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S U M M A R Y
A generalized radial flow model, treating the flow dimension as an arbitrary number and
taking into account the well skin effect, is presented to describe the transient head distribution
in a fractured medium under the Robin condition during constant-head tests. The Laplace-
domain solution for the head distribution is first developed via the Laplace transforms; and
the corresponding time-domain solution in terms of the hydraulic head is then obtained using
the Bromwich integral method. In addition, based on the head solution and Darcy’s law, the
solution for the wellbore flux is further developed to investigate the skin effect. It is found that
the skin effect on the wellbore flux is significant at early times. Under this circumstance, it
would not be appropriate to neglect the skin effect in the model in determining the hydraulic
parameters from the analysis of field data. Our solutions will be useful for the predictions of
the spatial and temporal head distribution and wellbore flux or in investigating the skin effect
on the head distribution and wellbore flux for flow with various dimensions in fractured media.

Key words: Geomechanics; Hydrogeophysics; Hydrology; Fracture and flow; Fractures and
faults; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

Models for describing groundwater flow in fractured media have been developed for several decades (e.g. Gringarten & Witherspoon 1972;
Cinco-Ley & Samaniego 1981; Jenkins & Prentice 1982). The model of generalized radial flow (GRF) proposed by Barker (1988) introduces
a new parameter, flow dimension, to conceptualize the channelized geometry of flow in fractured media. Barker’s (1988) model allows the
flow dimension to be an arbitrary number which ranges from one to three. The value of flow dimension is unity for a parallel flow, two
for a cylindrical flow and three for a spherical flow. The flow, for example, in a vertical fracture intercepted by a pumping well can be
regarded as 1-D. On the other hand, it will be considered to be 2-D when the well completely penetrates the homogeneous porous aquifer. In
addition, the flow in the case of pumping concentrated within a fracture connected to a dense and extended network is expected to be -3-D
(Lods & Gouze 2008).

The GRF model has been widely used for interpreting interference pumping tests (e.g. Leveinen 2000; Walker & Roberts 2003; Kuusela-
Lahtinen et al. 2003; Le Borgne et al. 2004) and has been extended to develop solutions for different circumstances. A skin zone around the
wellbore may be produced by well construction or development. The formation properties of the skin zone are significantly different from
the original ones. The well skin might have some effects upon the flow in fractured media (Kabala & Cassiani 1997; Park & Zhan 2002).
Mathematically, the skin can be described in two ways. One is to treat the skin as a different formation and solve the flow system of the
skin zone. The other is to represent the skin as a skin factor by lumping all properties of the skin together as an energy loss term for the
fracture system. Hamm & Bidaux (1996) proposed a Laplace-domain solution for double-porosity systems that consider transient flow, well
storage capacity and skin effect for constant-rate tests. Leveinen (2000) formulated a composite analytical solution which allows the flow
dimension to be fractional for a fractured-zone aquifer under a constant pumping rate. Instead of treating the skin as a factor, his model
assumes a composite structure representing the fractures intersecting the pumping well and the fracture system comprising the actual aquifer.
Audouin & Bodin (2008) further extended the Barker’s work to develop analytical solutions for the cross-borehole slug tests in fractured
media. It is worth noting that the solutions proposed by Hamm & Bidaux (1996), Leveinen (2000) and Audouin & Bodin (2008) are all in the
Laplace domain. Based on Barker’s model (1988), Rehbinder (2010) solved the generalized flow equation with both Dirichlet and Neumann
conditions and presented analytical solutions in the time domain. However, the skin effect is not considered in his model. If a skin factor is
used to represent the skin effect in the fracture flow model, the boundary condition at the rim of wellbore will become the Robin condition
for constant-head tests.

