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Abstract In a distributed system, detecting whether a given
logical predicate is true on the global states is fundamental
for testing and debugging the program. Detecting predicates
by examining all global states is intractable due to the
combinatorial nature of the problem. This work designs
an efficient online algorithm that identifies the consistent
and useless states each time a new state is reported. This
paper formulates the optimality of detecting algorithms in
terms of pseudo states, which are employed to represent
unknown states to the monitor process. Based on this tech-
nique, memory space of the debugger can be minimized
by removing the useless states without affecting the debug-
ging results. While minimizing memory space, the proposed
algorithm requires only O(p2 M) time in total, where p is
the number of processes, and M is the number of reported
states.
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1 Introduction

Detecting whether a logical predicate is true on some
execution states is essential for testing and debugging a
sequential program. In the distributed system, a global
predicate� is comprised of variables from distinct processes.
The global predicate detection problem finds a consistent
global state of the distributed program execution on which
� is true [4,10,13]. Usually � is used to formalize the unde-
sired situation of the distributed system. For example, for a
2-process system, consider the common conjunctive global
predicate [5,8,20] with form � = L P1 ∧ L P2, where L P1

(or L P2) is a local variable of P1 (or P2) indicating whether
the process P1 (or P2) is in the critical section. If there is
some consistent global states on which � is true, then both
processes are in the critical section, an error may occur.

A checker process is a distinguished process which col-
lects the execution states and performs global predicate
detection. The program execution generates a large number
of execution states in a short period of time. However, instead
of examining every state, the checker process only needs to
examine the checkpointed states. For example, for a global
predicate �, if the state is not related to the variables involved
in � then the state can be disregarded when detecting �. On
the other hand, if a variable is involved in � and its value is
altered in a state, this state needs to be checkpointed. Note
that each application process takes the checkpoints locally
without communication.

This paper simply refers to the checkpointed state as a
checkpoint hereafter. The checker process finds a consistent
global checkpoint on which � is true, given a set of collected
checkpoints H . Checkpoints in set H having no chance to
become members of any consistent global checkpoint are
useless or removable for the detection algorithm. Among all
the checkpoints, the removable checkpoints may degenerate
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the program debugger or monitor, since they are stored but
useless in the debugging process. A smart way to accelerate
the global predicate detection algorithm is to identify and
remove useless checkpoints before invoking the detection
procedure [2,3,18,7,21].

In this paper, the online checkpoint identifying problem
identifies the consistent and removable checkpoints each
time a new checkpoint is reported. This work formulates
the optimality of the online checkpoint identifying problem
in terms of pseudo states which are employed to represent
unknown states to the checker process. An online identifying
algorithm is optimal if it correctly identifies useless states as
early as possible.

This paper also contributes an efficient optimal algorithm
to identify useful/useless checkpoints online. This new algo-
rithm is based on the Z-path [19,14,15,17], employed to
determine precisely whether two checkpoints belong to the
same consistent global checkpoint. Many researches have
proposed checkpoint identifying algorithms using Z-paths
[19,14]. However, these investigations assume all check-
points are given ahead of the processing time. Instead,
this paper investigates Z-paths for a sequence of growing
checkpoint sets.

This study makes a distinction between conjunctive global
predicate detection and useless state detection (to be solved
in this paper) for the distributed system, although both con-
cern consistent global states. The algorithms [6,8] of the first
problem detect the consistent global checkpoint, rather than
trying to find useless checkpoints. In [3], the algorithm incre-
mentally removes some checkpoints to save memory space.
However, the above research only explores partial useless
checkpoints by their algorithm and does not mention opti-
mality. The researcher in [2] discusses a similar problem for
the problem model, differing from that used in this paper,
called the definitely-true model. Assume that there are p pro-
cesses and M checkpoints, i.e. M stages. This work shows
that although there are M stages, the data structure associ-
ated with a checkpoint is updated at most p times. Based on
this property, the time complexity of our algorithm is only
O(p2 M). This result represents an improvement over the
previous O(M2)-time algorithm in [3]. Note that p � M
since p is usually constant, while M usually grows as the
program runs.

The rest of this paper is organized as follows. Section 2
describes the background of this paper and gives the basic
definition of useless checkpoints. Section 3 describes the
model for the optimal useless checkpoint identifying prob-
lem. Section 4 presents the algorithm for constructing pseudo
states and proves their optimality. Section 5 presents the fun-
damental properties of checkpoints and outlines the basic
algorithm. Section 6 discusses a new incremental checkpoint
identifying algorithm. Finally, concluding remarks are made
in Sect. 7.
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Fig. 1 Events and states of a 3-process distributed program

2 Preliminaries

2.1 Distributed computation

A distributed program consists of application processes
(or simply, processes) that communicate via a network. For
simplicity, this work assumes that the distributed program
consists of p processes. These processes share no memory
and no global clock. Each pair of processes must commu-
nicate by exchanging messages via a network channel. This
work assumes that every message is sent and received cor-
rectly.

The local states (or, states) of a process change only when
events (atomic actions) are executed. Let ei,x denote the x th
event in process Pi . The state si,x refers to the local state
of Pi after Pi executes event ei,x , but before ei,x+1 is exe-
cuted. Execution of a distributed program can be modeled
as a communication graph G = (U, E), where each vertex
in U refers to an event, and each edge (u, v) in E refers to
the precedence relation from event u to v [9,11,12]. In the
communication graph, each edge (ei,x , ei,x+1) in E refers to
the state si,x . Furthermore, each edge (e j,y, ei,x ) refers to the
message sent by event e j,y and received by event ei,x , j �= i .

Figure 1 illustrates the events and states of a distributed
program. State s j,y happens before state si,x , denoted by
s j,y → si,x , if and only if there is a path from e j,y+1 to ei,x

in the communication graph. For example, in Fig. 1, state
s3,3 → s1,3 since there is a path from e3,4 to e1,3 in the
communication graph.

In the distributed system (with p processes), a global
state is a collection of p states, one from each process.
A consistent global state is a global state in which no
happen-before relationship occurs between the members.
Consistent global states represent the execution states of a
distributed program [12]. For example, in Fig. 1, the global
state S1 = {s1,2, s2,2, s3,3} is consistent, representing the
state immediately after executing events e1,2, e2,2 and e3,3.
Note that an inconsistent global state can not represent any
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execution state. For example, in Fig. 1, the system never
enters the state corresponding to the inconsistent global state
S2 = {s1,3, s2,3,s3,5}, since P3 cannot receive message m1

before P2 sends the message out.

2.2 Checkpointed state

For a process in the distributed system, the important exe-
cution states are checkpointed and stored in a stable storage.
These checkpointed states are called checkpoints hereafter.
This work assumes that the checkpoints are generated by the
process locally without communication. Let ci,x denote the
x th checkpoint generated in process Pi . The value x is called
the index of checkpoint ci.x . A global checkpoint is a set of
p checkpoints, one from each process. Moreover, a consis-
tent global checkpoint is a global checkpoint in which no
happen-before relation exists between the members.

