TR

RPPELR 4 AP TP E S 242
Wﬁigg%pigiéél%iﬁ%ﬁ%ﬁﬁi\

o

Preparation of NSC Project Reports

P E e
HFH R
EIFE

NSC 93-2115-M-009-011
93 #87" 1p29% 7" 31p
CRAE R A A E R BF i

cychen@mail.nctu.edu.tw

- ~ iR jf,%]’ezl

L VAN Rl
r= Ig;,—t e L =S
e ﬁﬁﬂ&il

/\E:rm I—%‘.;%—\ }&_ L
C 2 TR A

Bawd-— & pig- £
4 A I SR SR g o P
Bepe) ~ TR E RN R) 12 T
BN AR

» R e F" e

o

;J- lJé'__LE ‘_*Il-’b “i‘—;jb:’\;;}g-ngé\n?(gﬁ—
’%‘ é"”"l”lf) o H ¥ — ;;kaﬁggf\l'%:
SESENEN T4 FaE ISt Fres

EaR
o

%ﬁ%\%%

J

2

[

TERAREER | 26 0 APEHE -

BT 3\ e B2 0 L-shape §_degenerate P » %
#(l,hp,neaigiz o A0 5 sV Eep
% buddy networks with an
arbitrary number of stages 3% B i~ 12 %
4
algorithm for the backward network of a
bidirectional general shuffle-exchange

network o

25 o0 NP

| — B %3 »c I ¢h tag-based routing

G D RS RR o EHRCREE - ZBRS
el s BARRER S

Abstract
The purpose of this project is to study loop

networks and interconnection networks. This
project is a two-year project and now it is in

~N

2 i =

1

*i:fj;b NS N S

SR WF Y2

its first year. In this year, we focus on the
study of degenerate double-loop networks,
the equivalence relation of buddy networks,
and the routing algorithm for the backward
network of a bidirectional shuffle-exchange
network.

Keywords: loop network, double-loop
network, triple-loop network, interconnection
network, diameter

TRy

* A ﬂﬁ-{t‘& R A A S RS

g A R 2 BB tu‘fé—i %J& ¢
er,FJ\m/EnjLJ, 1 FI%—\]?P,':‘&R Rm o
d 3 T e Jﬁfmf_ﬂi ,%—‘f@
oo Rk R E & e o rv:t%ﬁd
%ﬂ’*fﬁﬁskv ?oeh- il RAEE R
By ks B Tl dReR
oo

9

o

7
~

s

1

— N

RE f?l N

s BT g

F e s 2Ry AR aED
v ﬁL ’ l‘ﬁnj”‘izm— FE oo 1Tk it
2 AR E e % o

-

)

¢ “+£J‘T@m

A

~ - :tEquivalence of buddy networks with

arbitrary number of stages. [5]

*H - BEE D
4 g b

PR aE R MG
PR Flavap >NPEarg

KN SN <

B2 0 H K ¥ & buddy networks 2
strict buddy networks > » #* 7 i banyan %
BN EaE M % (R Y hstage
Bt o)) o hiEhw A AP
B strict buddy networks = % universal
buddy networks ~ » 3 & P(*,*) networks =
% power-of-d networks -

d > banyan 7 & ;%id 4§ & universal
buddy networks e7special case @ fie ki #
~ 42 > ARy universal buddy networks

with an arbitrary number of stages 7% i R
% o

< = :0n degenerate double-loop L-shapes.
[12]

w2 A2 H2 9 g k- B TR
¥t | #l-shape®_degenerate casep¥ » % 3#(l,
h, p, N2 o Rm & Bk~ bz 3k
A - Rogme 22 P TR F 2
B % o

Apg AEN T - B RS R D
L-shape #_degenerate -t & & & % i+ ; £
¥, 3\ frzEm i L-shape £_degenerate & -
g3 747 s shapes - (S1), (S2), ...,
(S7) -

AR TRICETE IR
= CH-ALGO - fiwm ~ [4] % 2 &

CH-RULE - & Pz 7 @ CH-ALGO ¢ ¢

21(S1), (S2), (S3), (S5) : CH-RULE ¥ ¢

7 11(S2), (S3), (S5), (S6) o i x Ja 3) ¢

iw ¥ CH-ALGO 4r CH-RULE ¢ # 41— 3%
(l,h,p,n)> P EET i €87~ 5], h,
p,N) A g i g E A - kel h,p,n)
B~ v i A (), h, p, n)2 B enkg % o

< = An efficient tag-based routing
algorithm for the backward network of a
bidirectional general shuffle-exchange
network. [8]

Shuffle-exchange network £_{x ¥ 4% * F|en

PN i RER - AW oc [13]4
Padmanbhan #% & 7 general shuffle-
exchange network (GSEN) - iz &_ shuffle-
exchange network efa i - & (B R P g
BEfc A X UL (B3k switch
elements j};’fi{ k x k) » Padmanbhan F
< #4107 - B %3 s artag-based routing
algorithm - &3 = [7]4Z > Chen ~ Liu 4= Qiu
* f& B GSEN = Z #73 g—ﬁgﬂf;&{’%@ 2
¥ Lz % bidirectional GSEN -

k 1=t 3

- i# bidirectional GSEN #2. & 7z 7 & i %
¥, the forward network % the backward
network - The forward network = routing ¥
v * Padmanbhan *13&) ¢ tag-based
routing algorithm % % = - % % the backward
network » Chen ~ Liu = Qiu & 117 - B
tag-based routing algorithm ; i& i algorithm
& JB L # {7 Padmanbhan ¢ tag-based
routing algorithm » # T % » | & *#
Padmanbhan s algorithm #7 & 4 shtag -

hh 2 [8]4 - AirE M 1 the backward
network of a bidirectional GSEN 7 — i# 2t
WA B A & B destinationi @ 3
¢ 3 @ i backward control tags @ *
T o 1Z @ source j 75'3? F#* iz B tags
o BAE] P AP iR
efficient routing algorithms -

i
I

= B

Rl
T

1
|

P4~ RIS U1

AR EAEEFEH SR PP P
X RN T A

oo BHIE

(1) B. W. Arden and H. Lee, Analysis of
chordal ring network, IEEE Trans.
Computer. 30 (1981) 291-295.

(2] L. Barriere, J. F\'abrega, E. Simo and M.
Zaragora, Fault-tolerant routing in
chordal ring networks, Netoworks 36
(2000) 180-190

3] J.-C. Bermond, F. Comellas and D. F.
Hsu, Distributed loop computer networks:
a survey, J. Para. Cist. Comput. 24 (1995)
2-10.

(4] *C. Y. Chen and F. K. Hwang,
Equivalent L-shapes of double-loop
networks for the degenerate case, Journal
of Interconnection Networks 1 (2000)
47-60.

(5] *C. Y. Chen, F. K. Hwang and K. Y.
Lan, Equivalence of buddy networks with
arbitrary number of stages, submitted
(2004).

6] S. K. Chen, F. K. Hwang and Y. C. Liu,
Some combinatorial properties of mixed
chordal rings,” J. Inter. Networks 4 (2003)
3-16.

(71 *Z. Chen, Z. Liu, and Z. Qiu,
Bidirectional shuffle-exchange network
and tag-based routing algorithm, IEEE
Communication Letters 7 (2003),
121-123.

18] *C.Y.ChenandJ. K. Luo, An efficient
tag-based routing algorithm for the
backward network of a bidirectional
general shuffle-exchange network,
preprint (2004).

(97 *Y. Cheng and F. K. Hwang, Diameters
of weighted double loop networks, J.
Algorithms 9 (1988), 401-410.

(0] F. K. Hwang, A complementary survey
on double-loop networks, Theoret.
Comput. Sci. 263 (2001), 211-229.

(1] W. Kabacinski and G. Danilewicz,
Wide-sense and strict-sense nonblocking
operation of multicast multi-log,N
switching networks, IEEE Trans. Commu.
50 (2002) 1025-1036.

(121 *J. S. Lee, C. Y. Chen and K. Y. Lan,
On degenerate double-loop L-shapes,
preprint (2004).

(131 *K. Padmanabham, Design and analysis
of even-sized binary shuffle-exchange
networks for multiprocessors, IEEE Trans.
Parallel and Distributed Systems 2
(1991), 385-397.

141 C. S. Raghavendra and J. A. Sylvester,
A survey of multi-connected loop
topologies for local computer networks,
Comput. Netw. ISDN Syst. 11 (1986)
29-42.

(15) Y. Tscha and K. H. Lee, Yet another
result on multi-log N networks, IEEE
Trans. Commu. 47 (1999) 1425-1431.

