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Induction Method in Symplectic Geometry

Meng-Kiat Chuah

Abstract

Let G be a semisimple Lie group. We perform symplectic induction on semisimple
coadjoint orbits of G and study the resulting symplectic G-manifolds. We also perform
symplectic reduction to them, in order to understand the relations between symplectic
induction and symplectic reduction. Recall that in representation theory, one uses
the representation of a parabolic subgroup of G to induce a G-representation. For
split G, we show that our process of symplectic induction is analogous to the induced
representation. The idea is to use geometric quantization to show that quantization
commutes with induction.
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Let G be a real semisimple Lie group. In this project, we study certain symplectic
G-manifolds X which are induced from the semisimple coadjoint orbits of G. We
also study the effect of symplectic reduction on X. For split Lie groups, we also
use geometric quantization to show that this process is analogous to induction in
representation theory, in the sense that quantization commutes with induction.

The Lie algebras are denoted by the lower case German letters, so for instance
the Lie algebra of G is g. Let C' be a Cartan subgroup of G. Taking the coadjoint
representation of G on g*, let L be the stabilizer of some element of ¢*, so that G/L
has the structure of a semisimple coadjoint orbit. Let L* = (L, L) be its commutator
subgroup. Let H be the centralizer of L in C'. Let

(0.1) X =G/L* x b.

By letting GG act on the first component of X, we obtain the left G-action on X. Since
H centralizes L*, it also acts on X from the right.
We show that a mapping

G:h—0b
may be extended to a G x H-invariant 1-form on X. We are interested in the corre-

sponding 2-form w = df on X. The next theorem studies the condition for w to be
symplectic. We gather the notations here for convenience:

(02) X:G/Lssxbaﬁ:b_)b*7
' w =df is a G x H-invariant 2-form on X.

Theorem 1 The 2-form w = df is symplectic if and only if 3 is a local diffeomor-
phism and Tm(3) C b
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which are orthogonal only to the roots in ¢* which annihilate . So b

Here Im((3) denotes the image of 3, and the regular elements b, are those in h*

*
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open cones.
In general, if R is a closed connected subgroup of GG, then the G-invariant g-forms
on G/R can be identified with

(0.3) N(g,t)" = {y € ANg*; ad}y = t(x)y =0 for all = € t}.

Here ad® : g — End(A%*) is the coadjoint representation, and t(z) : Alg* —
AI71g* is the interior product.
Suppose that v € h* is in the image of the moment map of w. In particular let
®,.: X — bh* be the moment map of the right H-action, and let
X, = (@' (v))/H.
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Let 2 : ®,'(v) — X be the inclusion, and let 7 : & '(v) — X, be the natural
quotient. Then there is a unique symplectic form w, on X, such that m*w, = *w.
The process

(0-4) (X, w) ~ (Xy,w))

is known as symplectic reduction with respect to v € Im(®,). The space (X,,w,) is
called the symplectic quotient. Each step of (0.4) commutes with the left G-action,
0 w,, is G-invariant. Using the notation in (0.3), the following theorem describes the
symplectic quotient.

Theorem 2 The symplectic quotient X,, consists of copies of G/L, each of which has
the symplectic form dv € NA*(g,[)*.

A semisimple coadjoint orbit is the coadjoint orbit of an element of ¢*, so it is
equivalent to some G/L. The above theorem shows that symplectic reduction on X
leads to G-invariant symplectic forms on the semisimple orbits. The next theorem
shows that the converse is true.

Theorem 3 FEvery G-invariant symplectic form on G/L has the expression dv €
AN (g, 0)*, where v € b Therefore, they can be obtained by symplectic reduction

reg-
from (X,w), where v is in the image of the moment map of w.

In what follows, we shall use the method of geometric quantization to construct
a unitary representation out of the symplectic form. The intended representation
will be given by the G-representations which are induced by its parabolic subgroups,
namely the principal series representations. Therefore, we suppose that G is split,
namely it has a Cartan subgroup of the form M A, where M is a finite abelian group,
and the Lie group A is equivalent to the Euclidean space. We shall take H to be M A,
so that its centralizer is L = H = M A. In this case X becomes G x a. Therefore, X
admits a G x G-action. Here 3 :a — a* is G x G-invariant. So (0.2) becomes

X=Gxa,f:a—a",

(05) w=df is a G x G-invariant 2-form on X.

By the method of geometric quantization, w leads to a holomorphic Hermitian
line bundle L on X. We use certain sections of L to construct a unitary G x M A-
representation

H=H(X,w).

Let M and A respectively denote the spaces of unitary irreducible representations
of M and A. Since G is split, M = M is finite abelian. Choose a positive system in
a*, and let N C G be the subgroup corresponding to the positive root spaces. We



shall show that the irreducible G-representations which occur in H are given by the
representations I(0 ® v) = Ind$,,v(0 ® v ® 1) induced by the parabolic subgroup
MAN. Here 0 € M and v € A. Since M is finite, we write H = > s H, with respect
to the M-action. The parameter v is continuous under the Plancherel measure dv
on A. We shall use the notion of direct integral and write H, = fj!f Hy . dv, where
H,, = I(0 @ v). The measure dv has no point-mass. So we first say that an open
ball U C A occurs in ‘H, if there exists some Jisvdv € H, such that s, # 0 for all
v € U. Then 'H,, is said to occur in ‘H,, if some open ball U containing v occurs in
H,.

If F': a — R, we write its gradient function g—f as

(0.6) F'ia—a".

We shall compare F’ with ( of (0.5). If the Hessian matrix ( afjai ]-) is positive definite

everywhere, we say that [ is strictly convex.

The moment map ¢ : X — g* of w = df is G-equivariant, and so can be regarded
as a map a — g*. We shall see that this map is simply 3 itself, and so & becomes
a — a*. Further, a* = A, where A € a* can be identified with v € A by e*®) = p(ef)
for all € € a. So the image Im(®) lies inside A. The following theorem shows that
Im(®) determines the occurrence of the principal series in H. Let p denote half the
sum of positive roots.

Theorem 4 Suppose that 3 = F' and F is strictly convex. The unitary G x M A-
representation H = H(X,w) decomposes as a direct integral of G-representations
H=%,[ Hoy,dv. Here H,, = I(0c ® v) when v+ p is in the image of the moment
map P, and H,, = 0 otherwise.

We say that I(c ® v) is regular if v € aj,,. We shall apply Theorems 1 and 4 to
construct a regular principal model H, in the sense that every regular principal series
representation occurs exactly once in H.



