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從簡單液體的瞬間正則模的相鄰能階統計分析，我們檢驗在無序系統

的中振動能譜內移動邊界的臨界性。簡單液體的瞬間正則模能譜是由

Hessian 矩陣的本征值所構成，而 Hessian 矩陣屬於歐幾里德亂數矩

陣系集。在瞬間正則模能譜，有兩個移動邊界，一個是正本征值，一

個是負本征值。在每一個移動邊界附近，臨界相鄰能階分怖與標準安

德森模型所得到的分怖是一樣的。而在這兩個移動邊界，局限長度的

臨界指數是不一樣的。 

 

關鍵詞: 侷限與非侷限態轉變、可動性邊界、安德森模型、
向量歐幾里德隨機矩陣、態能階間距分佈 

 



Criticality of mobility edges in vibrational spectrum

of topologically disordered systems

B. J. Huang and Ten-Ming Wu ∗

Institute of Physics, National Chiao-Tung University, HsinChu, Taiwan 300,
Republic of China

Jan 16, 2007

∗Corresponding author: tmw@faculty.nctu.edu.tw

1



Abstract

By analyzing the nearest-neighbor level-spacing (LS) statistics of the in-

stantaneous normal modes (INMs) in a simple fluid, we have examined the

criticality of mobility edge (ME) in the vibrational spectra of topologically

disordered systems. The INM spectrum of a simple fluid is the eigenvalues of

the Hessian matrices, which are an ensemble of the Euclidean random matri-

ces with elements subject to several constraints. The localtions of two MEs

in the INM spectrum, with one in the branch of positive eigenvalues and the

other in that of negative eigenvalues, are numerically determined by the scal-

ing law for four finite sizes of the simple fluid. The critical LS distribution

near each ME in the INM spectrum is almost identical with the one obtained

from the Anderson model. However, the critical exponents of the localization

lengths at the two MEs are found to be different.

PACS: 61.25.Mv, 63.50.+x, 61.20.Ne
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I Introduction

Many universal properties at the localization-delcoalization (LD) transition, which

is also termed as mobility edge (ME), in the eigenstate spectra of disordered systems

has been studied for a long time [1, 2]. Anderson model (AM) of electron transport

in a lattice [3] is one of the well-known models to study these universal properties,

and many results of the AM at the LD transition have been given [4, 5, 6, 7, 8, 9].

In random-matrix theroy [10], the AM in three-dimensional space is classified as

the Gaussian orthogonal ensemble (GOE), which consists of the real and symmet-

ric matrix elements. For the AM with a disorder below some critical value, the

spatially localized and delocalized (or extended) eigenstates, which are separated in

different regions of the spectrum, are characterized by different level statistics [11].

For the delocalized eigenstates, any two nearest-neighbor energy levels are corre-

lated due to the large overlap in the two eigenstates, and the distribution P (s) of

the nearest-neighbor level spacing (LS) is well approximated by the Wigner surmise

PW (s) = (π/2)s exp(−πs2/4) [12]. On the other hand, any two nearest-neighbor

energy levels of the localized eigenstates are uncorrelated for the very small overlap

in the two eigenstates, and P (s) follows the Poisson distribution PP (s) = exp(−s).

Generally, for a disordered system of a finite size, P (s) in these two regimes are

size-dependent, but vary in opposite tendency with the system size. According to

the scaling theory of localization [13], at the boundary of the two regimes, which is

the ME, the nearest-neighbor level statistics is size-independent and exhibits a uni-

versal behavior, charaterized by a critical nearest-neighbor LS distribution PC(s).

This critical LS distribution has been studied numerically by examining the levels

in the band center of the AM at a critical disoreder by varing the cubic size of a

lattice from 5 up to 102 [8]. Though the precise formula of PC(s) depends on the

boundary conditions of the lattice, PC(s) is generally linear in small s as the Wigner

surmise; however, the asymtotics of PC(s) for large s is still an open question. The
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size independence of PC(s) provides a special feature to determine the ME in the

spectrum, in terms of examining the invariance of some quantity related to P (s)

as the system size is varied from small to large. Compared with other methods to

determine the ME, this method benefits by only requiring the eigenvalues of the

disordered system at several different system sizes; however, very large system sizes

and a large amount of realizations for average have to be condisered.