Equivalence of Buddy Networks with Arbitrary
Number of Stages*

Chiuyuan Chen! Frank K. Hwang*and Kuo-Yuan Lan

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan

Abstract

Equivalence of multistage interconnection networks is an important concept since
it reduces the number of networks to be studied. Equivalence among the banyan
networks has been well studied. Occasionally, the study was extended to networks
obtained by concatenating two banyan networks (identifying the output stage of the
preceding network with the input stage of the succeeding one). Recently, equivalence
among the class of networks which are obtained from banyan networks by adding
extra stages has also been studied. Note that all these above-mentioned networks
are in the general class of buddy networks. In this paper we study equivalence of
buddy networks with an arbitrary number of stages.

Keywords: Multistage interconnection networks, topological equivalence, banyan prop-

erty, buddy property, bit permutation.

1 Introduction

Let N = d" be the number of inputs and outputs of a network. A d-nary s-stage network
is a network with s columns (stages) where each column consists of N/d d x d crossbars
(switches) such that links exist only between crossbars of adjacent stages (note that we
do not allow multi-links between crossbars). An n-stage network is a banyan network if

each input has a unique path to each output (see Figure 1). If a network has more than

*This research was partially supported by the National Science Council of the Republic of China under
the grants NSC93-2115-M-009-011 and NSC93-2115-M-009-013.

fThe corresponding author, e-mail: cychen@mail.nctu.edu.tw

¥This paper was written when the author was visiting Center of Mathematical Sciences, Zhejiang
University, Hangzhou, Zhejiang, P.R. China.

n stages, then we say such a network has extra stages. In all the figures, the arcs are

directed from left to right.

400 00 00 E o—o
01 01201ﬁ
J10 1ogloﬁ

11 11 11 o

Figure 1: A binary 3-stage banyan network (the Baseline network), G, and G;.

We can associate an s-stage network with a directed graph GG in which vertices rep-
resent crossbars and arcs the communication links. Throughout this paper, G; ; denotes
the subgraph of G induced by the vertices from stage ¢ to stage j. When there is no
confusion, G, ; also denotes the subnetwork from stage i to stage j. Set G; = G, ;41 for
easy writing (see Figure 1).

Two s-stage networks are topologically equivalent (or simply equivalent) if their associ-
ated directed graphs are isomorphic. In other words, two s-stage networks are equivalent
if one can be obtained from the other by permuting crossbars in the same stage. Note
that equivalence in this sense preserves the connecting properties of the network. Hence
once we prove a nonblocking property for a network, it extends to all equivalent networks.

Parker [10] first established the equivalence of several n-stage banyan networks includ-
ing the Baseline network. Wu and Feng [13] expanded the equivalence class. Dais and
Jump [6] introduced the “buddy” notation: Let v and v’ be two crossbars in stage ¢ and let
V, and Vs be two sets of crossbars in stage j that v and v’ can reach, respectively. Then
the network is a buddy network if for any ¢ and j =i + 1, either V, = V,, or V, NV, = 0.
Agrawal [1] called a buddy network a strict buddy network if the buddy condition also
holds for j = i 4+ 2. In this paper, we further generalize the strict buddy network to the
universal buddy network by allowing j to be arbitrary. In [1], Agrawal claimed that the
strict buddy property characterizes the Baseline-equivalent networks. Bermond, Fourneau

and Jean-Marie [2, 3] gave a counterexample to Agrawal’s claim. Instead, they defined

the P(x,x) property for characterization: A network is a P(x,) network if for any two
stages i < j, the number of components in the subgraph G, ; is d"~1=0=9,

Siegel and Smith [12] proposed an extra stage to the Baseline-equivalent class of net-
works, and Shyy-Lea [11] considered the k-extra-stage version. Hwang, Liao and Yeh
(see [8]) pointed out that the extra stage versions of Baseline-equivalent networks are not
necessarily equivalent. Equivalence depends not only on the base network (Baseline or
others), but also on how the extra stages are added. Previously, equivalence of extra-stage
networks has been studied only for the double-concatenation type [4, 7] since it contains
the famous Benes network as a special case.

To study the equivalence of extra-stage networks for arbitrary number of stages,
Chang, Hwang and Tong [5] proposed the class of bit permutation networks. Label
the crossbars in a stage by distinct d-nary (n — 1)-sequences x1xy - - ,_1. A bit-i group
(or simply an i-group) consists of the d crossbars whose labels differ only in bit i (there
are d"~2 bit-i groups). An s-stage network is a bit permutation network if for every Gj,
1 <i < s—1, the links always go from bit-u; groups G’ of stage i to bit-v; ;1 groups G”
of stage i + 1 for some wu;, v; 41, where G” is a permutation of G'. (A detailed definition of
bit permutation networks is in Section 2.) They proved that a bit permutation network
is equivalent to one whose G; has the property that v;,; = u; for all i. Such a network
can be characterized by the vector (uy,ug, -+, us_1).

Recently, Li [9] proposed the bit permuting network. He view the outputs of stage i
and the inputs of stage i+ 1 as the vertices of a bipartite graph G; and label the outputs of
stage i (inputs of stage i+ 1) by distinct d-nary n-sequences; see Figure 1. Then G; gives a
bijection from the d™ outputs to the d" inputs and hence can be treated as a permutation.
Such a permutation is called an bit permutation if it can be characterized by a permutation
o; of the n bits. A network is a bit permuting network if each G; corresponds to a ;. Li
gave an elegant “guide” algorithm to route any n-stage bit permuting network.

The notions of universal buddy (U B), bit permutation (BP) and bit permuting (BPT)

are applicable to networks with any number of stages. Since P(x,x*) is defined only for

n-stage networks, we generalize it to the power-of-d networks. An s-stage network is a
power-of-d network if for any ¢,7, 1 < i < j < s, the number of components in Gj; is
a power of d. An s-stage network is a power-of-d universal buddy network if it is both
power-of-d and universal buddy. The notion of power-of-d (d¥) and power-of-d universal
buddy (d”UB) are applicable to networks with any number of stages. In this paper, the
notations of UB, BP, BPT, d” and d”UB also denote their corresponding classes of
networks.

Let A D B denote A properly contains B. Let A = B denote A is equal to B, meaning
any network in class A is a network in class B (no permutation of crossbars allowed), and
vice versa. Let A ~ B denote A is equivalent to B, meaning any network in class A
is topologically equivalent to a network in class B (permutations of crossbars allowed),
and vice versa. Note that the permutation of crossbars is neither unique nor one-to-one.
Hence A ~ B does not imply |A| = |B|. In particular, A D B does not preclude A ~ B.

In this paper, we will establish:

gfg d"UB > BP = BPT. (1.1)
dPUB ~ BP, but UB = d¥, UB = d’UB and d” ~ d"'UB. (1.2)

Since the BP network has the vector characterization and is defined for any number
of stages, it is of interests to know whether this very useful class can be further extended
with all connecting properties preserved. (1.1) shows that d”U B generalizes BP and (1.2)

shows that they are equivalent.

2 The BP and BPT classes

We now give a detailed definition of BP networks; this definition is from [5]. An s-
stage network is a bit permutation network if for every G;, 1 < ¢ < s — 1, there exists
a permutation p; on {1,2 --- n} such that p;(n) # n and each crossbar z1xy- -2, 1 is
adjacent to crossbar x,,1)Tp,2) " Tp;(n-1), Where x, € {0,1,---,d — 1}. Note that z,

has d values and and whenever it appears in the coordinates, d sequences are generated

4

by running z,, through the set {0,1,---,d — 1}. For example, the network in Figure 1 is
a bit permutation network with p; = (132) and py = (23). Since p; = (132), z1zox3 is
mapped to x3rixs and the links go from bit-2 groups of stage 1 to bit-1 groups of stage
2. In particular, crossbars 00 and 01 at stage 1 are adjacent to crossbars 00 and 10 at
stage 2. Since py = (23), x1x9w3 is mapped to x1x3wy and the links go from bit-2 groups
of stage 2 to bit-2 groups of stage 3. Thus crossbars 00 and 01 at stage 2 are adjacent to
crossbars 00 and 01 at stage 3.

The stages in Figure 2 and Figure 3 are drawn horizontally to save space. These two
figures are the same (they have the same connections between crossbars) except their
labels. The labels in Figure 2 are outputs of stage ¢ and inputs of stage ¢ + 1. The labels
in Figure 3 are crossbars of stage ¢ and crossbars of stage ¢ + 1. The permutation in
Figure 2 illustrates a bit permutation o; = (1234) in G;, while the permutation in Figure

3 illustrates a permutation p; = (1234) in G;.

‘0000 0001‘ \0010 0011‘ ‘0100 0101‘ ‘0110 0111‘ \1000 1001‘ ‘1010 1011‘ ‘1100 1101‘ \1110 1111

0000 0001‘ ‘0010 0011‘ ‘0100 0101‘ \0110 0111‘ \1000 1001‘ ‘1010 1011‘ \1100 1101‘ \1110 1111

Figure 2: A bit permutation o; in G;.

