction, and
“1,7 #2." and *3” denote the sites on the branches nearest to
the site at the junction [i.e., in Eq. (3), take i=0, and j=0, I,
2, and 3]. [t is seen that the Griffith scheme formulated in Eq.
(1) is recovered only when E-Vy+t=0 at the junction. It is
reasonable to set E=0 here since we are considering energies
at near the band bottom and E<€t. But one still requires V;
=t to send the last term in Eq. (5) to zero. In other words, the
Griffith connection scheme'™ actually deseribes a ¥ junction
of Q1D channels with a repulsive potential with a strength of
the order of f, whereas in this paper we propose a connection
scheme in the long-wavelength limit for a clean ¥ junction
[ie., Vu=0 in Eq. (5)] of Q1D channels. At a ¥ junction of
1D channels [see Fig. 1{c)], we propose

3

.9
S8, 2y, ©)

i=] 04 W
where the directions of the coordinates are defined to be
diverging from the junction. If Eq. (6) is reached by dividing
Eq. (5) by w/2 and letting w—0 (remember that £/t and
Vi/i have been set to zera), the factor v will be equal to 1.
Adopting =1 indeed results in a good enough qualitative
comparison with the Q1D result. But we will see that choos-
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xl=L2

FIG. 2. {Color online) The doubly connected 1D system and the
related Q1D system we consider. (a) The 1D system is a ring {with
arms labeled by 1 and 2) connected to two leads (labeled by 0 and
3). The coodinate system x; is defined for the line segment labeled
by i (=0, 1, 2, and 3). The arrows denote the positive directions of
the coordinates, the right ¥ junction is defined at x;=x,=x5=0. and
the left ¥ junction at x,=0, x;=L,, and x,=L,. (b) The Q1D system
is an annulus with two radially connected leads. Both the annulus
and the leads have the same width.

ing »=1.9 may bring the 1D and Q1D results to a semiquan-
fitative agreement, which means that the term has been un-
derestimated. The TB argument serves to bring out the 1/w
dependence of the term, and the fixing of v will be discussed
using concrete examples. The effect of the channel width is
hence included, in contrast to the Griffith scheme (the case of
vr=0). The 1/w dependence results in an effect that is more
prominent at smaller channel widths, and this understanding
may also help to relate studies on the quantum graph
theory*” to the practical experiments. The case of a general
N-leg junction can also be worked out likewise.

In this paper we compare the Griffith and our schemes
with the exact Q1D calculation in a chosen type of system.
We calculate the transmission probability for a 1D ring con-
nected to two leads [see Fig. 2(a)], which is the simplest
multiply connected 1D system, using the Griffith and our
connection schemes at the ¥ junctions. In addition, we also
calculate the transmission probability for a similar system, an
annulus connected to two Q1D leads [see Fig. 2(b)], using
the exact mode-matching method. The two three-leg junc-
tions in Fig. 2(b) resemble the one in Fig. 1{a). Note that the
transmission probability is directly related to the experimen-
tally measurable conductance.”! We will sketch how we have
done the calculations, and we refer the readers to the litera-
ture for more details.

In a 1D model as shown in Fig. 2(a), the wave function on
each line segment at a given positive energy E is a superpo-
sition of forward and backward traveling waves, Le.,

!‘f_f‘-(x‘-} = Ai-gr.b’ll-l- Br'é'_ih-j, i‘ = 0, 1, 2, E!]'ld 3 s (‘I?)

where k=v2mE/f and m is the effective mass of the par-
ticle. The wavelength A is given by A=2a/k. The x 5  are
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the coordinates on the line segments correspondingly, and
the coordinates have positive directions as that defined in
Fig. 2. We define x=x;=x3=0 at the right junction, and x;
=0, xj=L), x;3=L, at the left junction, where L, are the
lengths of the arms between the junctions [see Fig. 2(a)]. The
A; (B;) is the coefficient of a forward (backward) traveling
wave. Since we consider particles incident from the left, we
set Ag=1 and By=0. Then the continuity requirement

