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中英文摘要

摘要：為了有效的運作無線隨意網路系統，通常我們會建立及維護一個虛擬的網路骨幹，

這個虛擬骨幹只是網路拓樸的一部份。我們稱一個網路拓樸的子集為架構圖（spanner）如

果任兩設備在此子集中的總傳輸代價（譬如：距離或傳輸能量等）可控制在只比原來完整

網路中的代價多出有限的倍數。許多的幾何結構，如：歐拉最小生成樹（EMST）、相關鄰

近圖（relative neighbor graph）、蓋伯圖（Gabriel graph）、Delauney 三角化圖（Delauney
triangulation）及姚氏圖（Yao’s graph）等皆廣泛用於建構架構圖。與建構及維護虛擬骨幹

相關的學問則稱為拓樸控制。一個拓樸控制的演算法如果只需收集及處理局部的資訊則稱

為區域化演算法。

在很多的應用中，隨意設備是由電池提供電力，而且一般來說在，更換電池或為電池充

電是不切實際且不可行的。因此提高能源的使用效率可增長無線設備及系統的使用壽命，

其中一個重要的因子即是傳輸耗能的多寡。在這個計畫中，我們給定了最小的傳輸半徑使

其所引致的網路拓樸可讓我們設計只需直接相鄰結點訊息的區域化分散式演算法來建構多

種的幾何結構。這最小的傳輸半徑我們稱為臨界傳輸半徑。在本文中，我們將介紹本計畫

在網路連通性、感測網路的覆蓋性及蓋伯圖的最長邊等主題上所得的研究結果。

關鍵詞：無線隨意及感測網路、拓樸控制、孤立點、覆蓋性、蓋伯圖。

ABSTRACT: To efficiently operate wireless ad hoc networks, subsets of network topology,
called virtual backbones, will be constructed and maintained. A spanner is a subset of the network
topology in which the minimal total cost, e.g. distance or energy consumption, to transmit packets
between any pair of nodes is only a constant fact larger than in the original network topology.
Hence spanners are good candidates of virtual backbones. Geometric structures, including
Euclidean minimal spanning trees (EMST), relative neighbor graphs (RNG), Gabriel graphs (GG),
Delauney triangulations (DT), Yao's graphs (YG), etc., are widely used ingredients to construct
spanners. The related topics about how to construct and maintain virtual backbones are called
topology control. A topology control algorithm is localized if each node only needs to collect
information from few hops neighbors.

In many applications, ad hoc devices are powered by batteries. Usually, it is impractical or
even not possible to exchange or charge the batteries. To elongate the lifetime of wireless devices
and systems, energy efficiency is one of the most important issues. A major approach is to
communicate with partners using the smallest transmission power. In this work, we gave the
minimal transmission radius that allows us to construct the geometric structures by localized and
distributed algorithms using only 1-hop neighbor information. The minimal transmission radius is
called a critical transmission radius. In the report, we are going to brief our results on connectivity,
coverage, and the longest Gabriel edge.
Keywords: Wireless ad hoc and sensor networks, topology control, isolated nodes, coverage,
Gabriel graphs.
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I. INTRODUCTION
A wireless ad hoc network is a collection of radio devices located in a geographic region. Each

node is equipped with an omnidirectional antenna and has limited transmission power. A
communication session is established either through a single-hop radio transmission if the
communication parties are close enough, or through relaying by intermediate devices otherwise.
Because of no need for a fixed infrastructure, wireless ad hoc networks can be flexibly deployed at
low cost for varying missions such as decision making in the battlefield, emergency disaster relief
and environmental monitoring. In most applications, the ad hoc wireless devices are deployed in a
large volume. The sheer large number of devices deployed coupled with the potential harsh
environment often hinders or completely eliminates the possibility of strategic device placement,
and consequently, random deployment is often the only viable option. In some other applications,
the ad hoc wireless devices may be continuously in motion. For all these applications, it is natural to
represent the ad hoc devices by a finite random point process over the (finite) deployment region.
Correspondingly, the wireless ad hoc network is represented by a random geometric graph.

In wireless ad hoc networks, due to constrain of hardware, each node is associated with a
maximal transmission radius (range) which is corresponding to the maximal transmission power of
the device. Two nodes in the network can communicate directly if they are within each other’s
transmission range. Therefore, the induced network topology is a disk graph in which two nodes
have an edge between them if the distance between them is not larger than their transmission ranges.
Furthermore, if all devices have the same transmission radius r and let V denote the set of nodes,
then the network topology is exactly the r -disk graph over V , denoted by VGr .