000 || oot || o0 || oir || 100 || 101 || 110 || 111

00 || oot || o0 || o || 100 || 101 || 110 || 11

Figure 3: A permutation p; of crossbars in G;.

We now prove

Theorem 1 BPT = BP.

Proof. First consider a BPT network. For every §;, there exists a bit permutation
o; on {1,2,--- n} such that each output zixs---z, of stage i is adjacent to input
To,(1)%0,(2) " * * To,(n) Of stage i+ 1. Note that the label of a crossbar of stage i (i+1) can be
obtained from the labels of its d outputs (inputs) by dropping the last bit. Thus crossbar
T1Ty -+ Ty_y is adjacent to crossbar T4,(1)Zo;(2) * * * To,(n—1)- Note that oi(n) # n; otherwise,
there are multi-links between crossbar xxz3---x,_1 and crossbar Ty, (1)%s;2) * * * To;(n-1)-
Since o;(n) # n, crossbar x,; - - - 2,1 is adjacent to crossbar 4, (1)%s,(2) * - - To,(n—1), Where
z, € {0,1,---,d — 1}. Thus a BPT network is a BP network. On the other hand,
consider a BP network. For every G;, there exists a permutation p; on {1,2,--- n}
such that p;(n) # n and each crossbar zyz5---x, 1 of stage i is adjacent to crossbar
Ty (1)Tpi(2) " " Lpy(n—1) Of stage i + 1, where x,, € {0,1,---,d — 1}. Thus each output
T1T - - - Ty, of stage ¢ is adjacent to input x,,(1)x,,(2) - - Tp,(n) Of stage i+ 1. Since a permu-
tation on {1,2,---,n} is a bit permutation, a BP network is a BPT network. Theorem

1 now follows. |

We now show that a bit permutation o; of G; defines a mapping from wu-groups of stage

i to v-groups of stage 7 + 1. In fact, we can pinpoint v and v.

Lemma 2 Suppose G; is represented by the bit permutation o;. Then G; induces a map-

ping from o;(n)-groups of stage i to o; *(n)-groups of stage i + 1.

Proof. Note that each output zz; - - - x,, of stage i is adjacent to input ,,(1)Zs,2) * * * Toy(n)
of stage i + 1. The label of a crossbar of stage i (i + 1) can be obtained from the labels
of its d outputs (inputs) by dropping the last bit. Since z,(,) is the last bit and get
dropped in the crossbar label of stage ¢ + 1, the d stage-i crossbars differing only in bit
oi(n), i.e., the o;(n)-group, are mapped to the same set of stage-(i + 1) crossbars. On the
other hand, the stage-i crossbar containing d outputs whose labels differ only in bit o;(n)

is mapped to the o, !(n)-group of stage i + 1. Lemma 2 is proved. [

For the example in Figure 2, the mapping is from (0;(4) = 1)-groups of stage i to

(07"

(4) = 3)-groups of stage i + 1. We now give a vector characterization of a BPT

network. First a lemma.

Lemma 3 Suppose G; corresponds to a bit permutation o; which maps o;(n)-groups of
stage 1 to ajl(n)—groups of stage 1 + 1 and suppose G; 11 corresponds to a bit permutation
oir1. Suppose we permute the crossbars of stage i + 1 such that the j-th crossbars of the
o, (n)-groups are lined up with the j-th crossbars of the oy(n)-groups, 7 =0,1,---,d — 1.
Then after the lining-up operation, G; corresponds to the bit permutation (u; n) and Giiq

corresponds to the bit permutation (o, (07 (n)) o5} (0:(n))) o oips.

Proof. Take a o; *(n)-group of stage i+1. The j-th crossbar in this group is mapped (lined
up) to the j-th crossbar of the corresponding o;(n)-group of stage i under this lining-up
operation; see Figure 4. Then the only difference is that before lining up, the bit permu-
tation o; maps o;(n)-groups to o; ' (n)-groups, while after lining up, the mapping is from
u;-groups to u;-groups. Note that the mapping from w;-groups to u;-groups corresponds
to the bit permutation (u; n). After lining up, o; ' (n)-groups of stage i + 1 become o;(n)-
groups. Since 0;4; maps 0;.(0; '(n)) to o; ' (n) and ¢;.}(0:(n)) to o;(n), swapping bit

o;'(n) with bit o;(n) corresponds to applying (¢34 (7' (n)) o4 (0i(n))) on 041 Thus

1

after lining up, G;41 corresponds to bit permutation (0, (0; " (n)) 075 (0i(n))) 0 Ciz1. ®

i i+1
\ 00 00 \

Figure 4: Lining up stage-(¢ + 1) crossbars.

By Lemma 2, we know that in every G; of a BPT network, the links go from wu;-
groups to v;y1-groups for some wu;,v;11. The lining-up operation enables us to permute

the crossbars of stage ¢+ 1 so that the links go from u;-groups to u;-groups. For example,

7

in Figure 4, the links go from 2-groups to 1-groups. After lining up the stage-(i + 1)

crossbars, the links go from 2-groups to 2-groups.

Theorem 4 Consider an s-stage BPT network. By permuting the crossbars of stage 2,

3, ---, s, each G; corresponds to a bit permutation which maps u;-groups to uj-groups,

Proof. We prove this theorem by induction on s. This theorem is trivially true for s = 2
since we can permute the crossbars of stage 2 to line up with their mates in stage 1. Then
G1 corresponds to a bit permutation which maps u;-groups to u;-groups. Suppose this
theorem holds for up to s — 1 stages. We now prove for s stages. Again, permute the
crossbars of stage 2 to line up with their mates in stage 1. By Lemma 3, G5 remains
to correspond to a bit permutation. Thus we may apply induction on this (s -1)-stage
BPT network such that G; is characterized by a bit permutation which maps u;-groups

to uj-groups, i =1,2,---, s — 1.]

Since BPT = BP, the above characterization is also a vector characterization of a
BP network, but our proof is simpler than the original proof in [5]. Recall that an s-stage
network is a BP network if for every G;, the links always go from u; groups G’ of stage i
to v;11 groups G” of stage i + 1 for some wu;, v; 1, where G” is a permutation of G’. If we
drop the requirement that G” is a permutation of G’, then the lining-up operation would
not yield a vector characterization. See Figure 5 as an example. In Figure 5(a), the links
in G go from 1-groups to 2-groups and the links in G5 go from 1-groups to 3-groups. In
Figure 5(b), the links in Gy go from 1-groups to l-groups, but the links in G5 do not go

from wu-groups to u-groups for any wu.

3 The d*UB class

We now show that neither d” C UB nor vice versa; hence the definition of d”UB makes

sense. Figure 6(a) shows a 27 network which is not a UB network since C' reaches {C’,

8

Figure 5: (a) Before lining up and (b) after lining up.

D', F', G'} and E reaches {C', E', F', H'}; the two sets intersect but are not identical.

Figure 6(b) shows a U B network which is not a 27 network since G 3 has 3 components.

o

| L =]

o =<
(a)

Figure 6: (a) A 2” network and (b) a UB network.

X
X

We first quote a result of [5].

Theorem 5 Suppose an s-stage d-nary BP network has d" inputs, d" outputs, and is

characterized by the vector (uy, ug, - -+, us—1) which contains k distinct elements. Then the

dnflfk

network has components.

Corollary 6 BP C d”.

Proof. It is not difficult to see that every subnetwork G; ; of a BP network is still a BP
network. By Theorem 5, the number of components in G; ; is a power of d. Since 7, j are

arbitrary, the network is in d”.]

Theorem 7 BP C UB.

Proof. Consider an s-stage BP network characterized by (uy,ug, -+, us_1). Let v be
a crossbar in stage ¢ which reaches a set V;(v) of crossbars in stage j. Then V;(v) con-
sists of crossbars whose labels are the same in bits in the set I = {1,2,---,n — 1} \
{w;, wit1, -+, uj—1}. Let v be another crossbar in stage . If ¢ differs from v in a bit in I,
then clearly, V;(v) N V;(v) = 0; if not, then V;(v') = V;(v). Since i, j,v,v" are arbitrary,

the network is in UB.]

Theorem 8 BP C d’UB.

Proof. That BP C d”UB follows from Corollary 6 and Theorem 7. That the con-
tainment is strict follows from Figure 7 (crossbars 00 and 11 in stage 2 are connected
to crossbars 00 and 11 in stage 3; so, the links from stage 2 to stage 3 do not go from

u;-groups to v;y1-groups for any wu;, v;y1). [|

Figure 7: A d”UB network which is not a BP network.

Theorem 9 d"UB ~ BP.

10

Proof. Since d’UB D BPT, it suffices to prove that a d”UB network is equivalent to a

BP network. We prove this by induction on the number s of stages.