Uh|sgm0 = ¥ |xyor, = Yolet, (8)
and
Ui x=0= ¥|y=0 = Wi xpe0 (9)
and the Griffith unitarity impesition [following Eq. (1)]
d d d
_% ﬁ ﬂ =0 (10)
gl N lger, P2 lapr,
and
d d d
P | P

constitute an equation set which contains six equations with
the six unknowns {By:4,.B,:4,.B,:4,} which have been
defined in Eq. (7). Hence the transmission amplitude A5 can
be solved, and the transmission probability T= |A.3|2 be
found. We may also replace the Griffith unitarity condition
by our unitarity condition [following Eq. (6)]

| am| | o |
I P ] P P
i =L =Ly o=
(12)
and
| |l o |
Ayl Ml Malgw W Tl
(13)

and the transmission probability also can be solved. We will
discuss the fixing of v later in this paper.

Besides the mentioned 1D model, we also solve a related
QID model in a way as that of Xia and Li in Ref. 22. Con-
sider an annulus with an inner and an outer radii of R
—w/2 and R+w/2, respectively, and two leads of width w
radially connected to it as shown in Fig. 2(h). The wave
function is governed by the two-dimensional (2D) differen-
tial time-independent Schridinger equation. In a lead it can
be expanded in terms of transverse modes (subbands) and
longitudinal forward and backward modes, ie., . (x.y)
=E}i"=r (@™ 4 bye=**)sin(lary /w), where x and y are respec-
tively the longitudinal and transverse coordinates for the
lead. The k; and | are related by k§+(f11'fw)2=2mEfﬁ-2,
where E is the energy (positive) of the particle, and k; can be
real or imaginary. In the annulus the wave function can be
expanded by radial and angular modes, i.e., Yy uuuslr.8)
= ';'i_ma{kr)e”a, where a ra'cﬂmode is given by &(kr)
=cuilkr)+d ¥ (kr), and k=+2mE/f. The r and @ are the

PHYSICAL REVIEW B 73, 035307 (2006)

radial and angular coordinates, respectively: and the J; and ¥,
are the Bessel functions of the first and second kinds, respec-
tvely. We demand ¢;|,=R_w;2=0 for any @, !,Evmulus|,=g+m=0
when @ is away from the leads, but Yiunuiusl @2 =Wicad
when # 1s in the range of a lead. Also, the radial derivative
Mnales! 77 15 equated  with the longitudinal derivative
Afiag! Fx when they meet at the outer arc of the annulus. The
difference between the straight transverse cuts of the leads
and the outer arcs of the annulus is neglected. The wave
functions in the leads and the annulus are hence matched.
Expanding the wave functions in different regions with suf-
ficient numbers of modes,? one gets a set of equations relat-
ing the coefficients of the modes in different regions. With a
given energy E and specified in-going subbands, one can
obtain the transmission probabilities in the out-going sub-
bands.

In the QID case, we will consider that the particle is
mcident from one lead, and its energy is below the second
subband and hence the particle propagates only within the
first subband. The resulting transmission probability is to be
compared with that in the 1D case. We will use the more
convenient longitudinal wave number k= +2m(E-Ey"™ )/
instead of the energy E, where Ej'™ is the energy of the
nodeless ground state of the isolated annulus in an individual
case. Defining a longitudinal wavelength A by N =2m/k,
implies that the long-wavelength limit we consider is at A
=w. Here we define the arm lengths by L) ; =R#, 5, where
f) 5 are the angles shown in Fig. 2(b).

III. COMPARISON BETWEEN RESULTS

Figure 3 shows the transmission probabilities obtained by
different schemes, for the case of symmetrical arms in the
ring (L;=L,=L). We have considered broad [Fig. 3(a)] and
narrow [Fig. 3(b)] channels, and in both cases we have pre-
sented the result of the QID calculation, the result of the
Griffith scheme, and the results of our scheme (with »=1 and
1.9). The Griffith result is seen to differ very much from the
QID result in all cases. The v=1 scheme qualitatively cap-
tures the trend of change in the Q1D result when the channel
width 1s changed, while the »=1.9 scheme captures the Q1D
result most satisfactorily.

