行政院國家科學委員會補助專題研究計畫 ■ 成 果 報 告

以多通道偵測器探討時間和空間效應對流動訊號之扭曲

- 計畫類別: 個別型計畫 □ 整合型計畫
- 計畫編號:NSC 94 -2113- M -009-018
- 執行期間: 94年 08 月01日至 95年 09月 15日
- 計畫主持人:余 艇
- 共同主持人:
- 計畫參與人員: 林淑慧,張凱傑,趙士宗

成果報告類型(依經費核定清單規定繳交): 精簡報告 □完整報告

本成果報告包括以下應繳交之附件:

- □赴國外出差或研習心得報告一份
- □赴大陸地區出差或研習心得報告一份
- 出席國際學術會議心得報告及發表之論文各一份
- □國際合作研究計畫國外研究報告書一份
- 處理方式:除產學合作研究計畫、提升產業技術及人才培育研究計畫、列管 計畫及下列情形者外,得立即公開查詢

□涉及專利或其他智慧財產權,□一年□二年後可公開查詢

執行單位:國立交通大學應用化學系

中華民國 95年 11月 12 日

目錄

第一章	前言	3
第二章	研究目的	3
第三章	文獻探討	3
第四章	研究方法	4
第五章	結果與討論	5
第六章	文獻	6
第七章	計畫自評	7

本計畫最重要的目的就是要確定所謂「時間效應」存在,對流動訊號拖尾之影響。當我們在偵測一個流動注入分析訊號時,往往發現其訊號峰有拖尾的現象,過去文獻都是以 Poisseulie 效應來詮釋,此效應之產生是由於流體分子和管壁摩擦,使得管壁附近的流速變慢,中心流速較快, 而造成訊號有拖尾現象,但是最近出現之文獻提出另一個解釋,亦即「時間效應」,此效應之產 生,是由於偵測方式而造成,因為一般傳統偵測器是固定位置單通道偵測,在偵測的同時,分 析物之分散(dispersion)持續在發生,因而造成拖尾現象,可用圖一來解釋。

當分析峰經過偵測點時,其波峰隨時間而變成越矮而且越寬,因而即使波峰在管內空間之分佈 爲對稱之高斯形狀,在時間圖上會呈現拖尾。此現象初看之下,似乎對分析並重要,但實際上, 對於層析理論可能會產生相當大的修正,因而我們希望設計實驗來證明此理論。

(二)研究目的

爲證明此一新提出之理論,而設計一套實驗技術,能夠確實以實驗數據證明之。

<u>(三)文獻探討</u>

以時間效應來解釋流動注入分析訊號拖尾現象,是一個全新的研究。目前為止,所有的論文皆 由台大海洋所白書禎發表 [1-4],白教授主要是從理論的方向來探討此現象,雖然有部分實驗, 尚不足以證實這個新的觀點,因此提供一個直接的實驗證據是不可或缺的。

(四)研究方法

本實驗室設計出此種可以獲得樣品的空間分佈的儀器。如上面所說,此種儀器必須是一個多通 道的偵測器,我們所設計的儀器,可稱之為多通道吸收光譜偵測器(multi-channel absorption detector),由實驗室自行組裝。所使用的零件來自於市場上可購買得到的光學掃描器(optical scanner)。掃描器的主件包括一個掃瞄平台,內部光學組件(包括光源和光子轉換器-感光耦合元 件,CCD),以及數據傳輸介面(將影像傳至個人電腦),其光學部分的示意圖,如圖二,顯示 如何將 21cm 物件之影像呈現在縮小並呈現在 CCD 上。

圖二 多通道吸收光譜偵測器示意圖

由於樣品分子在 FIA 空管中分散係數很大,為了能夠偵測完整的訊號波峰,我們將鐵佛龍管纏 繞於一玻璃管上,使得可偵測範圍增大,我們取每一圈吸收值最大之數據,每一次曝光可得 108 點,足以包括幾個完整的波峰,證明此方法可以適用於我們希望的測量。實驗示意圖,如圖三。

圖三 實驗設計示意圖

1 : Syringe pump ; 2 : Reciprocal Pump ; 3 : Pump controlling value ; 4 : Sample injecting value ; 5 ~7 : Coiled tubing(5)Glass tube(6)White light tube(7) ; 8 : Slit ; 9 : Filter ; 10 : Multi-channel absorbance detector ; 11 : Computer