(1) s =2. Suppose v of stage 1 is connected to the set Va(v). Let v’ be another crossbar
in stage 1 and connected to a given w € Va(v). By the UB property, Va(v') = Va(v).
Since there are d — 1 choices of v from w, these v' together with v form a d x d
complete bipartite graph Ky, with Va(v). Further, V5(v”) N Va(v) = 0 for any
v" & vU{v'}. Since v is arbitrary, G o consists of d"~? K, whose equivalence to

a BP network is clear.

(2) s =3. By the d” property, the network has d"~* components for some 1 < k < n.
Recall that from (1) the subgraphs G;, and Gy must each consist of dr—2 Kgiqg.

Hence k£ = 1 is impossible.

For k = 2, then no two K;4 in G2 can be connected through Gg 3. Therefore G 3
must consist of d"~2 copies of concatenation of two Ky4, with the outputs of the
former identified with the inputs of the latter (see Figure 8). Clearly, subnetwork

G113 is equivalent to a BP network.

S
Eeae

Figure 8: Concatenation of Ky .

For k = 3, first suppose G 3 is obtained by connecting each d-set D = {Dy, D>,
--+, D4}, where each D; is a K;4 in Gy, into one component in Gy 3. Note that
the connection is done by a d-set D' = {D},D},---, D)} of K44 in Gogz. If two

crossbars of the same D; are connected to a Dj, then one member of D\ D; will not

11

be connected to D’, violating the UB property. Therefore, the d crossbars in a D;
must go to distinct D%, or all D%. Since we can permute the stage-2 crossbars in a
D arbitrarily, and independently for each D, the stage-2 crossbars in each D can be
ordered such that the k-th one goes to the k-th D’, which is clearly a BP network.

Figure 9 illustrates how to permute.

Permute the bottom 2 crossbars
in stages 2 and 3

.
-

<
A

Figure 9: A permutation to achieve BP.

Suppose G 3 is obtained otherwise. There must exist a d’-set of K;4, d > d, in
(12 connected in Ga3 through a d’-set of K4 in Ga3. Note that an input in this
component touches only d? among the dd’ outputs. Hence there must exist another

input reaching some, but not all, of these d? outputs, violating the U B property.

For k > 4, then the situation described in the last paragraph must also happen.

(3) s > 4. Consider the two subnetworks G153 and Gs,. By induction, G 3 can be
represented by a vector (uy,ug) and G s by (uj,u, -, ul_,). By Lemma 3, we can
permute the crossbars in stage k, 2 < k < s, such that v} = uy and u] = uj_,
for 3 < k < s — 1. Therefore the subnetwork G, is represented by the vector

(ur, ug,ufy, -+, ul_y), ie., G4 is a BP network.

Corollary 10 Two d"UB networks are equivalent if the characterization vector of one

can be obtained from the other through a permutation.

12

Figure 6(a) gives an example of a d¥’ network which is not equivalent to a U B network.
Hence d” = UB. Since UB D BP, Figure 6(a) is also an example of a d” network which
is not equivalent to a BP network. Therefore the U B condition can not be dropped from
Theorem 9. Since BP ~ dPUB, it follows that d© ~ d"UB. Figure 6(b) gives a UB
(or strict buddy) network which is equivalent to neither a d” nor a BP network. Hence

UB ~ BP. Since BP ~ dPUB, it follows that UB ~ d"UB.

4 Conclusions

We established the containment relation as given in (1.1), and the equivalence relation as

given in (1.2). By so doing, we achieve three desirable generalizations:

(1) We make the logical extension of the buddy network and the strict buddy network
to the universal buddy network; a network with more structure but still includes all

banyan-type networks and their extra-stage versions.

(2) We generalize the notion of BP to d”UB which is a larger class, yet preserves all

connecting properties of BP.

(3) We generalize P(x,*) which is defined only for n = log, IV stages to general s stages.
The equivalence relations we established also help in simplifying some existing proofs:

(1) The proof of vector characterization of BP in [5] is quite complicated. We gave a
simple proof of vector characterization of BPT and the equality that BPT = BP

makes the proof valid for BP too.

(2) The proof that P(x,x*) characterizes the Baseline-equivalent class of banyan-type
networks is very long, as admitted in [2]. Our proofs of Theorem 9 and Corollary

10 are much shorter and more general.

Acknowledgement. The author wishes to thank H. Zhou for providing a counterex-
ample to a conjecture prior to our discovery of Theorem 9. We also thank the comments

of referees which led to a better version of the paper.

13

References

1]

D.P. Agrawal, Graph theoretical analysis and design of multistage interconnection

networks, IEEE Trans. Comput. 32 (1983) 637-648.

J.C. Bermond, J.M. Fourneau and A. Jean-Marie, Equialence of multistage intercon-

nection networks, Inform. Proc. Lett. 26 (1987) 45-50.

J.C. Bermond, J.M. Fourneau and A. Jean-Marie, A graph theoretical approach to
equivalence of multistage interconnection networks, Disc. Appl. Math. 22 (1988/89)
201-217.

T. Calamoneri and A. Massini, Efficient algorithm for checking the equivalence of

multistage interconnection networks, J. Parallel Distrib. Comput. 64 (2004) 135-150.

G.J. Chang, F.K. Hwang and L.D. Tong, Characterizing bit permutation networks,
Networks 33 (1999) 261-267.

D.M. Dias and J.R. Jump, Analysis and simulation of buffered delta networks, IEEE
Trans. Comput. C-30 (1981) 273-282.

Q. Hu, X. Shen and J. Yang, Topologies of combined (2log N — 1)-stage intercon-
nection networks, IEEE Trans. Comput. 46 (1997) 118-124.

F.K. Hwang, The Mathematical Theory of Nonblocking Switching Networks, World

Scientific, Singapore, 1998.

S.-Y.R. Li, Algebraic Switching Theory and Broadband Applications, Academic, New
York, 2001.

D.S. Parker, Notes on shuffle-exchange type of networks, IEEE Trans. Comput. 29
(1980) 213-222.

D.J. Shyy and C.T. Lea, Logy(N,m,p) strictly nonblocking networks, IEEE Trans.
Commun. 39 (1991) 1502-1510.

14

[12] H.J. Siegel and S.D. Smith, Study of multistage SIMD interconnection networks,

Proc. 5-th Ann. Symp. Comput. Arch., 1978, 223-229.

[13] C. Wu and T. Feng, On a class of multistage interconnection networks, IEEE Trans.
Comput. 29 (1980) 694-702.

15

On Degenerate Double-Loop L-Shapes*

J. S. Lee
Department of Mathematics, National Kaohshiung Normal University

Kaoshiung 802, Taiwan

James K. Lan and Jenny C. Chen'

Department of Applied Mathematics, National Chiao Tung University
Hsinchu 300, Taiwan

Abstract

Most of the results about the L-shapes of double-loop networks are given
in terms of the four parameters ¢, h, p,n. But these parameters are not well
defined in the degenerate case. Recently, Cheng and Hwang gave an efficient
algorithm to compute the four parameters ¢, h, p, n of an L-shape which works
for both the regular and the degenerate cases. On the other hand, Chen and
Hwang gave a set of rules to determine the four parameters of a degenerate
L-shape. Unfortunately, the solutions given by the above two methods do not
always coincide. In this paper, we try to understand their respective meanings
and their relations.

Keywords: Double-loop network, L-shape, degenerate.

1 Introduction

The double-loop network has been well studied (see [6] for a recent survey) as the topology
for a communication network or computer network. For example, SONET (synchronous
optical network) is a double-loop network. Formally, a double-loop network DL(N;a,b)

has N nodes 0,1,---, N—1and 2N links, i — i+a, ¢ > i+b (mod N), i=0,1,---, N—

*This research was partially supported by the National Science Council of the Republic of China under
the grant NSC93-2115-M-009-011.
fe-mail: cychen@mail.nctu.edu.tw

1. We assume that the weight of each of the 2V links is 1 and assume that gcd(N, a,b) =1
so that the network is strongly connected.

The minimum distance diagram (MDD) of DL(N;a,b) is a diagram with node 0 in
cell (0,0), and node v in cell (¢,7) if and only if ia + jb = v (mod N) and i + j is the
minimum among all (¢, j') satisfying the congruence. Namely, a shortest path from 0 to
v is through taking ¢ a-links and j b-links (in any order). Note that in a cell (¢, 7), 7 is the
column index and j is the row index. An MDD includes every node exactly once (in case
of two shortest paths, the convention is to choose the cell with the smaller row index, i.e.,
the smaller 7). Since DL(N;a,b) is clearly node-symmetric, there is no loss of generality
in assuming: node 0 is the origin of a path.

Wong and Coppersmith (WC) [8] proved that the MDD of DL(N;a,b) (their proof
for DL(N;1,h) is easily extended to the general case) is always an L-shape which can be
characterized by four parameters ¢, h,p,n (see Fig. 1 (a)). These four parameters are the

lengths of four of the six segments on the boundary of the L-shape. Clearly,
N =/(th —pn.