As mentioned in Sect. 1, a distributed program can be
tested and debugged by examining the consistent global
checkpoints. However, not every checkpoint belongs to some
consistent global checkpoint. For example, in Fig. 2, check-
point c1,2 and c1,3 belong to no consistent global checkpoint,
i.e. they are useless/removable.

For a global checkpoint G, let G[i] denote the i th mem-
ber from process Pi . Let L(ci,x ) be the set of checkpoints
occur before the checkpoint ci,x . Specifically, L(ci,x ) =
{ci,x ′ | ci,x ′ is a checkpoint and x ′ ≤ x)}. Some notations are
defined as follows:

– c1 ≺ c2 (or c1 	 c2): For checkpoints c1 and c2,L(c1) ⊂
L(c2) (or L(c1) ⊆ L(c2)). For example, in Fig. 2, c1,1 ≺
c1,2.

– c ≺ S (or c 	 S): For checkpoint c = ci,x and global
checkpoint S, c ≺ S[i] (or c 	 S[i]). For example, in
Fig. 2, c2,1 ≺ G2 and c2,2 	 G2.

– S ≺ c (or S 	 c): For global checkpoint S and check-
point c = ci,x , S[i] ≺ c (or S[i] 	 c). For example, in
Fig. 2, G2 ≺ c1,3.

– S1 ≺ S2 (or S1 	 S2): For global checkpoints S1 and
S2, the condition c1 ≺ c2 (or c1 	 c2) holds, where
c1 = S1[i] and c2 = S2[i], 1 ≤ i ≤ p. Note that c1

Fig. 2 Global checkpoints

and c2 are single checkpoints. For example, in Fig. 2,
G1 ≺ G2 and G2 	 G3. Obviously, if S1 	 S2 and
S2 	 S1 then S1 = S2.

– S0 = min(S1, S2): For global checkpoints S0, S1 and
S2, for each checkpoint ci,x ∈ S0, the following prop-
erties hold: (1) ci,x ∈ S1 or ci,x ∈ S2, (2) ci,x 	 S1 and
ci,x 	 S2. For example, in Fig. 2, G2 = min(G3, G4).
Moreover, G2 	 G3 and G2 	 G4.

– T = prev(S): For two global checkpoints S and
T, T [i] = ci,x and S[i] = ci,x+1 for all i . For example,
in Fig. 2, G1 = prev(G2). The notation extends to the
checkpoints. For example, c2,2 = prev(c2,3) in Fig. 2.

– T = next (S): This holds when S = prev(T ).

2.3 Vector clock

The happen-before relation between a pair of checkpoints
can be determined using the vector clocks [12], maintained
by every computation process. In the vector clock mecha-
nism, each process Pi maintains a variable Vi which is a
vector of p integers. Initially, Vi = [0, 0, . . . , 0]. The vector
clocks are updated as follows (see Fig. 3):

1. When Pi sends a message, associate the message with
its vector clock Vi .

2. When Pi receives a message which is associated with a
vector clock V , let Vi [k] = max(Vi [k], V [k]) for each k.

3. When Pi generates a checkpoint ci,x , proceeds Vi [i] by
one, i.e. let Vi [i] = Vi [i] + 1. Then, let vector clock of
ci,x by V (ci,x ) = Vi .

(a)

(b) (c)

Fig. 3 a C-pattern H5 with 5 checkpoints. b Possible H6. c Another
possible H6. Note that the directed edges represent the precedence
relations instead of real messages
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From above, each checkpoint ci,x is associated with a vector
clock denoted by V (ci,x ). Figure 3 illustrates a set of check-
points and their vector clocks.

For a pair of p-tuple vector clocks V and V ′, define that
V < V ′ if and only if V [i] ≤ V ′[i] for all i , but V [ j] < V ′[ j]
for some j . Some important properties can be easily observed
from Fig. 3 [1,11,12,16]:

P1 V (ci,x )[i] = x indicates the index of checkpoint ci,x .
P2 c j,y → ci,x iff V (c j,y) < V (ci,x )

If c j,y happens before ci,x then V (c j,y)[i] < V (ci,x )[i],
thus, V (c j,y) and V (ci,x ) can not be fully equal.

P3 V (c j,y) < V (ci,x ) iff V (c j,y)[ j] < V (ci,x )[ j].
Consider a checkpoint ci,x in process Pi with V (ci,x )

[ j] = y′. From the above vector clock protocol, the
checkpoints in process Pj ( j �= i) can be partitioned
into two parts, checkpoints with indices less than or
equal to y′, which all happen before ci,x , and check-
points with indices larger then y′, which do not happen
before ci,x . In other words, the happen-before relation
between ci,x and any checkpoint c j,y in Pj can be deter-
mined by merely examining whether c j,y’s index (i.e.
value y) is less than or equal to y′. Therefore, Prop-
erty P3 holds. Consider the example depicted in Fig. 3,
V (c3,1)[3] < V (c4,2)[3] and thus c3,1 → c4,2.

From Property P2 and P3, the happen-before relationship
between a pair of checkpoints ci,x and c j,y can be determined
from their vector clocks within O(1) time.

3 Optimal online checkpoint identifying problem

3.1 C-pattern and possible future C-pattern

In the current problem model, each application process deter-
mines its checkpoints locally without communication. When
a checkpoint is taken, it is reported to the checker process.
The checkerprocess is a distinguished process which col-
lects the timestamps of checkpoints and performs the check-
point identifying algorithm in an online manner. This work
assumes that when reporting a checkpoint c, only the local
information (including the time-stamp and local variables) of
checkpoint c is reported, and no other checkpoint informa-
tion. We also assume that each application process reports its
checkpoints in an FIFO order, i.e. checkpoint ci,x is received
before ci,x+1 to the checker process. The well-known TCP
protocol supports such communication.

In a time instance, the set of checkpoints (with the associ-
ated timestamps) collected by the checker process is called
a C-pattern, defined in Definition 1.

Definition 1 The set of checkpoints collected by the checker
process is called a C-pattern. A C-pattern with t checkpoints

is denoted by Ht . Thus, Ht = Ht−1 ∪ {c} where c is the t th
collected checkpoint. Each C-pattern Ht is FIFO, that is, the
condition ci,x ∈ Ht implies that ci,x ′ ∈ Ht for all x ′ < x
(note that both ci,x and ci,x ′ are from the same process Pi ).

For the checker process, let stage t refer to the time period
of processing Ht . A stage t ′ > t is called a future stage of
stage t , and, Ht ′ is called a future C-pattern of Ht . In Ht , each
checkpoint c is associated with the vector clock V (c). The
vector clock V (c) remains unchanged in Ht ′ for all t ′ ≥ t .

For the online problem model, in a stage t (before stage
t+1 begins), any checkpoint set that has a possibility to be the
C-pattern in some future stage of t is called a possible future
C-pattern of Ht . The formal definition is in Definition 2.