Besides the Griffith result, it is seen that all results in Fig.
3 show Breit-Wigner (BW) resonance peaks.” These BW
peaks become sharper and shift toward the left when the
channels narrow down, i.e., w/R — 0 [compare Figs. 3(a) and
3(b)]. Those peaks are due to the quasibound levels in the
arms, and they are seen to be always blueshifted® from the
exact levels. In the 1D case, the exact levels are at 2L/ A
=kL/w=integer. The quasibound levels and the blueshift are
results of the presence of an attractive potential at a ¥
junction.” While the attractive potential in our scheme is
manifest [see Eq. (6)], the potential at a ¥ junction of Q1D
channels 1s not so obvious, but can have an intuitive under-
standing as follows. Since a particle feels less confined at
near a junction, the “band-bottom™ at the vicimity of a junc-
tion is effectively lower, and therefore the region acts as an
attraction center. This potential becomes stronger when the
channels become narrower, and that leads to the sharper and
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FIG. 3. (Color online) The transmission probability T is plotied
versus the dimensionless longitudinal wave numbers (2L/} in the
case of Q1D channels, and 2L/X in the case of 1D channels), for the
case of L;=L,=L. The Q1D results (solid lines), 1D results due to
our scheme [dashed {v=1.9) and dash-dotted (v=1) lines], and 1D
results due to the Griffith scheme (dotted lines) are shown. T is
plotied for the cases of broad and narrow Q1D channels, (a) R/w
=3.5 and (b) R/w=9.5. Note that the Griffith result is independent
of the channel widths. In the narrow channel case (b). the difference
between the Q1D and »=1.9 results is indiscernible in the scale of
this graph.

less blueshifted BW peaks [compare Figs. 3(a) and 3(b)].
The growth of the potential at narrowing channels can be
understood as a result of the departure from the case of very
broad channels (i.e., w—R), in which the system has no dif-
ference in the “band-bottom™ everywhere.

While the result from the Griffith scheme is independent
of the channel width and disagrees with the Q1D result, our
scheme captures the trend of change in the transmission
probability when the channel width is varied. Therefore, our
scheme has correctly included the attractive nature of the
clean ¥ junction of Q1D channels, though the strength has
been underestimated (i.e., p=1.9 is prefered to v=1). The
misjudgment of an appropriate value for the parameter v is
due to the fact that the details of the shape of the ¥ junctions
of Q1D channels and the actual dimensionality of the chan-
nels are relevant. For instance, our simple TB argument
which leads to Egs. (5) and (6) does not show the difference
between junctions with different relative directions of
branching channels, and also does not distinguish a three-
dimensional (3D) cylinder from a 2D strip as a Q1D channel,
But in reality, the appropriate parameter v's in those different
cases may likely be different. In the 2D cases we have just
seen in Fig. 3, the same kind of V junction has been in-
volved, and the effective potential in our scheme is charac-
terized by an almost constant ¥ in both the broad [Fig. 3(a)]
and narrow [Fig. 3(b)] channel cases.

Therefore, though the parameter ¥ cannot be derived ana-
lytically, it can be readily fixed for a particular kind of junc-
tion by comparing the 1D result with the Q1D result. What
we have done in Fig. 3 has been a comparison which in-
volves a tedious calculation. Actually, other simpler compari-
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FIG. 4. {Color online) The transmission probability T is plotted
versus the dimensionless longitudinal wave numbers [(L;+L;)/ Xy
in the case of QID channels, and (L,+L,)/\ in the case of 1D
channels]. for the case of asymmetrical arm lengths. The Q1D re-
sults (solid lines), 1D results due to our scheme [dashed (p=1.9)
and dash-dotted (v=1) lines]. and 1D results due to the Griffith
scheme (dotted lines) are shown. T is plotted for the cases of broad
and narrow Q1D channels. with small and appreciable differences
in the arm lengths. T is plotted for (a) Riw=3.5. L,/L=09, (b)
Riw=95 L,/L=09, (c) Riw=35, L,/L,=0.7, and (d) R/w=9.5,
L,/ L =0.7. Note that the Griffith result is independent of the chan-
nel widths. In the narrow channel cases [(b) and (d)]. the differences
between the Q1D and p=1.9 results are indiscernible in the scale of
this graph.