In [2], Chen and Hwang showed that necessarily ¢ > n and h > p. Fig. 1 (b) illustrates
an MDD with a regular L-shape. Fig. 1 (c¢) illustrates one with an L-shape degenerate

into a rectangle.

n 8 [n=1,_, 6|78
p
h h =3 4 5 6 7 h=3 3 4 5
011213 0112
g =4 £=3
(a) The four parameters (b)a=1,b=4 (c)a=1,b=3

Figure 1: Minimum distance diagrams and L-shapes.

Most of the results about the L-shape are given in terms of the four parameters

¢, h,p,n. But these parameters are not well defined in the degenerate case. Recently,

Cheng and Hwang [4] gave an O(log N)-time algorithm to compute the four parameters
¢, h,p,n of an L-shape which works for both the regular and the degenerate cases. On the
other hand, Chen and Hwang [3] gave a set of rules to determine the four parameters of
a degenerate L-shape. Unfortunately, the solutions given by the above two methods do
not always coincide. In this paper, we try to understand their respective meanings and
their relations. Since it is also of interest to know when will an L-shape degenerate, in

this paper we give necessary and sufficient conditions depending on N, a, and b only.

2 Necessary and sufficient conditions for degenerate
L-shapes

The following five notations will be used throughout this paper:
d =gcd(N,a), d = ged(N,b), N'=N/d, a’ =a/d, and b’ =b (mod N'). (2.1)
Since ged(N, a,b) = 1, clearly ged(d,d’) = 1. Chen and Hwang [3] proved

Lemma 1 [3] A degenerate L-shape of height h and width ¢ satisfies one of the following

three conditions:

(1) hb#la=0 (mod N).

(2) laZhb=0 (mod N).

(3) la=hb=0 (mod N).
We now prove

Theorem 2 The L-shape of DL(N;a,b) is degenerate if and only if one of the following
three conditions holds:

(C1) d > 1 and there ezists 1 < i < min{d,J — 1} such that db =1ia (mod N).

(C2) d' > 1 and there exists 1 < j < min{d — 1,5 — 1} such that da = jb (mod N).

3

(C3) d>1,d>1andda=db=0 (mod N).

Moreover, (C1) < (1), (C2) < (2) and (C3) < (83). Also, if (C1) holds, then the
degenerate L-shape is of height d and width N/d; if (C2) holds, then the degenerate L-
shape is of height N/d' and width d'; if (C3) holds, then the degenerate L-shape is of height
d and width d'.

Proof. Necessity. Suppose the L-shape is degenerate and is a rectangle of height h and

width ¢. Then by Lemma 1, it satisfies (1) or (2) or (3). We first prove two claims.

Claim 1. If fa=0 (mod N), then h =d, { = N/d and d > 1.

Proof of Claim 1. Let a = ad for some integer a. Note that the L-shape being

degenerate implies N = ¢h. Thus fa =0 (mod N) impliesa =0 (mod h). Let a = Sh

for some integer . Then a = ad = [h. Hence d = % Since 1 = gcd(a,%) =
o

ged(a, %) = ged(ay, 7), necessarily «|3. Therefore g is an integer. Since d|N, we have

51¢. Suppose £ > 1. Let £/ = £. Then ¢’ < {and {'a = §3h = tha = Na =0 (mod N).
Then row 0 of the L-shape Wiixl contain two entries of Oione at cell (0,0) and the other at
cell (¢,0), a contradiction to the definition of an L-shape (recall that an MDD includes
every node exactly once). Therefore g = 1. Consequently, h = d and ¢ = N/d. Since

¢ < N and ¢d = N, clearly d > 1. [

Claim 2. If the L-shape is degenerate and hb = 0 (mod N), then h = N/d’, ¢ = d’
and d' > 1.

Proof of Claim 2. Since this proof is similar to that of Claim 1, we omit it.]

We now prove the necessity of this theorem. First, assume the L-shape satisfies condition
(1). By Claim 1, we have d > 1, h = d and ¢ = N/d. By the definition of an MDD, hb is

the first element in column 0 satisfying
hb =ia+jb (mod N) withi+j <h, >0, j>0.

Therefore j = 0 for otherwise (h— j)b would be the first element. Also, ¢ > 1 for otherwise

hb =0 (mod N). Thus db = hb=ia (mod N) for 1 <i <d. Since ¢ = N/d, we have

4

1 < % —1. We conclude db =ia (mod N) for 1 <i < min{d, % — 1}, which means (C1)
holds. The above discussion also shows that (1) implies (C1), i.e., (1) = (C1).
Next, assume the L-shape satisfies condition (2). Then the argument is similar except

at the end we have
la =ia+ jb (mod N) withi+j<¥¢ >0, j>0.

The reason for the strict inequality that ¢ + 7 < £ is by our construction on tie-breaking
in defining the MDD. Thus (C2) holds. So (2) = (C2).

Finally, assume the L-shape satisfies condition (3). By Claim 1, we have d > 1, h =d
and ¢ = N/d. By Claim 2, we have ' > 1, h = N/d and ¢ = d'. Thus d'a = la =0
(mod N) and db =hb=0 (mod N), which means (C3) holds. So (3) = (C3).

Sufficiency. Let the L-shape of DL(N;a,b) be (¢, h,p,n). First, assume that (C1) is
satisfied. Since db = ia (mod N) for 1 < i < min{d, ¥ — 1}, we have h < d. On the

other hand, ¢ < N/d since (N/d)a = N(a/d) =0 (mod N). Therefore
N = (h—pn < th < (N/d)d = N.

Necessarily,

¢=N/d, h=d.

It follows

th =N,

i.e., the L-shape is degenerate. Moreover, fa = (N/d)a = N(a/d) =0 (mod N); hb =
db=1ia#0 (mod N)since 1 <i</¢—1. So (Cl)= (1).

The proof of (C2) is similar to that of (C1). Finally, assume that (C3) is satisfied.
Then since da = db =0 (mod N), we have ¢ < d and h < d. Since d|N, d'|N and
ged(d,d’) = 1, we have d'd < N. Therefore

N =/(h—pn<th<dd<N.

Necessarily,

(=d, h=d.
It follows
¢th = N,
i.e., the L-shape is degenerate. Moreover, fa = d'a = 0 (mod N); hb = db = 0
(mod N). So (C3) = (3).]

Remarks. From the proof of Theorem 2, when an L-shape(¢, h,p,n) degenerates into
a rectangle, it is reasonable to set ¢ to the width and h to the height of the rectangle.
Moreover, it is reasonable to set p = 0 or n = 0 since N = ¢h — pn and ¢h = N hold

simultaneously.

3 Strongly isomorphic double-loop networks and de-
generate L-shapes

The following property was proved in [1].

Lemma 3 [1] If a and 3 are integers, not both zero, then there exist integers x and y

such that yo + x5 = ged(a, B) and ged(z, ged(a, 5)) = 1.
Let DL(N;a,b) be a double-loop network. Then

Lemma 4 There exists an integer x such that ged(x, N) =1 and ax =d (mod N).

Proof. Since ged(N,a) = d, by Lemma 3, there exist integers x and y such that yN +
ra = d and ged(z,d) = 1. Hence ax = d (mod N). Moreover, y(N/d) + z(a/d) = 1
implies ged(z, N/d) = 1. It follows that ged(z, N) = ged(zx, (N/d)d) = 1. Hence the

lemma. (]

Two double-loop networks DL(N;a,b) and DL(N;a' ') are strongly isomorphic if

there exists a z prime to N such that a’ = az, ¥ = bz (mod N) or ' = bz, I/ = az

6

(mod N) [7]. It is well known that two strongly isomorphic double-loop networks realize
the same L-shape. The following property greatly simplifies the proofs in the remaining

sections.

Theorem 5 Let x be an integer such that ged(z, N) = 1 and ax = d (mod N). Let
b" =bxr (mod N). Then DL(N;a,b) and DL(N;d,V") are strongly isomorphic.

Proof. This theorem follows from Lemma 4. (]

In the following, we characterize a degenerate L-shape by the four independent pa-
rameters £, h, p,n. Set

m={—p, qg=h—n

for convenience; see Fig. 2(a). Then

Lemma 6 For a degenerate L-shape, at least one of m,n,p,q is zero and at most two of
m,n,p,q are zero. Moreover, it is impossible that both m and p, both n and q, or both m

and q are zero.

Proof. It is obvious that at least one of m,n, p, q is zero. Since / = m+p and h = n—+q,
if more than two of m, n, p, ¢ are zero, then £ = 0 or h = 0 will happen, which is impossible.
Suppose two of m, n, p, q are zero. If both m and p (n and ¢) are zero, then { = m+p =10
(h = n + ¢ = 0), which is impossible. If both m and ¢ are zero, then ¢ = p, h = n, and

then N = ¢h — pn = 0, which is also impossible. Hence the lemma.]