Definition 2 For the C-pattern Ht in stage t , a checkpoint set
H is called a possible future C-pattern of Ht if the following
properties hold:

– There is a distributed program whose execution generates
the vector clocks recorded in Ht and H (both are FIFO),
and

– Ht ⊂ H .

Figure 3 illustrates a C-pattern H5 (subfigure (a)) and its
two possible future C-patterns (subfigures (b) and (c)). Each
of them is a candidate for real H6 in the next stage 6.

3.2 Optimal online checkpoint identifying problem

Given a single C-pattern Ht , if a checkpoint c belongs to
no consistent global checkpoint in Ht then we say that c is
removable/useless in Ht (or in stage t). Otherwise, c is useful
in Ht (or in stage t). The online checkpoint identifying prob-
lem identifies the consistent and removable checkpoints over
a sequence of C-patterns in the stages. Formally, in each
stage t, t = 1, 2, . . . , M , the checker process classifies all
checkpoints into one of the following three statuses:

– t-consistent: A checkpoint c is t-consistent if and only if
c is useful in all stages t ′ satisfying t ′ ≥ t . Restated, in
stage t , no matter how the newly received checkpoints are
added, c belongs to at least one consistent global check-
point.

– t-removable: A checkpoint c is t-removable if and only if
c is useless in all stages t ′ satisfying t ′ > t . Restated, in
stage t , regardless of how checkpointed are added based
on the FIFO model, no consistent global checkpoints con-
taining c can be found.

– t-potential: A checkpoint c in Ht is t-potential if c
is neither t-consistent nor t-removable in this stage.
Restated, c belongs to no consistent global checkpoint
in Ht in stage t , but may belong to a consistent global
state in Ht ′ for some t ′ > t .
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For example, in Fig. 3a, checkpoint c2,1 with V (c2,1) =
[0, 1, 1, 0] is potential in stage 5 since it might be useless
(see Fig. 3b) or useful (see Fig. 3c) in the next stage 6.

Figure 4 illustrates the notion of potential checkpoints of
the above online problem. From the point of view of stage
t , there are many possibilities for future stages. Hence, the
status of certain checkpoints may not be determined in the
current stage t unless all the possibilities are examined. This
notion is formalized as the correctness and minimum prop-
erty as follows:

Correctness property The correctness property is satisfied if
in each stage t , all the removable and useful checkpoint
are correctly identified, i.e. all the checkpoints marked as
removable in stage t are indeed t-removable.

A surprisingly naive strategy for satisfying the correctness
property is simply to treat all checkpoints as non-removable,
and thereby, no checkpoint will be wrongly predetermined as
removable in the earlier stage. To prevent the trivial solution,
an optimal online checkpoint identifying algorithm identi-
fies all removable states as early as possible for each stage,
under the correctness prerequisite. The following minimum
property formalizes this notion:

Minimum property The minimum property is to find the
minimum stage t for which a checkpoint is t-removable.
Specifically, the minimum property is satisfied if for each
stage t , if there is no future C-pattern (of Ht ) in which
a real checkpoint c is useful, then this checkpoint c is
marked as t-removable.

4 Volatile checkpoints

The volatile checkpoints are imaginary checkpoints
representing unknown checkpoints in the current stage of

Known 
C-patterns

Possible sequences of 
future C-patterns of tH

1H

tH

2H

Fig. 4 Illustration of notion of possible future C-patterns

Algorithm 1 Construct_VC(Ht )
1: let ̂Ht = Ht
2: for each process Pi , 1 ≤ i ≤ p do
3: let li be the index of the last real checkpoint from Pi in Ht ;
4: let Li = max{V (c)[i] | c ∈ Ht , 1 ≤ i ≤ p};
5:
6: /∗create volatile checkpoints for the unknown checkpoints whose

indices are between li + 1 and Li ∗/

7: for x = li + 1 to Li do
8: Add volatile checkpoints di,x to ̂Ht ;
9: Set V (di,x ) = V (ci,li ) but V (di,x )[i] = x . (If such ci,li does not

exist, simply assume V (ci,li ) = [0, 0, . . . , 0].)
10: end for
11:
12: /∗create last volatile checkpoint for the unknown checkpoints

whose indices are larger than Li ∗/

13: Add volatile checkpoint di,∞ to ̂Ht ;
14: Let V (di,∞) = V (ci,li ) but V (di,∞)[i] = ∞. (If such ci,li does

not exist, simply assume V (ci,li ) = [0, 0, . . . , 0].)
15: end for

the online algorithm. Conceptually, they establish a mapping
between the current and future C-patterns. In this section,
Sect. 4.1 describes the algorithm for constructing volatile
checkpoints. Sections 4.2 and 4.3 explain how volatile check-
points are helpful for developing an optimal checkpoint
identifying algorithm.

4.1 Constructing volatile checkpoints

In the C-pattern Ht , let li be the maximum checkpoint index
(of process Pi ) reported by process Pi itself, and Li be
the maximum checkpoint index (of process Pi ) reported by
all processes. Formally, li = max{V (c)[i] | c ∈ Ht and
c is reported by Pi } and Li = max{V (c)[i] | c ∈ Ht }.
Clearly, li ≤ Li . In a C-pattern Ht , for each process Pi ,
those checkpoints occurring after ci,li are unknown and rep-
resented using the volatile checkpoints, constructed as shown
in Algorithm 1. The C-pattern Ht with the added volatile
checkpoints is called the extended C-pattern, denoted by ̂Ht .
The original checkpoints in Ht are referred to as real or non-
volatile checkpoints.

Figure 5 demonstrates the volatile checkpoints in ̂Ht

(Fig. 5b) which establish the mapping between current C-
pattern Ht (Fig. 5c) and future C-pattern Ht ′ (Fig. 5a). Let
cli be the last real checkpoint in each process Pi in ̂Ht . Some
properties of volatile checkpoints are described as follows:

P4 For any checkpoint a and volatile checkpoint b in ̂Ht , if
b is in process Pi , (a → cli ) ⇒ (a → b).
Clearly, all volatile checkpoints in Pi occur after cli .
This property follows from the fact that (a → cli ) and
(cli → b).

P5 For any checkpoint a and volatile checkpoint b in ̂Ht , if
b is in process Pi , (a → b) ⇒ (a → cli ).
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Fig. 5 An example of C-pattern Ht (in c) and its future C-pattern Ht ′
(in a) with t = 8 and t ′ = 16. The extended C-pattern ̂Ht (in b) contains
some volatile checkpoints to represent checkpoints in Ht ′ \ Ht

If b is volatile, V (b) is set to equal to V (cli ) except index
V (b)[i] (See Step 9 in Algorithm 1). According to Prop-
erty P2 and P3, b can not incur happen-before relation
a → b unless the relation a → cli (and cli → b) is
confirmed by the real checkpoint cli .