sons also work. For instance, one may consider the bound
state at the junction due to the attraction.” On one hand, for
a junction of three 1D channels, with the channels extended
to infinity like what we depict in Fig. 1(c), the negatively
valued bound state energy E can be readily found by using
i=e, where i=1,2.3, k=-2mE/%, and Eq. (6). The
energy E is found to be lower than zero by an amount of
207K /(9mw?). On the other hand, the bound state at a
T-shaped junction of three Q1D channels, with the channels
extended to infinity like what we depict in Fig. 1(a), was
studied by Schult et al.® The energy of the state was numeri-
cally found to be lower than the first subband bottom by an
amount of 0. 19772/ (2mw?).>® Equating the two energies in
the 1D and Q1D cases, one gets p=2.03, which 1s about the
number we use in Fig. 3, and as we will see, that in Fig. 4.

Figure 4 shows the transmission probabilities for the case
of asymmetrical arm lengths. It 1s seen that in all cases,
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broad channels [Figs. 4(a) and 4{(c)] and narrow channels
[Figs. 4(b) and 4(d)], small difference in arm lengths [Figs.
4(a) and 4(b)] and appreciable difference in arm lengths
[Figs. 4{c) and 4(d)], there are good comparisons between
the results due to our v=1.9 scheme and the Q1D calcula-
tion. All the essential features, such as the relative positions
of the BW and Fano profiles’® in the Q1D results, are nicely
reproduced. Note that the number 1.9 agrees with the one
used in Fig. 3.

For the 1D models, including Griffith’s and ours, the per-
fectly zero transmission dips of the Fano profiles are located
exactly at the eigenenergies of an isolated ring® with a cir-
cumference of L;+L;. In the 1D case, these eigenenergies
are exactly at (Ly+La)/A=k(L,+Ls)/(2m)=integer. In the
Q1D cases shown i Figs. 3 and 4, the eigenenergies are
numerically found to be at the (L, +L;)/)'s deviated by not
more than 0.5% from the integers on the horizontal axes. For
the Q1D model, we find that those zero transmission dips
may coincide with the eigenenergies of an isolated annulus
only in the long-wavelength limit. As in the case of sym-
metrical arms, the Griffith result disagrees with the Q1D re-
sult, and our simple TB argument which leads to Eqgs. (5) and
(6) has underestimated the strength of the effective potential
at the junction, Le., ¥=1.9 is preferred to v=1.

IV. CONCLUDING REMARKS

It is seen that in all the above cases the results from the
Criffith scheme are not in congruence with the Q1D results.
The Guiffith result is regardless of the channel width,
whereas the Q1D result shows a strong dependence on that.
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Our model gives a result in much better agreement with the
QID result. The trend of change in the transmission prob-
ability and the relative positions of the resonance profiles are
impressively reproduced. In view of these caleulations, it is
clear that the Griffith scheme which is frequently adopted in
the literature, does not describe a clean junction of QID
channels and 1s definitely not for the 1D l[imit of the Q1D
models. In the small width limit, a ¥ junction of Q1D chan-
nels is a strong scatterer, and that makes the Q1D system
studied in this paper not at all an “open” system. Speaking
reversely, adding a repulsive potential to a ¥ junction of Q1D
channels may weaken the scattering effect and enhance the
transmission through the junction at low energies, and away
from the levels. When a strong magnetic field is present, our
model may not apply since the field creates an additional
asymmetric transverse confinement.