Corollary 7 There are only seven possible ways to view a degenerate L-shape. We define
these shapes by identifying the parameters which are set to zero: (S1): only m = 0, (S2):
onlyn =0, (S3): onlyp =10, (S4): only g =0, (S5): m =0 andn =0, (S6): p=10
and ¢ =0, (S7): n=0 and p = 0.

" p
h
q
14 m=e n=ce p=¢
(a) (S1) (S2) (S3)
q=c¢ m=¢€en==¢ pP=¢€qg=c¢ n=ep==c
(S4) (SH) (S6) (S7)

Figure 2: The ways to degenerate an L-shape.

By Corollary 7, there are seven ways to view a degenerate L-shape as the product of a
limiting process operated on a regular L-shape. Fig. 2 (S2), (S3), (S5), (S6) and (S7) show
five processes of shrinking a subrectangle with a side (or two sides) of length approaching
zero; Fig. 2 (S1) and (S4) show two processes of cutting off a subrectangle with a side of
length approaching ¢ or h. When € = 0, they all represent the same rectangle. But the
different underlying process can induce different values of (¢, h,p,n).

Fiol, Yebra, Alegre, and Valero [5] pointed out that an L-shape, regular or degenerate,
always tessellates the plane. Then (¢, —n) and (—p, h) are simply two independent vectors
characterizing the distribution of the nodes labelled by 0 (will be referred to as the 0-

nodes) as seen by the equations:

la — nb = 0 (mod N)
(3.2)
0

—pa + hb = (mod N).

Note that (¢, —n) is a vector in the fourth quadrant, and (—p, k) one in the second. But

there are other choices of two independent vectors.

4 Cheng-Hwang’s algorithm

Cheng and Hwang [4] gave an algorithm (CH-ALGO in short) to solve for (¢, h,p,n) for
DL(N;a,b). The algorithm works regardless whether the L-shape is regular or not. For
completeness, we give a brief review of this algorithm (note that the weight of each link

in the given double-loop network is assumed to be 1).

CHENG-HWANG-ALGORITHM.

Input: DL(N;a,b).

Output: (¢, h,p,n) of the L-shape of DL(N;a,b).
Let d, d', N’, @’ and V' be defined as in (2.1).

Let sq be the integer with
a'so+b =0 (mod N'), 0 <sy< N

Let s_1 = N’ and define ¢, s;, recursively (by the Euclidean algorithm) as follows:

5_1 = 150+ s1, 0<s1 <5

S0 = (251 + S, 0<s<8

S1 = @352 + 83, 0<s3<s (4.3)

Sk—2 = QqrSp—1+ Sk, 0 < s, < sk

Sk-1 = Qr+1Sks 0= sk11 < Sk
Define integers U; by U_1 = 0, Uy = 1, and

Ui+1 = quUi—i-Ui,l, 1= 0,1,"',]{3. (44)
By induction,

siUi-i-l +Si+1Ui = N/, 1= 0,1,"',]{3. (45)

Regard s_,/U_; = 0o > x for real number x. Since {s;}*™! and {U;}**! are strictly

decreasing and increasing, respectively, we have

Sk+1 Sk S0 S—1
="« 2 << 2 < = =00
Uiyr Uk Uy U,

Let u be the largest odd integer such that d < - Define
s, — dU,
v= | e g
Sut1 + dUyq1
Let

=58, —vsyr1, W =U,+ v+ 1)Uyus1, P =84 — (0+ 1)sys1, 0’ = U, +0Uy1.

Then
(l,h,p,n) = (L', dl,p',dn").

End-of-CHENG-HWANG-ALGORITHM.
Now we characterize the (¢, h,p,n) obtained by CH-ALGO when DL(N;a,b) has a

degenerate L-shape. By Theorem 5, it suffices to consider the case that a|N. Since a|N,
CH-ALGO derives

d=a, d =gcd(N,b), N=N/d=N/a, ' =1, ¥ =b (mod N'), s_; = N".
So we have
Lemma 8 s; = (—1)'U;sq (mod N') for 1 <i<k+1.

Proof. By (4.3) and (4.4), s1 = s_1 — @180 = N’ — U1s¢, $2 = 59 — @251 = S0 — @2(N' —
Uisg) = —qoN'+(1+qU1)sg = —qaN'+Ussg. Thus s; = (—1)1U;sy (mod N') and sy =
(—1)2Uysy (mod N'). We prove the general case by induction on i. Assume this lemma
holds for ¢ < ¢. Then, by (4.3) and (4.4), $¢41 = Si—1 — @15 and Uy = Uy + @1 Uy

Thus by induction,

sir1 = (—1)"7'U1s0 — ¢ (=1)'Ussy (mod N')
= (=)"YUi_1 + q41U)so (mod N')

= (=)', 1150 (mod N').

10

Theorem 9 If DL(N;a,b) satisfies
(C1), then CH-ALGO derives an L-shape of shape (S2) with (¢, h,p,n) = (N',d,i,0);
(C2), then CH-ALGO derives an L-shape of shape

(51) with (¢, h,p,n) = (d'j + | S| &, d' i+ (| 42| = 0F) if j < 25

d’ d’

(83) with (£, h,p,n) = (d', 5,0,5) if § > 355

s dqno

(C3), then CH-ALGO derives an L-shape of shape
(S1) with (€, h,p,n) = (&, [L] d, &, ([£] — 1d) if d < d';
(S5) with (¢, h,p,n) = (d',d,d',0) if d > d'.

Proof. First suppose DL(N;a,b) satisfies (C1). Then there exists 1 < ¢ < min {d, N'—
1} such that db = ia (mod N). Since a = d, we have b =4 (mod N’). Since t/ = b

(mod N')and 1 <i < N’ — 1, it follows that
b =i.
By (4.3), we have s_; = ¢150 + s; and ¢; > 1. Note that sg = N — b and U; = ¢;. So

51 ﬂ:E—SOI]\[/(l—:l)—i—blgblzzgd

71 B q1 q1 q1
Therefore v = —1. Since v/ =i < d, N’ < (N’ = V') 4 d; therefore {ﬁ-‘ = 1.
Thus v = {%W—lz {ﬁw —1=0. Hence, m =s9p = N —b0 >0, n =

dU_1+vUy) =0, p=s1—(v+1)sg =0 =i>0, ¢g=dUy =d > 0. Thus the L-shape
is of shape (S2) and
(¢,h,p,n) = (N',d,1,0).

Now suppose DL(N;a,b) satisfies (C2). So DL(N;a,b) does not satisfy (C3). Hence
N > dd'. Assume that N = dd'N"”, where N” > 1. By Theorem 2, there exists 1 < j <
min {d' — 1, N/d' — 1} such that d'a = jb (mod N). Since d = a, we have d'd = jb
(mod N). Since ged(N,b) = d' and N = dd'N", it follows that d|j. Let j = dj’. Then
dd=dj'b (mod dN'), which implies ' = j’b (mod N’). Thus

d =j'V (mod N').

11

Note that ged(N', V') = ged(N',b) = ged (N, b). Thus
ged(N', V) =d'.
We now have
sk = ged(s_1, 80) = ged(N', N' = b') = ged(N', V) = d’

and si 1 = 0. By (4.5), sxgUyy1 + sg1Ux = N'. Since s = d' and sy = 0, it follows that
d'Upy1 = d N". Thus
Uk;+1 - N”.

By Lemma 8, s, = (—1)*Upso = (—1)*U,(N' = V') = (=) UY (mod N’). Since k is
either odd or even, there are two cases:
Case 1. £k is odd.
Then s, = Upb' (mod N’). Since s, = d' = j'V' (mod N'), we have Upt/ = j'U/
(mod N'). Thus (Uy — j)b' =0 (mod N’). Since Uy < Ugy1, Uy < N”. Since j < N/d',
j' < N”". By the facts that gcd(N', V) = d’ and j/ < N” and U, < N”, it follows from
(Up —7)0' =0 (mod N’) that

Up=7"

Then

Sk d/
— = —>d.
U, J

Hence u = k. Since dUy = dj’ = j and dU; = dN" = %,

Sk—dUk —‘ d/—j
v+l=|—m—7-—| = .
Lkﬂ + dUj 14 |V %

Thus m = sg11 =0, n:d(j’—l—vN”):j—l—v%>0, p=spr—(V+1)sp1=d >0, qg=

dUys1 = % > 0. So the L-shape is of shape (S1) and

o e=iN . - N
(€)h7p7n):(duj+|r N]“ Jadaj+<|r N]“_]')E)

d/

d/

12

Note that since k is odd and {U;}*! are strictly increasing, Uy_; > 1. Note also that
Gk+1 > 2. Thus by (4.4),

_ "
(U1 — Up—1) <dUk+1 _dizﬁ

Qe 2 2 24’

j=dj' =dU, =d

Case 2. k is even.
Then s = —Ugbt/ (mod N’). Since s = d = j'V (mod N’), we have —Uib' = j'U/
(mod N'). Thus (Uy + 7)b’ =0 (mod N’). Since Uy < Ugy1, Uy < N”. Since j < N/d',
j' < N”". By the facts that gcd(N’, V) = d’ and j/ < N” and U, < N”, it follows from
(Up+ 40 =0 (mod N’) that

Up,=N"—7j".