The required cost and resource for maintaining a whole network topology is expensive. In the
general case, a subset of the topology is enough to operate the network. Therefore, in order to
efficiently operate such a network, only a subset of network topology, called a virtual backbone,
will be constructed and maintained. The related topics about how to construct and maintain virtual
backbones are called topology control. A spanner is a subset of the network topology in which the
minimal total cost to transmit packets between any pair of nodes, e.g. distance or energy
consumption is only a constant fact larger than the minimal total cost in the original network
topology. Hence spanners are good candidates of virtual backbones. Geometric structures, including
Euclidean minimal spanning trees (EMST), relative neighbor graphs (RNG), Gabriel graphs (GG),
Delauney triangulations (DT), Yao's graphs (YG), etc., are widely used ingredients to construct
spanners [1, 2, 3].

In addition, wireless ad hoc devices are powered by batteries in many applications. Usually, it is
impractical or even not possible to exchange or charge the batteries. For such applications, energy
efficiency is one of the most important issues. By increasing the efficiency of energy, we can
elongate the lifetime of wireless devices and systems. For the sake of power saving, it is interesting
to find the minimal transmission radius such that the induced network topology has some desired
good properties, e.g. connectivity of communication networks, coverage of wireless sense systems,
and the possibility of constructing geometric structures by 1-hop information.
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II. OBJECTIVES

A. The Number of Isolated Nodes
For a randomly-deployed wireless ad hoc network, the uncertainty of network connectivity is

the first problem we need to face. A network can't function well if the induced network topology is
not connected. The critical transmission radius for connectivity is the smallest transmission radius
r such that the induced r -disk graph is connected. It was known that if an r-disk graph over a
random point set is with no isolated node, it is connected with high probability. Thus, to investigate
the connectivity of wireless ad hoc networks, we are interested in the number of isolated nodes. In a
realistic system, nodes may become inactive, and links may become down. These inactive nodes
and down links cannot take part in routing/relaying and thus may affect the connectivity. However,
this aspect was not discussed in the most related research works. In our works, we gave the
asymptotic probability distribution of the number of isolated nodes in networks with unreliable
nodes and/or links.

B. Coverage by Randomly Deployed Wireless Sensor Networks
One of the main applications of wireless sensor networks is to provide proper coverage of their

deployment regions. A wireless sensor network k -covers its deployment region if every point in its
deployment region is within the coverage ranges of at least k sensors. In a randomly-deployed
wireless sensor networks, the coverage is a random variable. Assume that the sensors are deployed
as either a Poisson point process or a uniform point process in a square or disk region. We studied
how the probability of the k -coverage changes with the sensing radius or the number of sensors.

C. The Longest Edge of Gabriel Graphs
In wireless ad hoc networks, without fixed infrastructures, virtual backbones are constructed and

maintained to efficiently operate such networks. The Gabriel graph (GG) is one of widely used
geometric structures for topology control in wireless ad hoc networks. In the GG, two nodes have an
edge between them if and only if there is no other node on the disk using the segment of these two
nodes as its diameter. Assume all nodes are with the same maximal transmission radius r . To
construct the GG only by 1-hop neighbor information, the transmission radius r should be large
enough such that the GG is a subgraph of the r -disk graph. Thus, the transmission radius should be
not less than the length of the longest edge of the GG. On the other hand, for each node, if it can
gather the information of nodes that are not farther than its farthest neighbor in the GG, it can decide
all GG edges incident to it. Therefore, the length of the longest edge of the GG is the minimal
transmission radius such that the GG can be constructed by using only 1-hop neighbor information
and is called the critical transmission radius for the GG.

III. RELATED WORKS
The theory of random graphs was initiated by Erdős and Rényi (1969) [4], in which each pair of

vertices is joined by an edge independently and uniformly at some probability. Since then hundreds



3

of papers have been published in various areas of random graph theory. The monograph of Bollobás
(2001) [5] and the treatise of Janson et al. (2000) [6] are excellent studies about random graphs. A
broad survey of the probabilistic analysis of algorithms can be found in the articles by McDiarmid
and Frieze (1997) [7] and Frieze and Reed (1998) [8].