In this paper, we first present a mathematical model describing the flow behaviour under the Robin type of boundary condition with
the consideration of the skin effect in a fractured aquifer. We then develop the analytical solution for the head distribution of the model
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by the methods of Laplace transform and Bromwich integral. Moreover, the solution for the wellbore flux is also developed analytically
based on the head solution and Darcy’s law. These solutions constitute extensions of the Rehbinder’s (2010) accounting for the well skin
effect. Rehbinder (1999) proposed two methods, simple and complicated inversions, to invert the Laplace-domain solutions into time-domain
solutions. The analysis demonstrated that the solution inverted by the complicated inversion converges more rapidly, while the approach using
simple inversion method is easier to follow. The simple inversion method will be utilized in this study because it is relatively straightforward.
The presence of skin generally has a significant effect on the flow behaviour near the well and therefore the issue of well skin effect on the
flow behaviour deserves more attention. Since the developed solutions can be applied to delineate the spatial and temporal head distribution
and wellbore flux for flow in fractured media with various dimensions, it has practical use in site characterization for fractured media.

2 M E T H O D O L O G Y

2.1 GRF model

According to Barker (1988), the GRF model for fractured media reads

∂h

∂t
= κ

1

rn−1

∂

∂r

(
rn−1 ∂h

∂r

)
rw ≤ r < ∞ 0 ≤ t < ∞, (1)

where h is the hydraulic head, rw is the radius of the source, κ = K/Ss is the hydraulic diffusivity, K is the hydraulic conductivity, Ss is the
specific storage, r is the radial distance from the centre of the source, t is the discharge (or recharge) time and n is an integer or non-integer
dimensionality of the fracture system ranging from one to three, for example, 1 ≤ n ≤ 3. Compared to the thickness of the aquifer, a well
skin around the source is extremely small and therefore can be treated as a skin factor in the fracture flow model. The boundary condition at
radius rw under a constant-head test becomes the Robin’s type and is expressed as:

h0(t)H (t) = h(rw, t) − s f rw

∂h

∂r

∣∣∣∣
r=rw

, (2)

where H (t) is Heaviside’s step function, s f = K ds/(Ksrw) is the skin factor, ds is the skin thickness and Ks is the hydraulic conductivity
of the skin. Note that the initial condition must be compatible with the boundary condition (i.e. eq. 2). Thus, h0(0) = 0. In addition, the
condition that |h0(t)| is limited (Rehbinder 2010) should also behold. The introduction of dimensionless variables φ = h/hr , φ0 = h0/hr ,
τ = κt/r 2

w and ξ = r/rw leads to the following governing equation and associated boundary and initial conditions:

∂φ

∂τ
= 1

ξ n−1

∂

∂ξ

(
ξ n−1 ∂φ

∂ξ

)
1 ≤ ξ < ∞ 0 ≤ τ < ∞, (3)

φ0(τ )H (τ ) = φ(1, τ ) − s f
∂φ

∂ξ

∣∣∣∣
ξ=1

, (4)

φ(∞, τ ) = 0 (5)

and

φ(ξ, 0) = 0. (6)

By means of Laplace transform with variable p, the partial differential eq. (3) can be transformed into an ordinary one subject to the
initial condition (6):

pφ̃ = 1

ξ n−1

∂

∂ξ

(
ξ n−1 ∂φ̃

∂ξ

)
1 ≤ ξ < ∞, (7)

φ̃0(p) = φ̃(1, p) − s f
∂φ̃

∂ξ

∣∣∣∣
ξ=1

(8)

and

φ̃(∞, p) = 0. (9)

Eq. (7) can then be solved with boundary conditions (8) and (9). The Laplace-domain solution of dimensionless hydraulic head is
found as

φ̃(ξ, p) = φ̃0(p)
ξν Kν(ξ

√
p)[

Kν(
√

p) + s f
√

pKν−1(
√

p)
] , (10)

where Kν(·) is the modified Bessel functions of the second kinds of order ν = 1 − n/2. Based on the convolution theorem and eq. (10), the
time-domain solution of dimensionless hydraulic head can be expressed as
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φ(ξ, τ ) =
∫ τ

0
φ0(τ − η) f (ξ, η) dη, (11)

where the Laplace transform of f (ξ, τ ) is

f̃ (ξ, p) = ξν Kν(ξ
√

p)[
Kν(

√
p) + s f

√
pKν−1(

√
p)