In conclusion, we have proposed a connection scheme
with a parameter ¥ at a ¥ junction of 1D channels. The
parameter ¥ can be most easily fixed by comparing the en-
ergy of the bound state at a ¥ junction of Q1D channels to
the energy of the bound state at a ¥ junction of 1D channels
due to Eq. (6). The scheme reflects the presence of an effec-
tively attractive potential at a clean Y junction of Q1D chan-
nels. The disregard of this potential in the Griffith scheme
makes its result compare poorly with the exact Q1D result.
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Similar te the Landauer electrie dipole created around an impurity by the electrie current, a spin
polarized cloud of electrons can be induced by the intrinsic spin-Hall effect near a spin independent
elastic seatterer. It is shown that in the ballistic range around the impurity, such a cloud appears
in the case of Rashba spin-orbit interaction, even though the bulk spin-Hall eurrent is absent.

PACS numbers: 72.25.Dc, TLT0.E], 73.40.Lg

The spin-Hall effect attracts much interest because it
provides a method for manipulating electron spins hy
electric gates, meorporating thus spin transport into con-
ventional semiconduetor electronics. As it has been ini-
tially predicted, the electric field E induces the spin flux
of electrons or holes flowing in the direction perpendicu-
lar to E. This spin flux can be due either to the intrinsic
spin-orbit interaction (SOI) inherent to a crystalline solid
[1], or to spin dependent scattering from impurities [2].
Intrinsic spin-Hall effect corresponding to the former sit-
uation has been cbserved in p-doped 2D semiconductor
quantum wells [4], while the extrinsic effect related to the
latter scenario has been detected in n-doped 3D semicon-
ductor films [3].

Most of the theoretical studies on the spin-Hall effect
(SHE) has been focused on calculation of the spin current
(for a review see [5]). On the other hand, since the spin
current carries the spin polarization, one would expect a
buildup of the spin density near the sample boundaries.
Such a spin accumulation near interfaces of various na-
ture was calculated in a number of works [6, 7, 8. This
accumulated polarization is a first evidence of SHE that
has been observed experimentally in Ref. [3, 4]. In fact,
measuring spin polarization is thus far the only practical
way to detect SHE.

Yet the spin accumulation near interfaces is not the
only signature of SHE. To draw an analogy with the
charge transport, one can expect that similar to Lan-
dauer charge dipoles created by the DC electric current
around Impurities [9], nonequilibrium spin dipoles must
be formed subsequent to the spin-Hall current. One may
expect that the spin clond will appear around a spin-orbit
scatterer in case of extrinsic SHE, as well as around a
spin-independent scatterer, in case of the Intrinsic effect.
We will consider the latter possibility for a 2D electron
gas with Rashba interaction. The polarization in the
direction perpendicular to 2DEG will be caleulated in
the ballistic range around an impurity represented by an
sotropic spin independent scattering potential. Besides
conventional semiconductor quantum wells this analysis
can be applied to metal adsorbate systems with strong
Rashba type spin splitting of surface states [12]. In this
case the spin cloud can be measured by STM with a mag-

netic tip.

The Landauer electric dipole has been caleulated
[10, 11] basing on the asymptotic expansion of the elec-
tron waves elastically scattered from an isolated impurity.
Subsequent averaging of the corresponding spatial prob-
ability weighted by the Boltzmann distribution function
of incident wavevectors produces the dipole distribution.
The spin cloud could be obtained in a similar way. In-
stead, we choose a Green funetion method combined with
the linear response theory, Within this method the spin
density i1s given by the standard Kubo formula where the
scattering potential of a target impurity, at a fixed po-
gition r;, 1s Included into the Green functions, up to the
second perturbation order. Other impurities are assumed
to be randomly distributed over a 2D plane, so that the
calculated spin density is averaged over their positions.

We assume that a uniform external electrie field is ap-
plied to 2DEG. The field is represented by the vector
potential A, E = iwA /e, with w — 0 in the DC regime.
The corresponding interaction Hamiltonian is eA - v/ec,
where the velocity v/, 7 = z,y, includes the spin-orbit
correction 9(hy - o)/0k?. The spin-orbit field hy is a
funetion of the two-dimensional wave-vector k. In its
turn, the spin-orbit interaction is written in the form

