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辛幾何的誘導方法(3/3)結案報告 

蔡孟傑 

關鍵詞：誘導方法、誘導表現、幾何量化 

摘要： 

    令 G 為一半單李羣。本計畫在 G 的半單共伴軌道上採用辛誘導

方法，並研究產生的 G 辛流型。我們也在它上面進行辛約化，以便

了解辛誘導和辛約化之間的關係。在表現理論中，我們利用 G 的拋

物子羣來誘導 G 的表現。針對裂解的 G，我們發現辛誘導的過程類

似誘導表現。我們的構想是利用幾何量化來證明量化過程和誘導過程

是可互換順序的。 



Induction Method in Symplectic Geometry

Meng-Kiat Chuah

Abstract

Let G be a semisimple Lie group. We perform symplectic induction on semisimple

coadjoint orbits of G and study the resulting symplectic G-manifolds. We also perform

symplectic reduction to them, in order to understand the relations between symplectic

induction and symplectic reduction. Recall that in representation theory, one uses

the representation of a parabolic subgroup of G to induce a G-representation. For

split G, we show that our process of symplectic induction is analogous to the induced

representation. The idea is to use geometric quantization to show that quantization

commutes with induction.

Keywords: symplectic induction, induced representation, geometric quantization.



Let G be a real semisimple Lie group. In this project, we study certain symplectic

G-manifolds X which are induced from the semisimple coadjoint orbits of G. We

also study the effect of symplectic reduction on X. For split Lie groups, we also

use geometric quantization to show that this process is analogous to induction in

representation theory, in the sense that quantization commutes with induction.

The Lie algebras are denoted by the lower case German letters, so for instance

the Lie algebra of G is g. Let C be a Cartan subgroup of G. Taking the coadjoint

representation of G on g∗, let L be the stabilizer of some element of c∗, so that G/L

has the structure of a semisimple coadjoint orbit. Let Lss = (L,L) be its commutator

subgroup. Let H be the centralizer of L in C. Let

X = G/Lss × h.(0.1)

By letting G act on the first component of X, we obtain the left G-action on X. Since

H centralizes Lss, it also acts on X from the right.

We show that a mapping

β : h −→ h∗

may be extended to a G×H-invariant 1-form on X. We are interested in the corre-

sponding 2-form ω = dβ on X. The next theorem studies the condition for ω to be

symplectic. We gather the notations here for convenience:

X = G/Lss × h , β : h −→ h∗ ,

ω = dβ is a G×H-invariant 2-form on X.
(0.2)

Theorem 1 The 2-form ω = dβ is symplectic if and only if β is a local diffeomor-

phism and Im(β) ⊂ h∗reg.

Here Im(β) denotes the image of β, and the regular elements h∗reg are those in h∗

which are orthogonal only to the roots in c∗ which annihilate h. So h∗reg is a union of

open cones.

In general, if R is a closed connected subgroup of G, then the G-invariant q-forms

on G/R can be identified with

∧q(g, r)∗ = {γ ∈ ∧qg∗ ; ad∗xγ = ι(x)γ = 0 for all x ∈ r}.(0.3)

Here ad∗ : g −→ End(∧qg∗) is the coadjoint representation, and ι(x) : ∧qg∗ −→
∧q−1g∗ is the interior product.

Suppose that ν ∈ h∗ is in the image of the moment map of ω. In particular let

Φr : X −→ h∗ be the moment map of the right H-action, and let

Xν = (Φ−1
r (ν))/H.
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Let ı : Φ−1
r (ν) ↪→ X be the inclusion, and let π : Φ−1

r (ν) −→ Xν be the natural

quotient. Then there is a unique symplectic form ων on Xν such that π∗ων = ı∗ω.

The process

(X, ω) ; (Xν , ων)(0.4)

is known as symplectic reduction with respect to ν ∈ Im(Φr). The space (Xν , ων) is

called the symplectic quotient. Each step of (0.4) commutes with the left G-action,

so ων is G-invariant. Using the notation in (0.3), the following theorem describes the

symplectic quotient.