Then by (4.3), (4.4) and the facts that gx+1 > 2 and d' > j,

Sk—1 — dUk—1 = qer156 — d(Ukt1 — @1 Ug)
= Qk+1d/ - d(N” - Qk—i-l(NH - J',))
N . N
= Qk+1(d/+z—j)—z>0

Hence u = k — 1. Since dU, = d(N" — j') = N

Sg—1 — dUx—1 G (d' + 5 d/ - %
l=|—m—~—
v+ [—‘ { d+ ? — Qk+1 — ﬂ —; = qk+1-

Thusm:sk:d’>0, n:d(Uk 1—{—(qk+1—1 Uk d Uk+1—Uk)_d(N// (N//—j/)):
Jg>0, p==5p1— Qs15k = Sks1 =0, ¢ = dU, = % — 7 > 0. So the L-shape is of shape
(S3) and

U N .
(ﬁ, h>p7n) = (d75707])

Note that since Ux_; > 0 and qr4q1 > 2,

o N (U1-Ugy) N N _N N N
—df =d(N" —Uy) = — —det Z 2kl s 2 gl s 2
J=df =dNT U0 = 5 Gri1 a2 T @ a2

Note that when k is even, we have j > This implies that if j < %, then k is

o
odd, which means Case 1 occurs. Therefore CH-ALGO derives an L-shape of shape (S1)

if j < 3% and an L-shape of shape (S3) if j > %

13

Finally, suppose DL(N;a,b) satisfies (C3). By Theorem 2, N = dd’; thus N’ = d'.
Since db = 0 (mod N), we have b = 0 (mod N’). Since ' = b (mod N'), ¥’ = 0.

Therefore sy = 0 and

< d.

Uo

Hence u = —1 and v = [Mw —-1= (%1 — 1. Since d # d’, there are two cases:

So 0
1

Case 1. d<d.
Then v > 0. Som=3sy=0, n=d(U_1+vlp) =dv>0,p=s41—s9o=d >0, ¢ =
dUy = d > 0. Thus the L-shape is of shape (S1) with

(l,h,p,n) = (d, [%ﬁ‘ d,d,(Fﬂ —1)d).

Case 2. d>d.
Thenv=0. Som=3s0=0, n=d(U_;+vUy) =0, p=s_1—s5=N'—-0=d >0, q=
dUy = d > 0. Thus the L-shape is of shape (S5) with

(¢, h,p,n) = (d',d,d,0).

5 Chen-Hwang’s rule

Chen and Hwang [3] gave a set of rules (CH-RULE in short) to determine the parameters
¢, h,p,n for a degenerate L-shape. Their rules always set ¢ to the width and h to the

height of the rectangle (the degenerate L-shape). We now briefly describe their rules.

CHEN-HWANG-RULE.

(i) Suppose hb Z la =0 (mod N). Let the zero immediately above the L-shape occurs
at column j. Then

p=L—7 n=0.

14

(ii) Suppose fa # hb = 0 (mod N). Let the zero immediately to the right of the

L-shape occurs at row . Then
p=0, n=h—u1.
(iii) Suppose fa=hb=0 (mod N). If h > ¢, follow rule (i); otherwise, follow rule (ii).
End-of-CHEN-HWANG-RULE.

The ¢,h,p,n chosen by CH-RULE satisfy the basic congruence equations in (3.2).

Fig. 3 illustrates these rules.

0 0 0
14 2 5 8 11 1014 3 7 11{0 (1013 1 4 7
71013 1 4 5 9 13 2 6 5 8 11 14 2
0 3 6 9 120 0 4 8121 0 3 6 91210

(¢,h,p,n) =(5,3,2,0) (¢,h,p,n)=(5,3,0,1) (¢, h,p,n)=(5,3,0,3)
(a) rule (i) (b) rule (ii) (c) rule (iii)

Figure 3: The (¢, h,p,n) determined by CH-RULE.

W now characterize the (¢,h,p,n) obtained by CH-RULE when DL(N;a,b) has a

degenerate L-shape.

Theorem 10 If DL(N;a,b) satisfies
(C1), then CH-RULE derives an L-shape of shape (S2) with (¢,h,p,n) = (N’,d,i,0);
(C2), then CH-RULE derives an L-shape of shape (53) with (¢,h,p,n) = (d',,0,7);
(C8), then CH-RULE derives an L-shape of shape

(S6) with (¢, h,p,n) = (d',d,0,d) if d < d';

(S5) with (¢, h,p,n) = (d',d,d',0) if d > d.

Proof. First, suppose DL(N;a,b) satisfies (C1). Then there exists 1 < ¢ < min{d, N’ —

1} such that db = ia (mod N). By Theorem 2, { = N’, h = d; also, (C1) = (1). So

15

hb # la =0 (mod N). Let the zero immediately above the L-shape occurs at column
j. Since ta = 0 (mod N), j = ¢ —i. So CH-RULE will follow rule (i) and will set
p=F—j=tandsetn=0.Thusm=/(—p=7>0,n=0,p=i>0,g=h—n=h>0;
so the L-shape is of shape (S2).

Next, suppose DL(N;a,b) satisfies (C2). Then there exists 1 < j < min{d’, 5 — 1}
such that d'a = jb (mod N). By Theorem 2, ¢ = d’ and h = N/d'; also, (C2) = (2).
So la # hb =0 (mod N). Let the zero immediately to the right of L-shape occurs at
row i. we have i = h — j. So CH-RULE will follow rule (ii) and will set p = 0 and set
n=h—i=j. Thusm=~0—p=(>0,n=35>0,p=0, ¢g=h—n=N/d —j>0;s0
the L-shape is of shape (S3).

Finally, suppose DL(N;a,b) satisfies (C3). By Theorem 2, (C3) = (Condition 3). So
la =hb =0 (mod N). Let the zero immediately above the L-shape occurs at column
j and to the right of L-shape occurs at row i. Then i = j = 0. If d < d, then h < /.
So CH-RULE will follow rule (ii) and will set p = 0 and set n = h —i = h = d. Thus
m={0—p=(>0,n=d>0, p=0, ¢g=h—n=0; so the L-shape is of shape (S6). If
d > d', then h > ¢. So CH-RULE will follow rule (i) and will set p =¢ —j = ¢ = d’ and
setn=0. Thusm=¢—p=0,n=0, p=d >0, ¢g=h—n=d > 0; so the L-shape is
of shape (S5).]

6 The relations between CH-ALGO and CH-RULE

Both CH-ALGO and CH-RULE determine the four parameters ¢, h, p, n for a degenerate
L-shape. Unfortunately, the solution of (¢, h,p,n) using CH-RULE [3] does not always
coincide with the values given by the CH-ALGO. For the example in Fig. 3 (b), the
solution of the CH-RULE is

(¢,h,p,n)=(5,3,0,1)
and the solution of the CH-ALGO is

(L,h,p,n) = (5,7,5,4)

16

(see Fig. 4). In this section, we will explain the relations between the two sets of solutions.

n=4

h=T7|l0 p=5

1014 3 7 11(0

5 913 2 6

0 4 8121
(=5

Figure 4: An alternative representation of the L-shape in Fig. 3 (b).

From Theorem 9 and Theorem 10, we know that CH-ALGO will not derive an L-shape
of shape (S4) or (S6) or (S7) and CH-RULE will not derive an L-shape of shape (S1) or
(S4) or (S7). We now further explain the reason below. CH-ALGO will not derive an
L-shape of shape (S4) or (S6) because it always has ¢ = h —n = dU,1 > 0 (recall that
{U Y5+ is strictly increasing and U_; = 0). Also, CH-ALGO will not derive an L-shape
of shape (S7) since if n = d(U, + vUy,41) = 0, then v = —1 and v = 0 and therefore
p=35,— (V+1)s,11 =51 —so >0, a contradiction to the assumption that the L-shape
is of shape (S7). CH-RULE will not derive an L-shape of shape (S1) or (S4) since it
always sets £ to the width and A to the height of the degenerate L-shape. Also CH-RULE
will not derive an L-shape of shape (S7) since it always has n and p not both zero. We
now summarize the results of Theorem 9 and Theorem 10 in Table 1 and compare the

degenerate shapes derived by CH-ALGO and CH-RULE in Table 2.

The following three corollaries follow from Theorem 9 and Theorem 10.

Corollary 11 CH-ALGO and CH-RULE derive the same shape when DL(N;a,b) sat-
isfies (C1), satisfies (C2) and j > X or satisfies (C3) and d > d'. CH-ALGO and

20
CH-RULE derive different shapes when DL(N;a,b) satisfies (C2) and j < 2% or satisfies

2d’

(C3) and d < d'.