Recently, harmonic vibrations in topologically disordered systems (liquids and

glasses) have been received considerable attention [14, 15, 16]. The harmonic vi-

brations of a disordered system can be described by the Hessian matrices, which are

the second-order derivatives of the potential energy of the system with respect to

the particle displacements. For three-dimensional glasses, the vibrations near zero

eigenvalue are generally extended in the space, but the vibrations in the tail of the

spectrum are localized in space. Therefore, there is a sharp boundary, similar as the

ME of the AM, to separate the two kinds of vibrational modes in the spectrum. The

thermal conductivity of a glass, which is essentically determined by the extended

vibrational modes, is strongly influenced by the location of the ME [17]. The lo-

cation of the ME in a vibrational spectrum has been determined by the measures

computed from participation numbers [18], Thouless criterion, multifractal analy-

sis, LS statistics. There are two difficulties in determining the location of the ME

in the vibrational spectra of glasses in three-dimensional space: One is the vector

nature of vibrations, which largely increases the dimension of the Hessian matrices,

and the other is the highly packing of particles in a glass, which makes the matrices

non-sparse. These two features make numerically diagonalize the Hessian matrics of

glasses very difficult, and the numerical determination of the ME in the vibrational

spectra of the disordered systems without a lattice reference frame is still a challenge

problem. In many studies, for simplicity, the vector vibrations in three-dimensional

space have been reduced to scalar quantities or the disordered models are crystalline
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systems with random masses or force constants, which make the Hessian matrices

sparse.

The physical system we are going to study is the intantaneous normal modes

(INMs) of a simple fluid [19]. Originally developed for describing the short-time

dynamics, and recently extended to characterize the local topography of potential

energy surface (PES), the instantaneous normal modes (INMs) of a fluid are defined

as the eigenmodes of the Hessian matrices at the configurations along the evolu-

tion of the system, and the INM spectrum provides the information in regard to

the local-curvature distribution of the PES [20, 21]. Due to the vector nature of

particle displacements in three-dimensional space, the Hessian matrices of a fluid

are composed of 3 × 3 blocks [22, 23], which are functions of the relative distances

of particle pairs. So, the matrices can be recognized as a generalized version of

the Euclidean random matrices, with randomness originating from the disorder of

particle positions in the configuration ensemble [24]. Compared with the GOE in

random-matrix theory [10], the real symmetric elements of a Hessian are subject to

the following constraints due to physical considerations [25]: (I) sum rules between

the diagonal and off-diagonal blocks because of momentum conservation for vibra-

tions, (II) triangle rule for the relative positions of any three particles [26], which

makes only N −1 off-diagonal blocks of each Hassian independent with N being the

number of particles, and (III) the internal constranints between the elements of each

off-diagonal block. None of these constraints appear in the AM. The constraints due

to the triangle rule are ignored in those random models with a reference of lattice

and the constraint III do not appear in the scalar-vibration models. [14, 27, 28].

In this paper, we investigate the ME in the INM spectrum of a truncated

Lennard-Jones (TLJ) fluid at reduced density ρ∗ = 0.972 and reduced temperature

T ∗ = 0.836 in the Lennard-Jones (LJ) reduced units [29, 30]. The TLJ potential,

which is only the repulsive port of the LJ potential, is obtained by truncating out
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the LJ potential at the minimum and then lifting up with an amount of the depth

of the minimum. Due to the short-range nature of the TLJ potential, the Hessian

matrices of the TLJ fluid are sparse and diagonalized with the Lanczcos method.

The configurations of the TLJ fluid were generated by Monte Carlo simulations.

Presented in Fig. 1 is the eigenvaule spectrum D(λ) of the Hessian matrices of the

TLJ fluid, with the spectrum being normalized and for each configuration the three

eigenvalues of zero due to the contraint I neglected. Unlike the symmetric spectrum

of the AM, the spectrum shown in Fig. 1 is quite asymmetric, and cosists of two

branches with positive and negative eigenvalues, which we will consider separately.

In each branch, the eigenvectors with small eigenvalues are extended in space, but

those of the eigenvalues in the tail of the spectrum are localized in space. Thus,

there is a ME in each branch.

To analyze the level statistics of eigenmodes with eigenvalues λi in a range from

λ1 to λ2, we first unfold these eigenvales with the following procedure [31]

zi =
1

D0

∫ λi

λ1

D(λ)dλ, (1)

where the normalization factor D0 =
∫ λ2

λ1
D(λ)dλ is the total density of eigenmodes

between λ1 and λ2. The unfolded eigenvalue zi is a variable from zero to one.

By analyzing the eigenvalue spectrum of the TLJ fluid with smaller number of

particles, we find that the two MEs fall into the ranges λ = 1150 ∼ 1230 and

λ = −95 ∼ −80 for the positive- and negative-eigenvalue branches, respectively.

Shown in the insets of Fig. 1 are the unfolding procedures of the eigenvalues in each

of the two ranges with the unfolded variables zp and zn for the positive and negative

branches, respectively.