4.2 Correctness of volatile checkpoints

Suppose that Ht is a C-pattern and Ht ′ is a future C-pattern
of Ht . Recall that ̂Ht is the same as Ht but incorporating
volatile checkpoints (see Sect. 4.1). From Ht ′ to ̂Ht , there
is a one-to-one mapping for checkpoints without ∞ indices;
and there is a many-to-one mapping for checkpoints with ∞
indices. The mapping is denoted and defined as follows:

mapt ′,t (ci,x ) =
⎧

⎨

⎩

ci,x in ̂Ht if x ≤ li
di,x in ̂Ht if li < x ≤ Li

di,∞ in ̂Ht if Li < x
(1)

where ci,x ∈ Ht ′ is a real checkpoint in Ht ′, li is the index
of the last real checkpoint reported from Pi in Ht , and Li =
max{V (c)[i] | c ∈ Ht }.

From Fig. 5b, a volatile checkpoint does not incur any
new precedence relation to the existing checkpoints, unless
the relation is confirmed by the existing non-volatile check-
points. For example, in Fig. 5b, the volatile checkpoint

[3, 1, 1, 1] has no precedence relation except those relations
confirmed by real checkpoints [2, 1, 1, 1] and [3, 2, 2, 1].
Based on this observation, Lemma 1 shows the useful prop-
erty of the volatile checkpoints.

Lemma 1 Assume that Ht ′ is a future C-pattern of Ht with
t < t ′ and Ht ⊂ Ht ′ . For a checkpoint ci,x in Ht ′ and its
corresponding checkpoint mapt ′,t (ci,x ) in ̂Ht , the following
properties hold:

– The index of volatile checkpoint is equal to that of the
corresponding real checkpoint. That is,

V (mapt ′,t (ci,x ))[i] = V (ci,x )[i] = x .

– The vector clock of the volatile checkpoint is less than or
equal to that of the corresponding real checkpoint. That
is, V (mapt ′,t (ci,x ))[ j] ≤ V (ci,x )[ j], j �= i .

Proof The first property directly holds from the above
construction procedure for the volatile checkpoints.

Now consider the second property. If mapt ′,t (ci,x ) is
real in stage t (and t ′), then mapt ′,t (ci,x ) = ci,x , and the
second property clearly holds. On the other hand, assume
that mapt ′,t (ci,x ) is volatile. From the above construction
procedure for the volatile checkpoints, we can derive that

V (mapt ′,t (ci,x ))[ j] = V (ci,li )[ j], (2)

where j �= i . Since ci,x occurs after ci,li in Ht ′ , we can also
derive that ci,li → ci,x and thus

V (ci,li )[ j] ≤ V (ci,x )[ j] (3)

For example, assume that V (ci,x ) = [3, 1, 2, 1] in Ht ′ in
Fig. 5a. Since [3, 1, 2, 3] is Ht ′ but not in Ht (Fig. 5c), there
is a corresponding volatile checkpoint V (mapt ′,t (ci,x )) =
[3, 1, 1, 1] in ̂Ht (Fig. 5b). Furthermore, in Fig. 5b, the real
checkpoint before [3, 1, 1, 1] is V (ci,li ) = [2, 1, 1, 1]. The
above Eqs. 2 and 3 can be easily examined for this example.

Combining Eqs. 2 and 3 concludes that V (mapt ′,t (ci,x ))

[ j] ≤ V (ci,x )[ j] and completes the proof. ��
Lemma 2 shows the correctness property of the volatile

checkpoints.

Lemma 2 Consider a real checkpoint c in Ht . If c is remov-
able in ̂Ht then c is removable in all future C-patterns Ht ′ of
Ht , t ′ > t .

Proof The proof is by contradiction. Assume that c is non-
removable in Ht ′ , t ′ > t , but c is removable in ̂Ht . By this
assumption, findings show a consistent global checkpoint Ct ′

containing c in Ht ′ . Recall that c j,y �→ ci,x for each pair of
checkpoints c j,y and ci,x in Ct ′ (since Ct ′ is a consistent
global checkpoint).
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Fig. 6 Global checkpoint C1
(or C2) in Ht ′ and its
corresponding set ̂C1 (or ̂C2) in
̂Ht
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Now let Ct = {mapt ′,t (a) | a ∈ Ct ′ } be a global check-
point in ̂Ht . Consider the checkpoints mapt ′,t (ci,x ) and
mapt ′,t (c j,y) in ̂Ht correspond to c j,y and ci,x in Ht ′ . From
Lemma 1, Property P2 and Property P3, we can derive the
following properties:

c j,y �→ ci,x in Ht ′
⇒ V (ci,x )[ j] < y
⇒ (V (mapt ′,t (ci,x ))[ j] ≤ V (ci,x )[ j]) < y
⇒ V (mapt ′,t (ci,x ))[ j] < y
⇒ mapt ′,t (c j,y) �→ mapt ′,t (ci,x ) in ̂Ht

For example, in Fig. 6, both global checkpoints C1 (or
C2) in Ht ′ and ̂C1 = {mapt ′,t (a) | a ∈ C1} (or ̂C2 =
{mapt ′,t (a) | a ∈ C2}) in ̂Ht are consistent.

From above, Ct is a consistent global checkpoint in ̂Ht

and contains the real checkpoint c. This contradicts that c is
removable in ̂Ht . Thus, the lemma follows. ��

4.3 Minimum property of volatile checkpoints

Recall that the minimum property finds the minimum stage t
such that the checkpoints are t-removable. On the other hand,
if a checkpoint c is determined as non-removable in stage t ,
then c must be possibly useful in some future stage t ′ > t .
To show this, we construct a possible future C-pattern H of
Ht and show that all the non-removable checkpoints in Ht

are also non-removable in H .
In our problem model, the checker process collects only

the timestamps of checkpoints, instead of every execution
state and message of the distributed program. Consequently,
constructing such H is basically a re-engineering process
which constructs a communication graph (used to model the
execution of the distributed program) by given a set of time-
stamps of Ht .

Next, Lemma 3 proves the minimum property based on
this principle.

Lemma 3 If a real checkpoint c is non-removable (i.e. use-
ful) in ̂Ht , then it is possible that c is non-removable in some
future stage t ′, t ′ > t .

Proof For this lemma, it suffices to show the following: if a
real checkpoint c is useful in ̂Ht then there must be a possible
future C-pattern (of Ht ) in which c is useful. In this proof,
we shall show that ̂Ht is itself the possible future C-pattern.

Given the set of checkpoints in ̂Ht as well as their time-
stamps, a distributed computation C with p processes is con-
structed as follows. For each real checkpoint ci,x or volatile
checkpoint di,x in ̂Ht , there is a corresponding checkpoint
ai,x in computation C. Let a �→ b denote the message directly
sent from checkpoint a to checkpoint b. Processes in com-
putation C exchange messages based on the following rule:

M1 a j,y �→ ai,x in computation C if and only if ci,x ∈ ̂Ht

and V (ci,x )[ j] = y.