(五)結果與討論

由多通道偵測器所得到之訊號,是管柱中位置之函數,以下稱之為"空圖";由單通道偵測器所 得到之訊號,由於是時間之函數,以下稱之為"時圖",空圖及時圖之數據列表於表一和表二。 分析訊號是否接近高斯函數,可以用不對稱因子(Af)來表示,本實驗空圖以及時圖之不對稱因子 顯示於圖四和五:

圖四 空圖之不對稱因子

圖五 時圖之不對稱因子

空圖之不對稱因子很接近 1,表示十分對稱,在流速 0.48 和 1ml/min 之實驗, A_f大於 1 表示略 微拖尾,但是其相對之時圖卻遠大於 1。更特別的是當流速為 2,4,8 ml/min 時,空圖之因子略小 於 1,表示圖形略微趨前(frontal),相對而言,時圖卻還是拖尾,而且其因子更大幅增加。由於 空圖量測方式可免於『時間效應』,因此這些數據已經完全可以證實時圖為何會拖尾,『時間效應』 佔了非常重要的因素,但是此因素過去完全被忽略。

除此之外,從表一表二之分散係數(D*,D')比較可知,無論從空圖或時圖所得到的值都非常接近,可證明白書禎之理論十分正確。因此本研究已經達成對流動注入分析法訊號拖尾之證明。

<u>(六)參考文獻</u>

- [1] S.C. Pai, "Evaluation of the temporal effect to the peak tailing in flow injection analysis", *J. Chromatogr. A* 950 (2002) 271-279.
- [2] S.C. Pai, "Parcel model for peak shapes in chromatography Numerical verification of the temporal distortion effect to peak asymmetry", *J. Chromatogr. A* 988 (2003) 233-260.
- [3] S.C. Pai, C.S. Chern, L.Y. Chiao, "Further clarifications on the parcel model", *J. Chromatogr. A* 1018 (2003) 125-127.
- [4] S.C. Pai, "Temporally convoluted Gaussian equations for chromatographic peaks", *J. Chromatogr. A* 1028 (2004) 89-103.
- [5] S.C. Pai, L.Y. Chiao, "Temporal Shifting : A Key to the Skewed Peak Puzzle", *J. Chromatogr. A* (Accepted).
- [6] S.C. Pai, Y.H. Lai, L.Y. Chiao, T. Yu, "Dispersion-convolution model for simulating peaks in a flow injection system", *J. Chromatogr. A* (Accepted).
- [7] 張凱傑,「以多通道偵測器觀察流動注入分析訊號之空時差異」,國立交通大學,應用化學 研究所碩士論文,民國九十五年。

本研究計畫屬於一個全新領域,少有文獻可參考,我們很巧妙的運用價值不到新台幣一千元的 掃描器,成功設計了一個多通道偵測器,克服無儀器費用之困境,並且毫無疑問的證明了此新 理論之正確。目前已經和白教授合作發表一篇論文 [6],並且正在書寫上述實驗結果 [7],應該 明年就會發表。研究進度完全符合原先計畫,目前已經開始著手層析方面之研究,我們已經成 功的製作一個可以使用於多通道偵測器之層析管柱,初步實驗幾乎已經證明白書禎理論用於層 析之解釋,我們認爲本計畫之執行完全在掌握之中,目前只是論文之發表稍慢,因爲新的研究, 發表時受到高度挑戰,因此費時較長,希望貴會能有所諒解。