Theorem 2 The symplectic quotient Xν consists of copies of G/L, each of which has

the symplectic form dν ∈ ∧2(g, l)∗.

A semisimple coadjoint orbit is the coadjoint orbit of an element of c∗, so it is

equivalent to some G/L. The above theorem shows that symplectic reduction on X

leads to G-invariant symplectic forms on the semisimple orbits. The next theorem

shows that the converse is true.

Theorem 3 Every G-invariant symplectic form on G/L has the expression dν ∈
∧2(g, l)∗, where ν ∈ h∗reg. Therefore, they can be obtained by symplectic reduction

from (X, ω), where ν is in the image of the moment map of ω.

In what follows, we shall use the method of geometric quantization to construct

a unitary representation out of the symplectic form. The intended representation

will be given by the G-representations which are induced by its parabolic subgroups,

namely the principal series representations. Therefore, we suppose that G is split,

namely it has a Cartan subgroup of the form MA, where M is a finite abelian group,

and the Lie group A is equivalent to the Euclidean space. We shall take H to be MA,

so that its centralizer is L = H = MA. In this case X becomes G× a. Therefore, X

admits a G×G-action. Here β : a −→ a∗ is G×G-invariant. So (0.2) becomes

X = G× a , β : a −→ a∗ ,

ω = dβ is a G×G-invariant 2-form on X.
(0.5)

By the method of geometric quantization, ω leads to a holomorphic Hermitian

line bundle L on X. We use certain sections of L to construct a unitary G ×MA-

representation

H = H(X,ω).

Let M̂ and Â respectively denote the spaces of unitary irreducible representations

of M and A. Since G is split, M = M̂ is finite abelian. Choose a positive system in

a∗, and let N ⊂ G be the subgroup corresponding to the positive root spaces. We
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shall show that the irreducible G-representations which occur in H are given by the

representations I(σ ⊗ ν) = IndG
MAN(σ ⊗ ν ⊗ 1) induced by the parabolic subgroup

MAN . Here σ ∈ M̂ and ν ∈ Â. Since M̂ is finite, we write H =
∑

σ Hσ with respect

to the M -action. The parameter ν is continuous under the Plancherel measure dν

on Â. We shall use the notion of direct integral and write Hσ =
∫⊕
Â
Hσ,ν dν, where

Hσ,ν
∼= I(σ ⊗ ν). The measure dν has no point-mass. So we first say that an open

ball U ⊂ Â occurs in Hσ if there exists some
∫
Â sν dν ∈ Hσ such that sν 6= 0 for all

ν ∈ U . Then Hσ,ν is said to occur in Hσ if some open ball U containing ν occurs in

Hσ.

If F : a −→ R, we write its gradient function ∂F
∂x

as

F ′ : a −→ a∗.(0.6)

We shall compare F ′ with β of (0.5). If the Hessian matrix ( ∂2F
∂xi∂xj

) is positive definite

everywhere, we say that F is strictly convex.

The moment map Φ : X −→ g∗ of ω = dβ is G-equivariant, and so can be regarded

as a map a −→ g∗. We shall see that this map is simply β itself, and so Φ becomes

a −→ a∗. Further, a∗ ∼= Â, where λ ∈ a∗ can be identified with ν ∈ Â by eλ(ξ) = ν(eξ)

for all ξ ∈ a. So the image Im(Φ) lies inside Â. The following theorem shows that

Im(Φ) determines the occurrence of the principal series in H. Let ρ denote half the

sum of positive roots.

Theorem 4 Suppose that β = F ′ and F is strictly convex. The unitary G ×MA-

representation H = H(X, ω) decomposes as a direct integral of G-representations

H =
∑

σ

∫
ν Hσ,ν dν. Here Hσ,ν = I(σ ⊗ ν) when ν + ρ is in the image of the moment

map Φ, and Hσ,ν = 0 otherwise.

We say that I(σ ⊗ ν) is regular if ν ∈ a∗reg. We shall apply Theorems 1 and 4 to

construct a regular principal model H, in the sense that every regular principal series

representation occurs exactly once in H.
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