Based on Rule M1, the following property establishes the
relations between C and ̂Ht :

(a j,y → ai,x )

⇔ ((c j,y → ci,x ) ∨ (d j,y → ci,x ) (4)

∨(c j,y → di,x ) ∨ (d j,y → di,x ))

Equation 4 is explained as follows. First consider the case
that real checkpoint ci,x is in ̂Ht . If (c j,y → ci,x ) ∨ (d j,y →
ci,x ) then clearly V (ci,x )[ j] ≥ y (since c j,y or d j,y may not
be the last checkpoint in Pj that happens before ci,x ). Sup-
pose that V (ci,x )[ j] = y′ for some y′ ≥ y. Based on Rule
M1, a message a j,y′ �→ ai,x must be involved in computa-
tion C, which implies that a j,y → a j,y′ → a,x . Conversely,
consider the case where a j,y → ai,x in computation C. If
this relation is induced by a direct message a j,y �→ ai,x ,
the condition (c j,y → ci,x ) ∨ (d j,y → ci,x ) holds by Rule
M1. Alternatively, assume that the precedence relation is
induced by a sequence of direct messages a jk−1,yk−1 �→
a jk ,yk , 2 ≤ k ≤ r , in computation C, where a j1,y1 = a j,y

and a jr ,yr = ai,x . From Rule M1, we have c jk ,yk ∈ ̂Ht and
V (c jk ,yk )[ jk−1] = yk−1 for all 2 ≤ k ≤ r . For k = 2, the
condition V (c j2,y2)[ j1] = y1 implies that either c j1,y1 →
c j2,y2 or d j1,y1 → c j2,y2 . Together with the properties that
all c j2,y2 , c j3,y3 , . . . , c jr ,yr are real checkpoints and c j2,y2
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→ c j3,y3 → · · · → c jr ,yr , we can derive that either
c j1,y1 → c jr ,yr or d j1,y1 → c jr ,yr (i.e. either c j,y → ci,x

or d j,y → ci,x ). From above, we have shown that (a j,y →
ai,x ) ⇔ ((c j,y → ci,x ) ∨ (d j,y → ci,x )) if real checkpoint
ci,x is in ̂Ht . For another case that the volatile checkpoint di,x

is in ̂Ht , since the precedence relation of volatile checkpoints
depend on real checkpoints (see properties P4 and P5), Eq. 4
clearly holds for both real and volatile checkpoints.

From the vector clock mechanism discussed in Sect. 2.3,
the timestamp of a checkpoint c records the index numbers
of those checkpoints happened before c. Thus, Eq. 4 implies
that V (ai,x ) = V (ci,x ) or V (ai,x ) = V (di,x ) for each ai,x .
That is, the execution of distributed computation C generates
the vector clocks the same as that in ̂Ht . Therefore, ̂Ht is a
possible future C-pattern of Ht , and the lemma is satisfied.

��
4.4 Compressing volatile checkpoints

Suppose that H is the C-pattern constructed by Algorithm 1
with input data Ht . Let H ′ = H \ {di,x | x �= ∞, di,x ∈ H}.
Lemma 4 shows that H and H ′ are equivalent for identifying
consistent global checkpoints.

Lemma 4 Suppose that c is a real checkpoint in both H and
H ′. A consistent global checkpoint C contains c in H if and
only if there is a consistent global checkpoint C′ that contains
c in H ′.

Proof (⇒) Since H ′ ⊆ H , we can define a many-to-one
mapping m(a) from H to H ′: if a is real then m(a) = a,
otherwise, m(a) is equal to the last volatile checkpoint (with
∞-index) in the same process for a. For each consistent
global checkpoint C containing c in H , the corresponding
C′ = {m(a) | a ∈ C} must also be consistent, explained as
follows. Since C is consistent, for each pair of a and b in C,
the property a �→ b holds. This implies that m(a) �→ m(b)

in C′, which implies that C′ is consistent, as discussed in the
following cases:

– Both a and b are real: In this case, m(a) = a and m(b)=b.
Clearly, a �→ b implies that m(a) �→ m(b) in C′.

– a is volatile and b is real: In this case, m(a) = a∞ and
m(b) = b, where a∞ is the last volatile checkpoint in the
process, and cannot have precedence relation to any other
checkpoint. Thus, a∞ �→ b in C′.

– a is real and b is volatile: In this case, m(a) = a and
m(b) = b∞, where b∞ is the last volatile checkpoint in
the process. Note that both b and b∞ are in process Pi .
Let bli be the last real checkpoint in Pi . Based on Prop-
erty P4 and P5, a → b ⇔ a → bli . Therefore, condition
a �→ b implies that a � �→ bli and furtherly a �→ b∞.

– Both a and b are volatile: the proof is the same as the
previous one.

(⇐) Since all checkpoints in H ′ are presented in H , every
global checkpoint in H ′ must be exist in H . Moreover, the
timestamps of checkpoints are unaltered from H ′ to H . Thus,
every consistent global checkpoint in H ′ must also be a
consistent global checkpoint in H , and the proof follows
immediately. ��

From above, a real checkpoint c is useless in H if and only
if c is useless in H ′. Thus, the normal volatile checkpoints in
H and the compressed volatile checkpoints in H ′ are equiv-
alent for identifying useless/useful checkpoints. The remain-
der of this paper only uses compressed volatile checkpoints.

5 Basic algorithms for identifying removable
checkpoints

This section discusses the properties of the removable check-
points, and presents the basic algorithms to identify all the
removables. Section 5.1 discusses the properties of check-
points for a single C-pattern, and Sect. 5.2 extends the prop-
erties to a sequence of C-patterns. Section 5.3 describes an
efficient data structure, called a front/rear global checkpoint
to improve the algorithm.

5.1 Identify removables in a single C-pattern

Researchers in [15,17] proposed the notion of Z-path and
Z-cycle, and showed how to determine the removable check-
points.

Definition 3 A Z-path exists from checkpoint ci,x to c j,y in
C-pattern H if and only if a sequence of pairs of checkpoints
in H exists as follows: (ci,x → ci1,x1 ), (prev(ci1,x1) →
ci2,x2 ), (prev(ci2,x2) → ci3,x3 ), . . . ,

(prev(cik ,xk ) → c j,y). If ci,x has a Z-path to c j,y , then it is
denoted by ci,x � c j,y ; otherwise, it is denoted by ci,x ��
c j,y .

A Z-path with the same start and end point is called a
Z-cycle.

Figure 7 has a Z-path from checkpoint c2,1 to c1,1, and
a Z-cycle from c3,2 to c3,2 itself. Theorem 1 shows the fun-
damental relationship among Z-paths, Z-cycles and global
checkpoints.

Theorem 1 In a C-pattern H, c � c′ if and only if both
checkpoints c and c′ do not belong to the same consistent
global checkpoint in H. Furthermore, c � c if and only if
c is removable in H, i.e. c does not belong to any consistent
global checkpoint in H.