The classic random graphs, however, is not suited to accurately represent networks of
short-range radio nodes due to the presence of local correlation among radio links. This motivated
Gilbert (1961) [9] to propose an alternative model. Gilbert's model assumes that all devices,
represented by an infinite random point process over the entire plane, have the same maximum
transmission radius r and two devices are joined by an edge if and only if their distance is at most
r. For the modeling of wireless ad hoc networks which consist of finite radio nodes in a bounded
geographic region, a bounded (or finite) variant has been used by Gupta and Kumar (1998) [10] and
others. In this variant, by proper scaling, the random point process representing the ad hoc devices
is typically assumed to be a uniform point process or a Poisson point process with density n over
a disk or a square with unit area, denoted by Xn and Pn respectively, and the wireless ad hoc network
is exactly the r -disk graph over Xn or Pn, denoted by Gr(Xn) and Gr(Pn), respectively.

Before, in contract to the prosperity in random graphs, random geometric graphs have received
only sporadic theoretic studies. In recent years, more and more researchers have been working on
this field. The first well studied problem in random geometric graphs is about the connectivity of
the random geometric graph. For any constant , Dette and Henze (1989) [11] showed that
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Penrose (1997) [12] established that if a random geometric graph of  nrG X has no isolated nodes,

it is almost surely connected. In other words,
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The same results also stand for  n
n

nG P


ln . Shortly after, Penrose (1999) [13] extended this result

and proved that for any 2k , if the minimal node degree is not less than k , the random
geometric graph is asymptotically almost surely k -connected. Later, Wan and Yi (2004) [14]
derived the asymptotical probability distribution of the critical transmission radius for
k -connected.

In addition to k -connectivity, k -coverage is another interesting topology problem in wireless
sensor networks. The probabilistic studies of k -coverage by a random point process have been
conducted for 1k in [15] and arbitrary integer-valued constant k in [16] but with certain
limitations. Both studies assume Poisson point processes on a square and use the toroidal metric,
rather than the Euclidean metric which is more relevant to the applications. This renders their
results hardly applicable to wireless sensor networks.

Recently, Kozma et al. (2004) [17] proved that the maximal length of an edge in the DT of a

uniform n -point process in a unit disk is  3 /ln nnO .
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IV. MAIN RESULTS
Let ,, 21 XX be independent and uniformly distributed random points on a bounded region A

in the plane. Given a positive integer n , the point process  nXXX ,,, 21  is referred to as the
uniform n -point process on A , and is denoted by AnX . Given a positive number , let

Po be a Poisson random variable with parameter , independent of  ,, 21 XX . Then the

point process  Po21 ,,, XXX  is referred to as the Poisson point process with mean  on A ,

and is denoted by AP .

A. The Number of Isolated Nodes
Let  be a unit-area square or disk. Assume that the wireless ad hoc network consists of n

which is modeled by nX .

First, we consider wireless ad hoc networks in which nodes are not all active. The inactive or
unavailable nodes may be caused by, for example, internal breakdown or being in the sleeping state.
In such networks, a node is said isolated if it is not adjacent to active nodes. Assume nodes are
active (or available) independently with probability p for some constant 10 p . We have the

following theorem. [18]

Theorem 1. Suppose that all nodes have a maximum transmission radius
pn

n
rn 




ln for

some constant . Then the total number of isolated nodes is asymptotically Poisson with

mean e , and the total number of isolated active nodes is also asymptotically Poisson with
mean pe .

Next, we consider wireless ad hoc networks with unreliable nodes and links. Assume nodes are
active independently with probability 10 1 p , and links are up independently with probability

10 2 p . A node is said to be isolated if it doesn't have an up link to an active node. We have the

following theorem. [21]

Theorem 2. Suppose that  nppn lnlim 21 and nodes have the same maximum

transmission radius
npp

n
rn

21

ln



 for some constant . Then the total number of isolated

nodes is asymptotically Poisson with mean e , and the total number of isolated active nodes
is also asymptotically Poisson with mean ep1 .

The work can be extended for secure wireless networks which apply m -composite key
predistribution schemes. In the m -composite key predistribution scheme, the key pool contains K
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distinct keys which are randomly chosen from the key space, and a key ring is composed of k

distinct keys drawn from the key pool. Before deployed, each node randomly loads k distinct keys
drawn from the key pool, which is called a key ring, into its memory. After deployed, two nodes
within each other's transmission range have a secure link if their key rings have at least m common

keys. A node is said to be isolated if it doesn't have a secure link. Let 




























k
K

ik
kK

i
k

qi that

is the probability of the event that two key rings have exactly i common keys, and
 1101  mqqqp  that is the probability of the event that two nodes (or key rings) have at

least m common keys. We have the following theorem about the total number of isolated nodes in
the secure wireless network. [21]

Theorem 3. In m -composite key predistribution schemes, let p be the probability that two
neighbor nodes have a secure link. If  npn lnlim and nodes have the same maximum

transmission radius
pn

n
rn 




ln for some constant , then the total number of isolated

nodes is asymptotically Poisson with mean e .