] . (12)

Based on Darcy’s law, the dimensionless flux leaving the well can be expressed as

ψ(1, τ ) = −
(

∂φ

∂ξ

)∣∣∣∣
ξ=1

= −
∫ τ

0
φ0(τ − η)

(
∂ f (ξ, η)

∂ξ

)
ξ=1

dη. (13)

According to the simple inversion approach in Rehbinder (1999), eq. (12) can be rewritten as

f̃ (ξ, p) = p
ξν Kν(ξ

√
p)

p
[
Kν(

√
p) + s f

√
pKν−1(

√
p)

] ≡ p f̃1(ξ, p), (14)

which gives

f̃1(ξ, p) = ξν Kν(ξ
√

p)

p
[
Kν(

√
p) + s f

√
pKν−1(

√
p)

] (15)

and

f (ξ, τ ) = ∂ f1(ξ, τ )

∂τ
+ f1(ξ, 0)δ(τ ). (16)

For the special case that the head is constant at the boundary, φ0(τ ) equals H (τ ). Eq. (11) can then be further expressed as

φ(ξ, τ ) = f1(ξ, τ ) = L−1

{
1

p

ξν Kν(ξ
√

p)[
Kν(

√
p) + s f

√
pKν−1(

√
p)

]
}

. (17)

The inverse Laplace transform of eq. (17) can be obtained via the Bromwich integral method (e.g. Davies 2002; Yeh & Yang 2006).
As such,

φ(ξ, τ ) = 2

π
ξν

∫ ∞

0

[B Jν(ξη) − AYν(ξη)] e−η2τ

(A(η)2 + B(η)2)η
dη +

⎧⎪⎨
⎪⎩

ξν−|ν|

1 + 2s f |ν|
, ν > 0

ξν−|ν| , ν < 0
(18)

and

ψ(1, τ ) = −
(

∂φ

∂ξ

)∣∣∣∣
ξ=1

= 4

π 2

∫ ∞

0

e−η2τ

(A(η)2 + B(η)2)η
dη +

⎧⎨
⎩ 0 , ν > 0

(|ν| − ν) , ν < 0
, (19)

where η is a dummy variable, A(η) = Jν(η) − s f ηJν−1(η), B(η) = Yν(η) − s f ηYν−1(η) and Jν(·) and Yν(·) are the Bessel functions of the first
and second kind of order ν, respectively. The detailed development of eq. (18) is listed in the Appendix.

2.2 Removal of the singularity of integrand at the origin

The integration with respect to η in eq. (19) is evaluated numerically. The problem of singularity at η = 0 for the integral should be solved
first. The integral range of eq. (19) can be split into two regions, that is, [0, a] and [a,∞], as∫ ∞

0

e−η2τ

(A(η)2 + B(η)2)η
dη =

∫ a

0

e−η2τ

(A(η)2 + B(η)2)η
dη +

∫ ∞

a

e−η2τ

(A(η)2 + B(η)2)η
dη. (20)

The exponential function in the integration can be expended to a series as (Peng et al. 2002)

e−η2τ = 1 − τη2 + τ 2

2!
η4 − τ 3

3!
η6 + τ 4

4!
η8 − �. (21)

Substituting eq. (21) into eq. (20), the first integral on the right-hand side (RHS) is then written as

∫ a

0

e−η2τ[
A(η)2 + B(η)2

]
η

dη = 1

β

∫ a

0

β
[
1 − τη2 + τ2

2! η
4 − τ3

3! η
6 + τ4

4! η
8 − �

]
− 2s2

f η
2 + 2s2

f η
2[

A(η)2 + B(η)2
]
η

dη, (22)

where a is extremely small and β = 4s f ν − 2. Eq. (22) is further rearranged to

∫ a

0

e−η2τ[
A(η)2 + B(η)2

]
η

dη = 1

β

∫ a

0

β − 2s2
f η

2[
A(η)2 + B(η)2

]
η

dη + 1

β

∫ a

0

β
[
−τη + τ2

2! η
3 − τ3

3! η
5 + τ4

4! η
7 − �′

]
+ 2s2

f η[
A(η)2 + B(η)2

] dη. (23)
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Figure 1. The well skin effect on the dimensionless wellbore flux as a function of dimensionless time for various values of skin factor sf (i.e. 0, 0.2 and 0.5)
and flow dimension n (i.e. 1, 1.5, 2, 2.5 and 3).