Proof See [15,17]. ��
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cc4,1 4,2

Fig. 7 Z-path (c2,1 � c1,1) = {(c2,1 → c3,3), (prev(c3,3) →
c4,2), (prev(c4,2) → c1,1)}

5.2 Identify removables in a sequence of C-patterns

The previous subsection discusses the properties of Z-path
to a single C-pattern. In this subsection. Lemmas 5 and 6
extend the properties to the incremental growing C-patterns
H1, H2, . . . , HM , where M is the total number of check-
points reported.

Lemma 5 Assume that c and c′ are two real checkpoints in
̂Ht . If c � c′ in ̂Ht , then c � c′ in Ht ′ , 1 ≤ t ≤ t ′.

Proof This lemma shows that a Z-path in Ht will not be bro-
ken in the future as new checkpoints are reported. According
to the FIFO assumption (Definition 1), the checker process
appends each newly received checkpoint to the end of the
process queue. This action does not alter the happen-before
relationships between old non-volatile checkpoints. Thus, the
lemma holds for the Z-paths with only non-volatile member
checkpoints.

Next, assume that one volatile checkpoint d is involved
in the Z-path. That is, c � d and prev(d) � c′. From the
construction algorithm of volatile checkpoints (Algorithm 1),
c � d in ̂Ht implies that c � c′′ for some real checkpoint
c′′ which occurs before d. Thus, another Z-path c � c′′ and
c′′ � c′, with only real member checkpoints, can be con-
structed in ̂Ht . Thus, the lemma also holds for this case. ��
Lemma 6 The Z-path c � c exists in Ht if and only if c is
t-removable.

Proof According to Lemma 5, if c � c in Ht then c � c in
all Ht ′ , t ′ > t , which directly implies that c is removable in
all Ht ′ from Theorem 1. ��

Based on Lemma 6, the z-cycles can be utilized to iden-
tify the removable checkpoints, as shown in the following
straightforward Algorithm A which runs on the checker pro-
cess. (Note that Algorithm A only serves as a high-level
guideline for our concrete algorithms, no further implemen-
tation is provided here.)

Algorithm A
1. When the checker process receives a new checkpoint ct . Let Ht be

the current C-pattern.
2. Derive all the Z-paths in Ht .
3. For each Z-path, if it is a Z-cycle of c then identify c as a

t-removable.
4. Repeat the first step.

5.3 Using front/rear global checkpoints

In Algorithm A, the number of Z-paths is obviously very
large. This subsection describes a new algorithm based on
an efficient data structure called front/rear global checkpoint
as an alternative to using Z-paths directly. The front and rear
global checkpoints are defined as follows.

Definition 4 For a checkpoint c in the C-pattern Ht , its
front/rear global checkpoint is defined as follows:

– The front global checkpoint of c, denoted by Ft (c),
represents the earliest checkpoint in each process which
has no Z-path to c. Specifically, Ft (c)[ j] �� c, but
prev(Ft (c)[ j]) � c for all j = 1, 2, . . . , p.

– The rear global checkpoint of c, denoted by Rt (c),
represents the latest checkpoint in each process which
has no Z-path from c. Specifically, c �� Rt (c)[ j], but
c � next (Rt (c)[ j]) for all j = 1, 2, . . . , p.

Note that both Ft (c) and Rt (c) are well-defined in Ht

from the assumptions of existence of the initial and vola-
tile checkpoints. Hereinafter, we use the compressed volatile
checkpoint which is discussed in 4.4. Figure 8 illustrates an
example of front/rear global checkpoints.

Next, some useful notations and properties are described
as follows. For a checkpoint c, let Zt (c) be the set of check-
points having Z-paths to c, and let Z−1

t (c) be the set of check-
points having Z-paths from c. That is, Zt (c) = {d | d � c}
and Z−1

t (c) = {d | c � d} in Ht . As shown in Fig. 8, Ft (c)

c

P2

P4

P3

P1

F  (c) R  (c)tF  (cF  (c t

Fig. 8 Front and rear global checkpoints Ft (c) and Rt (c)
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Fig. 9 Front and rear global
checkpoints of checkpoint c3,2
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represents the right margin of Zt (c) while Rt (c) represents
the left margin of Z−1

t (c).

A0 As shown in Fig. 8, the following properties hold for
checkpoints c and d:

– For some checkpoint d, d ∈ Zt (c) if and only if
d ≺ Ft (c), and

– For some checkpoint d, d ∈ Z−1
t (c) if and only if

Rt (c) ≺ d.

A1 Assume that c � c′, then Ft (c) 	 Ft (c′).
If c � c′ then d � c � c′ for any checkpoint d. That
is, Zt (c) ⊆ Zt (c′). Hence, this property follows from
the fact that Ft (c) and Ft (c′) represent the right margins
of Zt (c) and Zt (c′), respectively.

A2 Assume that c � c′, then Rt (c) 	 Rt (c′).
The proof is similar to that of A1 and is omitted.

A3 Assuming that t < t+, the following properties hold
for all checkpoints c in Ht .

– Ft (c) 	 Ft+(c). Restated, as t increases, Ft (c)
moves rightwards in the time diagram as depicted
in Fig. 8.
From Lemma 5, a Z-path d � c in Ht continues
to exist in its descendant Ht+ . This implies that
Zt (c) ⊆ Zt+(c). Hence, this property holds as Ft (c)
and Ft+(c) represent the right margins of Zt (c) and
Zt+(c), respectively.

– Similarly, Rt+(c) 	 Rt (c). Restated, as t increases,
Rt (c) moves leftwards in the time diagram.

A4 In C-pattern Ht , a checkpoint c is in a Z-cycle if and
only if c ≺ Ft (c) and Rt (c) ≺ c.
This property holds by Definition 4. Consider the exam-
ple in Fig. 9a, any checkpoint having Z-paths to c3,2 is
in the left side of line Ft (c3,2). Thus, if c3,2 � c3,2,
then c3,2 itself is in the left side of Ft (c3,2). Similarly,
Rt (c3,2) ≺ c3,2 can be shown.

Based on Property A4, the new checkpointing algorithm
employing the rear global checkpoints is described as
follows.

Algorithm B
1. When the checker process receives a new checkpoint ct . Let Ht be

the current C-pattern.
2. Derive Rt (c) for all checkpoints c in Ht .
3. For each checkpoint c, if c �∈ Rt (c) then mark c as a t-removable.
4. Repeat the first step.

Algorithm B can use front global checkpoints instead of
rear global checkpoints. However, this study adopted rear
global checkpoints, since they were found to yield a better
time complexity than front global checkpoints.

6 Improved checkpointing algorithm

Maintaining all the rear global checkpoints is advantageous
in that many of them remain unchanged from one stage to the
next. In this section, a C-pattern is partitioned into changed
area and unchanged area. Only the data structures of the
checkpoints in the changed area need to be maintained. A new
efficient algorithm is developed in this section based on this
observation.