B. Coverage by Randomly Deployed Sensors
Here we study how the probability of the k -coverage changes with the sensing radius or the

number of sensors. Let k be a fixed nonnegative integer, and  be the unit-area square or disk
centered at the origin o . For any real number t , use t to denote the set  xtx : , i.e., the

square or disk of area 2t centered at the origin. Let rnC , (respectively, rnC ,' ) denote the event

that  is  1k -covered by the (open or closed) disks of radius r centered at the points in

nP (respectively, nX ). Let nsK , (respectively, nsK ,' ) denote the event that s is

 1k -covered by the unit-area (closed or open) disks centered at the points in  snP

(respectively,  snX . Then, we would like to study the asymptotics of  rnC ,Pr and  rnC ,'Pr

as n approaches infinity, and the asymptotics of  nsK ,Pr and  nsK ,'Pr as s approaches infinity.

To simplify the presentation of our results, we introduce some notation. Let  denote the

peripheral of , which is equal to 4 (respectively, 2 if  is a square (respectively, disk).

For any R , let
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Our main results are summarized in the following two theorems. [19]

Theorem 4. Let
 

pn

nkn
rn 




lnln12ln
.

If  nnlim for some R , then

   





 1
1

Prlim1 , nrnn
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1
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C .

If  nn lim , then     1'PrlimPrlim ,, 
 nn rnnrnn

CC .

If  nn lim , then     0'PrlimPrlim ,, 
 nn rnnrnn

CC .

Theorem 5. Let    sskss   lnln12ln .
If    sslim for some R , then

   
  
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If   ss lim , then     1'PrlimPrlim ,, 
 ssssssss

KK  .

If   ss lim , then     0'PrlimPrlim ,, 
 ssssssss

KK  .

C. The Longest Edge of Gabriel Graphs
Let nP denote a Poisson point process with density n over a unit-area disk. Assume that the

wireless ad hoc network consists of n nodes modeled by nP , and all nodes have the same
maximal transmission radius nr . We use  nG P to denote the Gabriel graph over nP . For

simplicity, the edges of GGs are call Gabriel edges. If G is a geometric graph, we use G to
denote the maximal length of an edge of G and  lGN , to denote the number of edges of G

whose length is at least l . Our first result about the GG is the next theorem. [20]

Theorem 6. For any constant 0 , we have

       1
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
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According to the theorem, if each node sets its maximal transmission radius to
n
n

rn 
 ln



for some constant , then the nr -disk graph over nP a.a.s. contains the GG if 2 , and on the
contrary, the nr -disk graph a.a.r. contains the GG if 2 . Therefore, 2 is the threshold for

constructing the GG by 1-hop information. Now, we assume
n

n
rn 

 


ln
for some constant

. For a given , we call the edge whose length is not less than nr is a long edge. The next

theorem gives us the asymptotic expectation of the number of long Gabriel edges.

Theorem 7. For the expectation of the number of long Gabriel edges, we have
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Therefore,

   ,21
ln

2Prlimlim 

 


 










 
 e

n
n

G nn
P

and  is an a.a.s. sufficient condition for   
n

n
G n 







ln
2P . In the next theorem, we

give the asymptotic probability distribution of the number of long Gabriel edges, and that implies
the asymptotic probability distribution of the length of the longest edge.

Theorem 8. For any constant , the total number of Gabriel edges whose lengths are at least

n
n


ln
2 is asymptotically Poisson with mean e2 .

Since

    



















 








 
 0

ln
2,Pr

ln
2Pr

n
n

GN
n

n
G nn 




 PP ,

according to the theorem, we have
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    



 










 
 e

n
n

G nn
2exp

ln
2Prlim P .

V. CONCLUSIONS (PERFORMANCE EVALUATION)
Supported by the NSC under the grant No. NSC94-2218-E-009-030, during the past year, we

have published two journal papers in the IEEE Transactions on Communications [18] and IEEE
Transactions on Information Theory [19]. In addition, we have one journal paper to appear in the
IEEE Transactions on Parallel and Distributed Systems [20], and one conference paper to be
presented in the IEEE GLOBECOM 2006 [21]. Overall speaking, we have finished most proposed
works.
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