Heo=hy o, i1

where o=(c", 0¥, ¢*) is the Pauli matrix vector. We as-
sume that the target mmpurity, located at r;, has a scat-
tering potential U/(r — r;). In 2D geometry the corre-
sponding Born amplitude is given by

m*
Vatkp
where i = 1 and  is the angle between k and k'. Both
the scattered and the incident wavevectors are taken at
the Fermi circle with the radius kr. Other impurities,
which not necessarily are of the same nature as the tar-
get impurity, are randomly distributed within a sample.
They create the random potential V,.(r) which is as-
sumed to be delta correlated, so that the pair correlator
{Vae(r)Vee(r')) =Té(r — ') /aNF, where NF is the elec-
tron density of states at the Fermi energy, and ['=1/27
1s expressed via the mean elastic scattering time 7. As-
suming that the semiclassical approximation Fpr & 1

fle k)= - dr?U () ()



is valid, one can apply the standard perturbation theory
[13, 14] when calculating the configurational averages of
Green functions and their products. In the leading or-
der of (Epr)~! and up to the second order in U/(r — r;),
the average retarded Green function in the momentum
representation is given by

r i il 2 .
Gao () = G G () 4+ G (@) + G (@), @)
with the unperturbed function given by the 2x2 matrix
@y — -1 i
G (w)=(w—Ex—hg-o+i), (4)

where Fx=k*/(2m*). Other functions in (3) are

Ciae (@) = Gi‘f”’ () Vi G (w) (5)
G;E‘J l:i,ul) = w' szkH 1{” [’k”k"Gk(,DJ l:\',u':] .
K

The matrix elements Uxne = —27krpf(k k') expli(k —
k'Jr;]/m*. Expressions similar to Eqs.(3-5) can be ob-
tamed for the advanced functions G§,, (w) = G, (w)1.

The sum over k" in the second Eq. (5) can be directly
(0)

calculated. First, we decompose Gk,, mto a spin n-
dependent scalar part and a spin dependent part which
is proportional to hys - . Due to the time inversion
symmetry hys = —h_po the sum over k" on the spin
dependent part is zero for an isotropic scattering am-
plitude. For anisotropic amplitude, however, this sum
is not identically (. Nevertheless, the sum on the spin
dependent part can be ignored either way in the follow-
ing caleulations, because it i proportional to the small
parameter by, /Erp < 1. Further, it is easily seen that

only Im[Gi(,,D)] is important n this k" sum because the
real part gives rise to a term that simply adds to Uy in
the first line of Eq. (5), thus effectively renormalizing the
Born scattering amplitude. The imaginary part can not
be absorbed in such a way because it has opposite signs
for the advanced and retarded Green functions. Taking
into account that w =~ Er and assuming that hy, < Ep
we thus get

z U- kel Ck"'

S(k.K)=

o = —irNpS (kK ek kI

k
— f 4o fK k) F(K. K", (6)

where ¢" 1s the angle of the vector k", with |K"| = kp.
At k = ¥ the integral in (B) is equal to the scattering
cross-section.

Within the semiclassical theory we follow the well
known method [13, 14] to calculate the configurational
average of the Green function pair product that enters
mnto the Kubo's linear response equation. Therefore, we
take into account, as our leading approximation, only
the =0 called ladder series describing particle and spin
diffusion processes. Some of the representative diagrams

k k
P P
Dz vE Uz vE

kl

k p k

a b

} UZ w vE }
k kp
c)

FIG. 1: Diagram for the spin density. Scattering of eleetrons
by & target impurity is shown by the solid eireles. Dashed lines
denote the ladder series of particle scattering by the random
potential. p, k k" are electron momenta.

are shown at Fig. 1. The diffusion ladder renormalizes
only the vertex associated with the electric field, while
such a ladder does not appear at the vertex attributed
to the induced spin density. It is hecanse in the ballis-
tic range around the impurity, the momentum transfer
|p — k| = 1/(vpr), and thus the diffusion is not impor-
tant. Finally, the density of spins oriented in 2 direction
can be written as