6.1 Changed and unchanged areas

Let ct be the t th reported checkpoint and Ht = Ht−1 ∪ {ct }.
Also, let ct ′ = prev(ct ). Note that t ′ ≤ t − 1 < t and
Ht ′ ⊆ Ht−1 ⊂ Ht . As illustrated in Fig. 10, the set Ht

excluding ct can be partitioned into three disjoint areas by
using Ft ′(ct ′) and Ft (ct ):

– First area: all the checkpoints c satisfying c ≺ Ft ′(ct ′) ≺
Ft (ct ).

– Second area: all the checkpoints c satisfying Ft ′(ct ′) 	 c
and c ≺ Ft (ct ).

– Third area: all the checkpoints c satisfying Ft (ct ) 	 c.

In the three areas, only the checkpoints c in the second area
can have the new relation c � d for some d because:
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Fig. 10 Three areas in
C-pattern Ht : a first area,
b second area, and c third area

)( '' tt cF )( tt cF

(b)
d

)( '' tt cF )( tt cF

(c)

)( '' tt cF )( tt cF

(a)

d

old Z-path new Z-path no Z-path

c cc

'tc tc 'tc tc'tc tc

– If c is in the third area (Fig. 10c), then c satisfies c �� ct .
Since any new Z-paths in Ht must be connected via the
new checkpoint ct (otherwise, all the checkpoints in the
Z-path is old, implies that the Z-path is old), c �� ct

implies that c has no new Z-path to any other checkpoints.
– If c is in the first area (Fig. 10a), then a new Z-path (c �

ct ), (ct ′ � d) is generated in Ht . However, since c � ct ′ ,
another old Z-path (c � ct ′), (ct ′ � d) can be con-
structed as illustrated by the dotted lines in the figure.

Lemma 7 gives the formal proof.

Lemma 7 Let ct be the t th reported checkpoint and Ht =
Ht−1 ∪ {ct }. For checkpoints c and d, c �= ct and d �= ct , if
c � d in Ht but c �� d in Ht−1 then c must be in the second
area of Ht .

Proof Initially, some additional notation is introduced. Let
ct ′ = prev(ct ). Also, if a Z-path exists from c to d in Ht

then it is denoted by (c � d)(t).
Without loss of generality, this proof assumes that a check-

point can occur at most once in a Z-path. If a Z-path from c to
d contains a multiple-occurrence checkpoint c′, just employ
the simple Z-path consists of the sub-Z-paths from c to the
first occurrence of c′, and, the sub-Z-path from the last occur-
rence of c′ to d.

A new Z-path P in Ht must be connected via ct , otherwise,
P is old, since all its members are already presented in Ht−1.
Thus, the Z-path P from c to d is new in Ht if and only if

(c � ct )
(t) and (ct ′ � d)(t) (5)

Since the above Z-path is simple, ct can occur only once, i.e.
the sub-Z-path (ct ′ � d)(t) contains no new checkpoint ct .
Thus, Eq. 5 implies that

(c � ct )
(t) and (ct ′ � d)(t−1) (6)

Equation 5 immediately implies that c ≺ Ft (ct ), i.e. c is
either in the first area or the second area. Next, the check-
points in the first area are examined closely. In the first area,
all the checkpoints c satisfy the following conditions based
on Lemma 5:

c ≺ Ft ′(ct ′) ⇒ (c � ct ′)(t
′)

⇒ (c � ct ′)(t−1) (7)

If c is in the first area, then an old Z-path from c to d can be
constructed by combining Eqs. 6 and 7: (c � ct ′)(t−1) and
(ct ′ � d)(t−1). Thus, the relation c � d can not be new in
Ht if c is in the first area. This completes the proof. ��

Based on Lemma 7, Corollaries 1 and 2 show the deriva-
tion of the rear global checkpoints for all three areas.

Corollary 1 Let ct be the t th reported checkpoint and Ht =
Ht−1 ∪ {ct }. The following properties hold from Ht−1 to Ht :

– For the checkpoints c in the first and third areas of Ht ,
their rear global checkpoints remain unchanged.

– For the checkpoints c in the second area of Ht , Rt (c) =
min(Rt−1(c), Rt−1(ct ′)), where ct ′ = prev(ct ).

Proof By definition, deriving Rt (c) requires evaluating all
the Z-paths starting from c in Ht (see Fig. 8). From Lemma 7,
checkpoints c in the first and third areas of Ht have no
new Z-paths, which directly implies that Rt (c) remains
unchanged, i.e. Rt (c) = Rt−1(c).

Next, consider the checkpoint c in the second area, where
c ≺ Ft (ct ). From Eq. 5, a new Z-path c � d in Ht must be
connected via ct and prev(ct ). Thus,

(c � d)(t) is a new Z-path in Ht

⇔ (c � ct )
(t) and (ct ′ � d)(t) (8)

Furthermore, by definition (see Definitions 3 and 4), the
above equation can be rewritten as

⇔ (c � ct )
(t) and (ct ′ � d)(t)

⇔ c ≺ Ft (ct ) and Rt (ct ′) ≺ d
(9)

That is, every checkpoint c in the second area has new
Z-paths to every checkpoint d, where d is the checkpoint
having Z-paths from ct ′ (i.e. Rt (ct ′) ≺ d) (see Fig. 10b).
Thus, Rt (c) can be obtained as follows:

Rt (c) = min(Rt−1(c), Rt (ct ′))

= min(Rt−1(c), Rt−1(ct ′))
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Fig. 11 Checkpoints c2, c5, c6, c8 that are sequentially reported by P3.
Disjoint areas S2, S5, S6, S8 refer to the second areas of stages 2, 5, 6, 8,
respectively

The above condition Rt (ct ′) = Rt−1(ct ′) holds, since
(ct ′ � d)(t) implies (ct ′ � d)(t−1) for any checkpoint
d, as discussed in Eq. 6. ��

Corollary 2 For a checkpoint c, Rt (c) is updated only p
times among M stages (for t = 1, 2, . . . , M), where p is the
number of the processes and M is the number of checkpoints.

Proof We shall prove that for a checkpoint c, Rt (c) is
updated only once for t = t1, t2, . . . , tk if the checkpoints
ct1 , ct2 , . . . , ctk are reported from the same process. Then,
it can be shown that Rt (c) is updated p times for total p
processes.

Figure 11 illustrates the case of four checkpoints, c2, c5,

c6, c8, that are reported from the same process. Their corre-
sponding second areas are marked S2, S5, S6, and S8 in the
figure. These areas are partitioned by F2(c2), F5(c5), F6(c6)

and F8(c8). Since F2(c2) 	 F5(c5) 	 F6(c6) 	 F8(c8) (see
Property A3), S2, S5, S6, and S8 are disjoint (see the defini-
tion of second area). In the other words, any checkpoint c can
belong to only one of S2, S5, S6, and S8. From Corollary 1,
Rt (c) is updated at most once among stages 2, 5, 6, 8.