表一 Experimental conditions and resultant peak data for spatial peak

Experimental conditions			Ob	served pe	Calc	Calculation			
No.	Q	t	Lp'	h'	A_L	A_f	D'		
	$(ml min^{-1})$	(s)	(cm)	(Abs)	(Abs-cm)		$(cm^2 s^{-1})$		
(L	ow pumping r	ate)							
1	0.48	220.64	222.6	1.47	126.77	1.13	2.13		
2	"	243.33	244.2	1.45	128.05	1.10	2.08		
3	"	295.24	293.9	1.36	129.02	1.06	2.04		
4	"	347.16	343.9	1.31	129.30	1.03	1.92		
5	"	395.83	393.9	1.27	129.86	1.07	1.82		
(Medium/Low pumping rate)									
1	1	106.78	222.6	1.25	132.77	1.11	7.26		
2	"	117.51	244.2	1.22	134.00	1.09	7.11		
3	"	143.56	293.9	1.15	135.82	1.00	7.00		
4	"	168.07	343.9	1.08	136.24	1.00	6.87		
5	"	191.05	393.9	1.05	136.34	1.03	6.48		
(Me	dium pumping	g rate)							
1	2	54.60	222.6	1.03	133.36	0.93	22.48		
2	"	60.71	244.2	0.98	134.94	0.88	23.78		
3	"	72.84	293.9	0.90	137.30	0.88	24.12		
4	"	85.15	343.9	0.87	138.62	0.89	22.88		
5	"	96.65	393.9	0.82	139.40	0.93	22.94		
(Medium/High pumping rate)									
1	4	27.82	222.6	0.84	131.65	0.92	68.31		
2	"	31.29	244.2	0.77	132.15	0.83	75.52		
3	"	37.47	293.9	0.72	136.78	0.80	77.70		
4	"	42.91	343.9	0.67	138.09	0.86	77.63		
5	"	48.41	393.9	0.65	140.40	0.90	74.84		
(High pumping rate)									
1	8	13.58	222.6	0.81	127.61	0.98	139.22		
2	"	15.33	244.2	0.76	132.80	0.81	157.97		
3	"	19.08	293.9	0.67	134.13	0.74	174.77		
4	"	22.02	343.9	0.62	133.99	0.79	174.11		
5	"	24.78	393.9	0.58	134.95	0.83	172.46		

表二

Experimental conditions			Observed peak data			Calculation		
No.	Q	Position	t_p^*	h^*	A_t^*	A_f	D^*	Φ
	$(ml min^{-1})$	(cm)	(s)	(Abs)	(Abs-s)	U	$(cm^2 s^{-1})$	(s)
	(Low pumping	ng rate)						
1	0.48	222.6	223.07	1.48	129.32	1.24	2.17	2.23
2	"	244.2	244.95	1.45	130.32	1.24	2.11	2.17
3	"	293.9	295.24	1.36	129.71	1.21	2.01	2.07
4	"	343.9	346.35	1.31	131.64	1.18	1.94	1.99
5	"	393.9	397.45	1.27	132.71	1.16	1.86	1.91
(Medium/Low pumping rate)								
1	1	222.6	106.27	1.25	65.17	1.44	7.48	1.77
2	"	244.2	117.00	1.22	65.98	1.40	7.36	1.74
3	"	293.9	141.51	1.16	66.41	1.33	7.04	1.67
4	"	343.9	166.03	1.09	66.28	1.29	6.85	1.62
5	"	393.9	190.54	1.05	67.22	1.25	6.68	1.58
(Medium pumping rate)								
1	2	222.6	52.81	1.04	33.66	1.63	24.40	1.44
2	"	244.2	58.16	0.98	33.52	1.55	24.67	1.46
3	"	293.9	70.31	0.91	33.90	1.46	24.57	1.45
4	"	343.9	82.60	0.88	34.73	1.40	24.08	1.42
5	"	393.9	95.12	0.82	34.35	1.32	23.41	1.38
(Medium/High pumping rate)								
1	4	222.6	25.71	0.85	16.64	2.22	73.76	1.09
2	"	244.2	28.74	0.79	16.41	1.98	76.07	1.13
3	"	293.9	35.18	0.73	17.05	1.76	78.27	1.16
4	"	343.9	41.33	0.68	16.95	1.65	77.39	1.14
5	"	393.9	47.51	0.65	17.42	1.57	77.21	1.14
(High pumping rate)								
1	8	222.6	12.74	0.82	7.99	2.60	148.57	0.55
2	"	244.2	14.17	0.78	8.18	2.44	157.44	0.58
3	"	293.9	17.44	0.70	8.47	2.10	172.28	0.64
4	"	343.9	20.62	0.63	8.51	1.90	183.17	0.68
5	"	393.9	23.51	0.59	8.77	1.87	196.74	0.73

Experimental conditions and resultant peak data for temporal peak