In the study of the vibrational modes of percolation clusters [32], an investigated

quantity related to P (s) is IN =< s2 > /2, where < s2 >=
∫ ∞
0

s2P (s)ds is the

second moment of P (s). IN = 2/π for the Wigner’s surmise, and IN = 1 for the
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Poisson distribution. Generally, for a disordered system of finite size, IN increases

monotonously from 2/π to 1 with from the regime of extended eigenstates to that

of localized ones. However, the function of IN depends on the system size: With

increasing the system size, IN increases in the regime of localized eigenstates, but

decreases in that of delocalized eigenstates. The value of IN is invariant with the

system size only at a transition point, where the ME is located.

For λ = 1150 ∼ 1230, we further divide equally the unfolded eigenvalues into

eight sections. For each section, we define the nearest-neighbor LS as si = (zi+1 −
zi)/Δ [33], where Δ is the mean level spacing of the unfolded eigenvalues considered.

The nearest-neighbor LS distribution P (s) of these unfolded eigenvalues is defined

by the condition that P (s)ds is the probability to find the next eigenvalue at a

distance between s and s+ds. Thus, P (s) is normalized and its mean is unit. With

the P (s) of each section, the value of IN is evaluated. For the eight sections, IN

as a function of the unfolded variable zp is indicated by the symbols in Fig. 2A

for four system sizes with N varied from 3000 to 24000. The similar results for

λ = −95 ∼ −80 are given in Fig. 2B. The numerical results in our calculations are

summarized in Table I.

Apparently, the results of our calculation for IN in Fig. 2 is generally consistent

with the scaling law for the finite-size system. According to the scaling law, IN has

a solution of the form

IN(z) = f(L/ξ), (2)

where f(x) is a function of one parameter, which is a ratio of the system size L of

a finite system to the correlation length ξ of the infinite system. L is proportional

to N1/3. ξ is a function of the unfolded variable and divergent at the ME with a

critical exponent ν as the following

ξ(z) = C(z − zc)
−ν , (3)
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where C is some constant. Close to the ME, the one-parameter function f(x) is

expanded into a Taylor series. Up to the third order of the expansion, IN(z) can be

expressed as

IN(z) = Ic + a1

[
(z − zc)N

1/3
]1/ν

+ a2

[
(z − zc)N

1/3
]2/ν

+ a3

[
(z − zc)N

1/3
]3/ν

. (4)

With Ic, zc, a1, a2, a3 and ν being the fitting parameters, we use this equation to

fit the numerical data of the four system sizes in Fig. 2. The results are indicated

by the solid lines in Fig. 2. with the parameters given in Table II. The MEs in the

two branches occur at the unfolded variables zpc and znc, which correspond to the

eigenvalues λpc = 1184.2 and λnc = −86.6, respectively. Acording to our results, the

two critical exponents νp and νn of the MEs in the positive- and negative-eigenvalue

branches are somewhat different, with νp = 1.74 but νn = 1.57, which is almost

equal to the critical exponent of the AM.

We define a new function

h(η) =
IN(z) − Ic

a1
(5)

with the scaling parameter η = ξN−1/3. At the ME, η is divergent and the value of

the h function is zero. The positive and negative values of the h function correspond

to the localized and extended regimes, respectively. For each branch, the numerical

data of the h function for the four system sizes collapse onto a single scaling fucntion

as shown in Fig. 3. Near the ME, the scaling functions of the two branches are almost

identical; this uniqueness in the single scaling function is due to the second term on

the right hand side of Eq. (4). However, as deviated from the ME with the scaling

parameter η less than one, the two scaling functions are no longer conincident with

each other, because of the different nonlinearity of the IN function in Eq. (4) for

the two branches.

To examine the critical LS distribution at the ME, we select the eigenvalues in

two narrow intervals λ = 1182 ∼ 1188 and λ = −88 ∼ −85, in which the MEs in
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the positive and negative branches are contained, respectively. For the realizations

generated by our simulations, the number of the LS for the selected eigenvalues in

the two interval are roughly 6×105 for each system size. Indicated by the numerical

data of the four system sizes in Fig. 4, the LS distributions of the eigenvalues in

the two intervals are in general size-independent. Also, the numerical data in Fig.

4 can be well fitted by the following formula

Pc(s) =
A2

c s exp
(
μ − √

μ2 + (Ac s)2
)

√
μ2 + (Ac s)2

, (6)

with Ac and μ being the fitting parameters. The results of the fitting are shown

by the solid lines in Fig. 4, with Ac = 1.8827 and μ = 1.5446 for the positive

branch and Ac = 1.8708 and μ = 1.5336 for the negative branch. Within numerical

errors, both LS distributions shown in Fig. 4 are close to the critical LS distribution

obtained from the AM. This is consistent with the universality of the critical LS

distribution. For small s, the critical LS distribution is linearly proportional to s

as the Wigner surmise PW (s). For large s, the fitting formula in Eq. (5) becomes

Poisson-like and decays exponentially with a decay rate Ac. However, we should

give a notice that the numerical data of the LS distribution for large s, plotted in

logarithmic scale in the insets of Fig. 4, are widely spread due to the limitation of

a finite-size system for numerical calculation. Therefore, the precise behavior of the

critical LS distribution for large s is still an open question.