_ i(pk)r f_&udrap (w)
a,(r] = kg e f?-‘r o *
Tr{Genw)o: Gl (@) T (w. K}, (7)
where the trace runs through the spin variables and
npl: /) 15 the Fermi distribution function. The functions
Gk.k are given by Eq. (3). In (7), only terms up to the
second order in [/}, should be taken into account. Hence
the highest order corrections are those shown at Fig.1,
b) and ¢). At low temperatures only w in close vicinity
around Ep contributes to the integral in (7). Therefore,
below we set w = Er. In the following it is convenient to
write the vertex T(Ep, k') in the vector representation,
using the complete set of four 2x 2 matrices 7y = 1, and
7 = a; at 1 = x,y, 2. We thus have

1
T,(Ep.k) = ETT[TbJI(Ep.k)]. b=0,29.2 (8)
and the ladder summation gives
T(Ep.k) = evi-I-iZDbc X (9)
2nNF &

N TrlrGL” (ErVEG (Er)].
kl

D% is the diffusion propagator satisfying the diffusion
equation, as it was described in [15]. In our case Db i
determined by the spin relaxation time of a uniform spin
distribution.



The sum over k' in Eq. (9) can be directly calculated.
Let us consider the part of it associated with the spin
independent velocity, which is the first term in

K Oy o

=t 10
! m* Ok ( )
At hy < Er we find
r K 0 : The
- -7 ; 1"( ) c.',( ) E _ _
2-‘?:\"}:‘ Z m* I[G’ ( J k ( F]] lﬂ;\?
(1)

where the bar denotes angular averaging over the Fermi
circle. Using this equation one can rewrite (9) in such
a way that the velocity operator v, is substituted for
vy — Vg, and the scalar spin independent part of v does
not enter into the second term of (9). Now it is easily to
see that v, — v, = k/m* for any spin-orbit interaction
where hy depends linearly on k. Consequently, from (9)
we get the simple expression

kE . (12)

It should be noted that the same vertex in Eq. (9) enters
into the spin-Hall current, and the cancelation of the spin
dependent part from the velocity operator is the main
reason for vanishing of spin-Hall conductance in case of
Rashba SOI [16]. Such a cancelation, however, does not
take place in case of nonlinear SOT [15].

Let us consider the spin density (7) in the presence of
the Rashba spin-orbit field h, = ak,.hy = —ak,. In
the zeroth order in Uy the Green functions in (7) are
given by the first term in (3). In this approximation and
with T given by (12) one can easily see that o, (r) = (.
On the other hand, the inplane spin polarization directed
perpendicular to E is finite. This polarization is due to
the electric orientation effect [17]. In the first order with
respect to Uy the z spin polarization is represented by
Fig.la. Expressing Uy via the scattering amplitude,
from (3-5) and (7) we obtain

o) = ,/'E

= ¢y ‘)FZ ?*QTI[Ck(Ep G (EF) x

(G'ZG;(EF) Fp PR e )], (13)

where R = r —r;. At kpR 3 1 the angular inte-
gration n (13) can be performed by expansions around
the saddle-points (pR/pR) = +1 and (kR/kR) = +1,
which result in the asymptotic expansion of o, (r) at
a large distance from the impurity. In these saddle
points the scattering amplitude entering into (13) will
coincide either with the forward scattering amplitude
f(0) = _f(f\'pfi..kpf{.), or with the backscattering am-
plitude f(7) = f(kpR.,—kpR), where R = R/R is the

unit vector directed to the observation point. Finally, we

obtain from (13)

o) = 2 [ 2y (@“R )x

= RV.'rakp il =57 ¥R

Re[f(m)e**# ] sin® (Li) . (1

a0

where vy = erE/m* is the drift velocity and L., =
fi/m*a is the characteristic spin-orbit length. The unit
vector ng = hk,:-Rf ity .qp|- For Rashba interaction it is
ny = = R¥ n¥ = = —R*.

Similarly, the second order contribution to the spin
density, as it is represented in Fig. 1b) and ¢ can be
caleulated via Eq.(6). Assuming that the electric field
1s applied in the z-direction and in the case of Rashba
interaction, we get the final result, which is as a sum of
all diagrams in Fig. 1a)-c},

mrugey . 2R .
——————ain| — |sinf+
Im2RL,, (LSO
mrug

R
msin2 (L_) sin® 6 x

O N s

a.(r) =

where 7y,¢ and oy are the total and transport scattering
cross sections, respectively, and # is the angle between the
vector R and the x-axis. In order to check our method we
applied it to the calculation of the charge dipole, whence
. 1s substituted by 1 m Eq. (7). Ignoring SOI we ob-
tained the same result as in Ref [11].