The first term on the RHS of eq. (23) can be calculated using the differentiation formula for the arctangent function (Abramowitz &
Stegun, 1970, p. 82, eq. 4.4.53) and yields

1

β

∫ a

0

β − 2s2
f η

2

(A(η)2 + B(η)2)η
dη = 1

β
tan −1 A(η)

B(η)

∣∣∣∣
a

0

. (24)

Note that A(0)/B(0) = 0 when η = 0; therefore tan−1[A(0)/B(0)] equals zero. According to the relationships of eqs (20)–(24), the
singularity of the integration in eq. (19) can be removed using the following equation after some algebraic manipulations:

4

π 2

∫ ∞

0

e−η2τ[
A(η)2 + B(η)2

]
η

dη = 4

π 2β
tan−1 A(a)

B(a)
+ 4

π 2β

∫ a

0

β
[
−τη + τ2

2! η
3 − τ3

3! η
5 + τ4

4! η
7 − �′

]
+ 2s2

f η[
A(η)2 + B(η)2

] dη

+ 4

π 2

∫ ∞

a

e−η2τ[
A(η)2 + B(η)2

]
η

dη.
(25)

3 R E S U LT S

The dimensionless wellbore flux decreases with increasing skin factor for various flow dimensions (Fig. 1). The curves of dimensionless
wellbore flux for s f = 0 and s f = 0.5 for different n are distinctly different at early times. This discrepancy of these curves indicates that
the skin has substantial impact on the dimensionless wellbore flux and the effect of well skin reaches its maximum for n = 3 at early times.
In contrary, the differences between these curves decrease at late times. The results indicate that the early time data are better to use for
determining the value of the skin factor than the late time data. However, the skin effect might not be observed at late time data especially for
n = 1 since it vanishes at late times.

4 D I S C U S S I O N

As shown in Fig. 1, the differences in wellbore flux among the curves of various dimensionality are small when τ is small for s f = 0, 0.2
and 0.5. In other words, the wellbore flux is independent of the dimensionality n when τ is small as indicated in Rehbinder (2010). This
phenomenon can be demonstrated from the analysis of eq. (19) when τ is small. Using the asymptotic expansion of the Bessel function in
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eq. (17) for a large value of p, it yields the following equation:

ψ(1, τ � 1) = − ∂

∂ξ

[
L−1

{
lim

p→∞
1

p

ξν Kν(ξ
√

p)[
Kν(

√
p) + s f

√
pKν−1(

√
p)

]
}]

ξ=1

= − ∂

∂ξ

[
L

{
ξν− 1

2
e−(ξ−1)

√
p

p(1 + s f
√

p)

}]
ξ=1

≈ 2

π
(1 + s f )

∫ ∞

0

e−η2τ

(1 + s2
f η

2)
dη.

(26)

It would be expected from eq. (26) that the flow is only affected by the skin at early times. The influence of the dimensionality on
wellbore flux becomes considerable when τ increases because the exponential term on the RHS of eq. (19) becomes less important as τ

increases. It is worth mentioning that the effect of dimensionality on wellbore flux becomes less important since the solution of wellbore flux
in eq. (19) for τ → ∞ is zero when n ≤ 2. However, the zero wellbore flux is physically impossible because of the presence of pumping. In
addition, eq. (26) is identical to the small-time solution of eq. (44) in Rehbinder (2010) when s f = 0.