In this report, we have investigated the universality of the LS statistics at the

LD transition in the vibrational spectrum of a topologically disordered system which

does not possess a lattice reference. The LD transition, also referred as the ME,

is the boundary of the localized and delocalized eigenstates in the spectrum. The

disordered system we study is the TLJ fluid, and the vibrational spectrum of the

disordered system is the eigenvalues of the Hessian matrices, which are an ensemble

of Euclidean random matrices. The vibrational spectrum of the TLJ fluid consist of
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two branches with positive and negative eigenvalues, with one ME in each branch.

According to the scaling law, the universal behavior at the mobility edge should

be size-independent. We have calculated the second moments of the LS distribu-

tions for four system sizes with particle numbers from 3000 to 24000. With the

size indepnedence on the LS distribution, the two mobility edges in the vibrational

spectrum of the TLJ fluid are found. Through a fitting for the second moments of

the four system sizes with a scaling function of one parameter, we find the critical

exponent of the correlation length, which diverges at the ME, to be 1.57 for the

negative-eigenvalue branch and 1.74 for the positive-eigenvalue branch. The LS dis-

tribution near any one of the mobiltiy edge agrees within the numerical errors with

the critical LS ditribution obtained from the AM. This confirms the universality of

the LS statistics at the LD transition.
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Figure Captions

Fig. 1 - Density of eigenvalues D(λ) for the Euclidean random matrices of the

TLJ fluid at ρ∗ = 0.972 and T ∗ = 0.836. The eigenvalues λ are in unit of ε/mσ2,

where m is the particle mass. The two insets show the unfolding procedures of the

eigenvalues in two separated ranges in which the mobility edges are contained: (a)

for λ between 1150 and 1230 and (b) for λ between -95 and -80.

Fig. 2 - The size-dependent second moment IN of the LS distribution as a

function of the unfolded eigenvalue: zr for (a) and zi for (b). IN is dependent on the

system particle number N , which is varied from 3000 to 24000. The symbols stand

for the results of the numerical calculations and the standard deviation of each data

point is smaller than the size of the symbol. The solid lines are the results of the

fitting equation for the four different system sizes with the fitted parameters given

in Table II.

Fig. 3 - Scaling function IN − Ic)/a1 as a function of the scaling parameter

N−1/3ξ. The zero value of the scaling function is the mobility edge, and the positive

and negative values correspond to the localized and extended regimes, respectively.

The symbols are the numerical data for different system sizes. The solid line is the

result of the fitting function IN = f(N−1/3ξ) calculated for the positive eigenvalues

with the parameters given in Table II, and the dashed line is the result calculated

for the negative eigenvalues.

Fig. 4 - Level-spacing distribtuion P (s) at the mobility edge in the positive-

eigenvalue regime. The symbols stands for the numerical data of system sizes varied

from N = 3000 to N = 24000. The solid line is the fitting result for these numerical

data by the Eq. (3) with the fitting parameters.
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Table I.  Numerical parameters of the eigenvalues λ in the range for various system sizes: N: 
number of particles; L: box length of the cubic system in unit of σ; M: number of samples; Ns: total 
number of level spacing; Δ: mean level spacing; D0=(3N Δ)−1: integrated density of states in the 
eigenvalue range 

 
 λ from 1150 to 1230 λ from -95 to -80 

N      L (σ) M  Ns ×10-6
  Δ ×103  D0 ×102 M  Ns ×10-6

  Δ ×103  D0 ×102

3000    14.56 64000  8.826   7.2     1.54 32000  3.052   1.05    1.057 

6000    18.35 32000  8.823   3.6     1.54 16000  3.051   0.52    1.059 

12000   23.12 16000  8.824   1.8     1.54   8000  3.050   0.26    1.059 

24000   29.12  8000  8.824   0.9     1.54   4000  3.041   0.13    1.059 

 
 
 
 

Table II.  Parameters in Eq. (1) used to fit the numerical data in Fig. 2 
for IN of different system sizes and χ2 is the estimated error of the fitting. 

 

λ Ic     zc     a1 ×102
  a2 ×103

  a3 ×104 ν       χ2 ×104

1150 ~ 1230 1.444  0.44   1.665   0.48   -0.45 1.74   0.41 

-95 ~ -80 1.438  0.486  -4.73   4.41   1.0 1.57   2.5 
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