The explicit shape of the spin cloud is clearly seen from
Eq. (15). It consists of a dipole, oriented perpendicular
to the electric field, and a tripole. Similar to the Lan-
dauer charge dipole distribution [11], the spin density
contains both slowly varying and fast Friedel oscillation
components. Important distinetions, however, are found
in the asymptotic behaviors. First, unlike the charge
density, whose slow asymptotic term is represented by
monotonous R~ dependence, the spin density oscillates
with a period determined by the spin-orbit precession
length 7L ... Second, at smaller distances R 5 L., the
polarization decreases as 2. Tt should be noted that
this asymptotic form can not be obtained by the method
based on the conventional leading order asymptotic ex-
pansion of the wave function, as it has been done in [11]
for the Landauer dipole. It is because in 2D geometry the
corresponding scattered amplitude decreases as 1/v/R.
Accordingly, the probability density, which can be either
the charge or the spin demsity, will be proportional to
1/R, not 1/R2,

When talking about asymptotic expression (15), one
should not forget that it is restricted by the ballistic range
R =1, where | is the mean free path. At larger distances
the ballistic part of the spin density decays as exp(—R/l).
On the other hand, ontside the ballistic range the spin



diffusion becomes important. Spin diffuses during the
D'yakonov-Perel’ [18] spin relaxation time, up to the dis-
tance ~ Lg,. Hence, the spin diffusion must be taken
into account at i = I, providing that the spin-orbit cou-
pling is not too strong, so that L,, = [. In order to
calculate the spin density in the diffusive range, the lad-
der diagrams renormalizing the left hand vertex in Fig. 1
should be taken into account. The evident result to be
expected in this case is that the diffusion spin cloud with
the size 3 | will appear in addition to Eq.(15). Due to
the spin relaxation, however, the spin density will decay
exponentially at B 3 L.,. This behavior is in sharp
contrast to the power law decreasing of the charge den-
sity [10]. In the latter case, the long-range R~ charge-
demnsity tails of many impurities result in the macroscopic
electric field which can be related to the electric potential
difference at the sample boundaries. This was the main
idea by Landauer - to assoclate impurities with resistors
which give rise to an overall potential drop for a given
current. In a similar way, one would try to formulate
the spin-Hall effect in terms of the spin-Hall resistance
and spin dependent chemical potential y(r), defined as
Npx(r) = Y, 7.(r — r;). But, due to the exponential
decay in space of the spin cloud, the well converging
sum over impurities will produce, on average, a vanish-
ing "spin-Hall” chemical potential everywhere, except for
the R ~ L., range near the sample boundary. No such
spin accumulation, on the other hand, has been found
near flanks of a 2D diffusive strip of 2DEG with Rashba
SOI[7]. Probably, this means that the spin density out-
side the ballistic range around an elastic scatterer will be
zero in case of Rashba SOI. An answer to this question
is, however, outside the scope of the present study.

In conclusion, for a 2DEG with Rashba spin-orbit in-
teraction we calculated the nonequilibrium spin polariza-
tion induced by the intrinsic spin-Hall effect in the ballis-
tic range around a spin independent scatterer. The angu-
lar spatial distribution of the spin density is represented
by a tripole and a dipole oriented perpendicular to the
electric field. As a function of the distance from the scat-
terer, the polarization shows the power law decay with
oscillations, some terms oscillating relatively slowly, with
the period 7L, while other terms varying fast, with a
period of Friedel oscillations. Noteworthy, that although
the z-polarized spin-Hall current is zero in case of Rashba
SOOI, we found out that the z-component of the spin den-
sity i1s not zero in the ballistic range. This agrees with

finite spin accumulation near flanks of a ballistic strip [8].
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