Solutions developed in this study are based on the GRF model, and therefore the use of these solutions may also be restricted by the
limitations of the GRF model. Eqs (18) and (19) are adequate for describing the flow behaviour in continuous media since the GRF model is a
continuum in which the flow is not necessarily 2-D during the pumping test (Rafini & Larocque 2009). As demonstrated above, the influence
of dimensionality on the wellbore flux is important in a fracture system. Therefore, a careful treatment of the dimensionality is required when
the scale of the fracture flow system increases as indicated in Barker (1988).

5 C O N C LU D I N G R E M A R K S

The GRF equation, describing the transient head distribution of flow with arbitrary dimensionality in fractured media, has been solved with
the considering the well skin effect. The boundary condition around the source under a constant-head test will become the Robin condition
if the well skin effect is taken into account. The Laplace transform is applied to solve the partial differential equation under the Robin
type of boundary condition. The solution in Laplace domain is further transformed into time domain via the method of Bromwich integral.
Furthermore, based on the head solution and Darcy’s law, the time-domain solution for wellbore flux is developed to investigate the well skin
effect. Results of this study indicate that the influence of skin on wellbore flux is significant for various flow dimensions and the skin effect
should be taken into account in characterizing fracture aquifers. The newly developed solutions are helpful for determining the values of the
skin factor and hydraulic parameters from the analysis of the field data obtained from constant-head tests in fractured media.
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A P P E N D I X

To invert the Laplace-domain solution, eq. (10) into the time-domain solution, the Bromwich integral (Davies 2002) is applied as

φ = 1

2π i

c+i∞∫
c−i∞

epτ φ̃ dp, (A1)

where p is a complex variable and c is a large, real, positive constant so that all the poles lie to the left of line (c − i∞, c + i∞). The closed
contour with a branch point at p = 0 for the integral is shown in Fig. A1 and the integral is expressed as∮

C
epτ φ̃ dp = 0. (A2)

The closed contour consists of the part C0 of the Bromwich line from −∞ to ∞, semicircles C1 and C5, lines C2 and C4 parallel to
the real axis and a circle C3 of radius ε around the origin. As one would expect, the integrals taken along C1 and C5 vanish when R tends to
infinity. Consequently, the calculation of the integral along the path C0 yields the inversion in eq. (A1) and it is written as

φ = lim
ε→0

R→∞

−1

2π i

[∫
C2

epτ φ̃ dp +
∫

C3
epτ φ̃ dp +

∫
C4

epτ φ̃ dp

]
. (A3)

Assume p = η2eiπ and apply the formulae (Abramowitz & Stegun 1970)

Kν(ze± π i
2 ) = ∓π i

2
e∓ π i

2 ν[Jν(z) ∓ Yν(z)] , ν = 1, 2, 3... (A4)

The integral along the path C2 can be obtained as∫
C2

epτ φ̃ dp = −2
∫ ∞

0

ξν[Jν(ξη) − iYν(ξη)]e−η2τ

η(A − iB)
dη. (A5)

Figure A1. The closed contour used in the Bromwich integral.
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Similarly, the integral along the path C4 is calculated by introducing p = η2e−iπ as∫
C4

epτ φ̃ dp = 2
∫ ∞

0

ξν[Jν(ξη) + iYν(ξη)]e−η2τ

η(A + iB)
dη. (A6)

For the integral along the small circle C3, we define p as p = εeiθ and use the approximated form

Kν(z) ∼ 1

2
�(z)

(
1

2
z

)−ν

, ν > 0. (A7)

The integral leads to

∫
C3

epτ φ̃ dp = lim
ε→0

∫ −π

π

ξ ν Kν(ξ
√

εe
θ
2 i)e−εeθ iτ εieθ i

εeθ i
[

Kν(
√

εe
θ
2 i) + s f

√
εe

θ
2 i Kν−1(

√
εe

θ
2 i)

]dθ =

⎧⎪⎨
⎪⎩

− 2π iξν−|ν|

1 + 2s f |ν| , ν > 0

−2π iξν−|ν| , ν < 0

. (A8)

Combining eqs (A5), (A6) and (A8) and substituting into eq. (A2) yields the solution of eq. (11).
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