The formal proof is as follows. Assume that the check-
points ct1 , ct2 , . . . , ctk are reported from the same process.
Let Sti be the second area of stage ti , 1 ≤ i ≤ k. By defini-
tion, Sti = {d | Fti−1(cti−1) 	 d 	 Fti (cti )}. Since Ft1(ct1) 	
Ft2(ct2) 	 · · · 	 Ftk (ctk ) (see Property A3), St1 , St2 , . . . , Stk
are disjoint. In the other words, any checkpoint c can belong
to only one of St1 , St2 , . . . , Stk . From Corollary 1, Rt (c) is
updated at most once among stages t1, t2, . . . , tk . Directly
implies that Rt (c) is updated at most p times for all stages.

��

6.2 New algorithm

This subsection presents the new algorithm that improves
Algorithm B. The main function of the new algorithm is
shown in Sect. 6.2.1. Some subroutines are presented in
Sects. 6.2.2 and 6.2.3.

6.2.1 Main function

According to Corollary 1, Algorithm B is improved as
follows.

Algorithm C
1. When the checker process receives a new checkpoint ct . Let Ht be

the current C-pattern.
2. Derive Ft (ct ). Partition Ht into the three areas as illustrated in

Fig. 10.
3. Update Rt (c) for all c in the second area according to Lemma 1,

where c �= ct .
4. Derive Rt (ct ). (Note that Rt (ct ) is excluded in Step 3.)
5. For each updated Rt (c), if c �∈ Rt (c) then mark c as a t-removable.
6. Repeat the first step.

Time complexity of algorithm C

Algorithm C is very efficient because it only updates the data
structures of the checkpoints in partial areas of the C-patterns,
rather than all. The time complexity of Algorithm C is ana-
lyzed as follows.

1. Since each checkpoint c updates its Rt (c) at most p
times (Corollary 2) and each update takes O(p) time
(for the minimum operation in Corollary 1), each check-
point c takes O(p2) to update its Rt (c). Therefore, the
total time complexity to maintain Rt (c) is O(p2 M) for
all M checkpoints.

2. In Step 5, identifying the removables takes no more time
than updating all Rt (c), because when updating each
Rt (c) the identification can be done simply by verify-
ing whether Rt (c)[i] = c, where c is in process Pi .

3. In Step 2, Ft (ct ) is derived to partition the C-pattern Ht .
As proven in Sect. 6.2.3 (below), it takes O(p2 M) total
time to derive Ft (ct ) for all t .

4. In Step 4, Rt (ct ) is derived. As proven in Sect. 6.2.2
(below), it takes O(p2 M) total time to derive Rt (ct ) for
all t .

The above discussion establishes that O(p2 M) time is
required in total by Algorithm C.

6.2.2 Deriving Rt (ct ) for all t

In Step 3 of Algorithm C, all Rt (c) for c �= ct are obtained.
This subsection discusses the derivation of Rt (ct ) in Step 4.

Let γ (ct ) be a set of checkpoints in Ht where γ (ct )[i] is
the latest checkpoint in process Pi satisfying ct �→ γ (ct )[i]
and ct → next (γ (ct )[i]). Additionally, ct is itself excluded
from γ (ct ). Figure 12a illustrates an example of γ (ct ).
Lemma 8 indicates that Rt (ct ) can be derived from Rt (c)
for all c ∈ γ (ct ).
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Fig. 12 a An example of γ (ct ).
b Illustration of scanning
γ (ct ′′ ), γ (ct ′ ), and γ (ct )
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Lemma 8 In C-pattern Ht , Rt (ct ) is minc,∀c∈γ (ct ) Rt (c).

Proof Consider a checkpoint c in γ (ct ). From Definition 3,
each Z-path c � c′ implies another Z-path ct � c′ due
to ct → next (c) and c � c′. Thus, Rt (ct ) 	 Rt (c).
Furthermore, considering all c ∈ γ (ct ), we have Rt (ct ) 	
minc,∀c∈γ (ct ) Rt (c).

Consider a checkpoint d ≺ minc,∀c∈γ (ct ) Rt (c). Since d ≺
Rt (c) for each c ∈ γ (ct ), no Z-path c � d exists. Hence,
from Definition 3, this implies that no Z-path ct � d exists.
Therefore, Rt (ct ) = minc,∀c∈γ (ct ) Rt (c). ��

Figure 12 shows that each γ (ct )[i] can be obtained by
scanning checkpoints in process Pi in the order ci,0 to ci,∞.
As this figure shows, scanning γ (ct )[i] starts at γ (ct ′)[i]
(recall that ct ′ = prev(ct )) and ends when checkpoint ci,x

(which satisfying ct �→ ci,x and ct → next (ci,x )) is found
in process Pi .

The time complexity of deriving all Rt (ct ) is discussed as
follows:

– As depicted in Fig. 12b, γ (ct ′′), γ (ct ′), and γ (ct ) can
be derived by scanning M checkpoints just once, where
ct ′′ , ct ′ , and ct are in the same process and t ′′ < t ′ < t .
This takes O(M) time. Thus, O(pM) time is required for
p processes.

– In Lemma 8, each Rt (ct ) can be derived by perform-
ing minimum operations among Rt (c),∀c ∈ γ (ct ). This
minimum operation takes O(p2) time. Thus, O(p2 M)

time is required for all ct , t = 1, 2, . . . , M .

From above, the time complexity of deriving Rt (ct ) for all
ct is O(p2 M).

6.2.3 Deriving Ft (ct ) for all t

In Step 2 of Algorithm C, the front global checkpoint Ft (ct )

has to be obtained. In this subsection, we simply apply
Garg and Waldecker’s algorithm [5] to obtain the front
global checkpoints. The time complexity of their algorithm is
O(p A), where A is the number of checkpoints. Now, assume

that process Pi has k checkpoints ct1 , ct2 , . . . , ctk . From
Property A1 and A3, Ft1(ct1) 	 Ft2(ct2) 	 · · · 	 Ftk (ctk )

as illustrated in Fig. 11. Let these front global checkpoints
partition all M checkpoints into k disjoint parts. By apply-
ing Garg and Waldecker’s algorithm to each of these k parts,
all the front global checkpoints Ft j (ct j ), 1 ≤ j ≤ k, can be
derived in time O(pM). Thus, for p processes, the total time
complexity to derive all Ft (ct ) is O(p2 M).

7 Conclusion

This work designs an efficient algorithm that can incre-
mentally identify all consistent and removable checkpoints.
Applications of this algorithm include testing and debugging
of distributed programs.

The time complexity for the proposed new algorithm
is only O(p2 M), which is much lower than the previous
O(M2)-time algorithm, because M usually grows as the
program runs, while p usually remains fixed. In our check-
pointing algorithms, the memory space can be significantly
reduced by disregarding all the removable checkpoints. This
result also represents an improvement over previous works,
which only delete a subset of removable checkpoints.
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