17

Table 1: The shapes derived by CH-ALGO and CH-RULE.
shape S1|S2[S3]S4 (S5 |S6 |S7

CH-ALGO || v | v | Vv v
CH-RULE v | v v | v

Table 2: The comparison between CH-ALGO and CH-RULE.

C2 C3
condition | Cl1
j<Z iz ld<d|d>d
CH-ALGO | S2 S1 53 S1 S5
CH-RULE | S2 S3 S3 S6 SH
consistent || yes no yes no yes

Let (f, h, p, n) denote the solution of CH-ALGO and (5, h, p, n), the solution of CH-

RULE. Corollary 12 and Corollary 13 show that when the two sets of solutions are differ-

ent, one can be obtained from the other.

Corollary 12 If DL(N;a,b) satisfies (C2) and j < %, then

and

) T / .
l=p="0 h=|=|h a=(=|-1h,

and

18

References

1]

2]

8]

R. C. Chan, C. Y. Chen, and Z. X. Hong, “A simple algorithm to find the steps of
double-loop networks,” Discrete Appl. Math. 121 (2002), 61-72.

C. Y. Chen and F. K. Hwang, “The minimum distance diagram of double-loop net-
works,” IEEE Trans. Comput. 49 (2000), 977-979.

C. Y. Chen and F. K. Hwang, “Equivalent L-shapes of double-loop networks for the

degenerate case,” Journal of Interconnection Networks 1 (2000), 47-60.

Y. Cheng and F. K. Hwang, “Diameters of weighted double loop networks,” J. Al-
gorithms 9 (1988), 401-410.

M. A. Fiol, J. L. A. Yebra, I. Alegre, and M. Valero, “A discrete optimization problem

in local networks and data alignment,” IEEE Trans. Comput. C-36 (1987), 702-713.

F. K. Hwang, “A complementary survey on double-loop networks,” Theoret. Comput.

Sci. 263 (2001), 211-229.

F. K. Hwang and W. W. Li, “Reliabilities of double-loop networks,” Probability in

the Engineering and Informational Sciences 5 (1991), 255-272.

C. K. Wong and D. Coppersmith, “A combinatorial problem related to multimodule

organizations,” J. Assoc. Comput. Mach. 21 (1974), 392-402.

19

Efficient Tag-Based Routing Algorithms for
the Backward Network of
a Bidirectional General Shuffle-Exchange Network*

Jenny C. Chen! Frank K. Hwang and Jing-Kai Luo

Department of Applied Mathematics
National Chiao Tung University
Hsinchu 300, Taiwan

Abstract

In [7], Padmanbhan proposed the general shuffle-exchange network (GSEN)
and an efficient tag-based routing algorithm for it. In [1], Chen, Liu and Qiu
further enhanced the GSEN with bidirectional links. The bidirectional GSEN
can be divided into two dependent networks, the forward network and the
backward network. Since the forward network is a GSEN, Padmanbhan’s tag-
based routing algorithm can be applied on it. As for the backward network,
Chen et al. [1] proposed a routing algorithm which is based on the idea of
inversely using the forward control tag. In this paper, we will show that the
backward network has a wonderful property: for each destination 7, there are
two backward control tags associated with it such that every source j can get
to ¢ by using one of the two control tags. We will use this property to derive
efficient algorithms for one-to-one routing and for constructing a routing table.

Keywords: Interconnection network, multistage network, shuffle-exchange network, Omega

network, tag-based routing algorithm.

1 Introduction

The purpose of this paper is to derive tag-based routing algorithms for the backward

network of a bidirectional general shuffle-exchange network. Throughout this paper, N’

*This research was partially supported by the National Science Council of the Republic of China under
the grant NSC93-2115-M-009-011.
tThe corresponding author, e-mail: cychen@mail.nctu.edu.tw

1

denotes the number of inputs and the number of outputs of a network. We assume that
all the switch elements in a network are identical and of size k x k.

Shuffle-exchange networks have been proposed as a popular architecture for intercon-
nection networks [2, 3, 6, 5, 7, 8]. The perfect shuffle operation on N’ terminals (k | N')

is the permutation 7 defined by
. . kl / . /
(i) = (ki + ﬁ)mod]\f7 0<i< N —1.

In particular, when k = 2, the perfect shuffle operation separates the top N’/2 terminals
from the bottom N’/2 terminals and precisely interleaves them, with the bottom terminal
still remaining at the bottom. A shuffle-exchange network is a network with N/ = k¢
inputs and outputs and each stage consists of the perfect shuffle on N’ terminals followed
by N'/k switch elements.

In a multistage interconnection network, a path from an input to an output can be
described by a sequence of labels that label the successive edges on this path. Such a
sequence is called a control tag [7] (or tag [1] or path descriptor [4]). The control tag may
be used as a header for routing a message: each successive node uses the first element
of the sequence to route the message, and then discard it. For example, in Figure 1(a),
input 2 can get to output 9 by using the control tag 11 (01011), which means input 2 can
get to output 9 via sub port 0 at stage 0, sub port 1 at stage 1, sub port 0 at stage 2 and
sub port 1 at stage 3 and sub port 1 at stage 4; see Figure 1(b) for an illustration of sub
ports.

In a shuffle-exchange network, the number of stages may be equal to or be greater
than log, N’. When the number of stages is exactly log, N’, a shuffle-exchange network
is identical to the Omega network defined in [5] and its control tags depend only on the
destination.

In [7], Padmanbhan proposed the general shuffle-exchange network (GSEN), which
allows N’ # k? and contains exactly [log, N'] stages. Padmanbhan showed that the

control tags of a GSEN depend on both the source and the destination when N’ is not

stage 0 stage 1 stage 2 stage 3 stage 4
0 I 1 1 I 1 I 1 0
: 1 | N E—
; —
3 3
NV —
5 5
7 —— —— - 7
8 — 8
9 SOAOWX AL WY AL AWWY A = 9
10 : 10
11 1
12 l: 12
13 13
14 -— -— l: 14
s/ O\ (/S X\w_ (/S xA\\w._ [/ A\ \e=— 15
16 l: 16
17 17
87 ~\r r -\ - \r-— I: 18
19 "
20 ’— 20
21 A W\ I I W\ I W\ I 21
(a)
sub port 0 sub port 0
sub port 1 —— — subport 1
sub port 2 sub port 2
sub port &-1——1 ——— sub port £-1

(b)

Figure 1: (a) The GSEN with N’ = 22 and k = 2; this figure also shows GSEN(2,11,5).
(b) A k x k switch element and its sub ports.

a power of k. Padmanbhan also proposed an elegant tag-based routing algorithm for the
GSEN.

In [1], Chen, Liu and Qiu enhanced the GSEN with bidirectional links. Their reason for
the enhancement is that although unidirectional links are widely used, bidirectional links
also have many applications as suggested in [2]. A bidirectional GSEN can be divided into
two dependent networks: the forward network and the backward network. The forward
network is from the left-hand side of the network to the right-hand side of the network;
thus a request in it is sent from left to right. On the other hand, the backward network
is from the right-hand side of the network to the left-hand side of the network; thus a
request in it is sent from right to left. The control tags used in the forward (backward)

network are called the forward (backward) control tags.

Since a forward network is a GSEN, Padmanbhan’s tag-based routing algorithm can
be used in it. As for the backward network, Chen et al. [1] implemented a tag-based
routing algorithm by using the forward tag inversely. More precisely, their algorithm first
runs Padmanbhan’s tag-based routing algorithm to derive the forward control tag; then,
their algorithm runs another procedure to convert the forward control tag to the backward
control tag. If the number of stages is n + 1, then the algorithm in [1] takes O(n) time to
derive the tag for a source j to get to a destination ¢ and it takes O(N"n) to construct
the routing table (a table that contains the backward control tags for routing the N’ x N’
pairs of nodes in the backward network).

In this paper, we show that the backward network has a wonderful property: for each
destination i, there are two backward control tags associated with it such that every
source j can get to ¢ by using one of the two tags. We show that the two tags can be
derived in O(n) time. Therefore, it is possible to derive in O(n) time not only a tag for
a jJ to get to ¢ but also the tags for every j to get to i. So, constructing the routing table

can be done in O(N'n) time. We now summarize results of the backward network of a

bidirectional GSEN below.

time required to use the algorithm in [1] | use our algorithm
find a tag for a j to get to i O(n) O(n)

find the tags for every j to get to ¢ O(N'n) O(n)
construct the routing table O(N"n) O(N'n)

This paper is organized as follows. In Section 2, we formally define the bidirectional
GSEN and give conventions used in this paper. In Section 3, we describe the tag-based

routing algorithms in [7] and [1]. In Section 4, we describe our algorithm.

2 The bidirectional GSEN and conventions used in
this paper

The following definition was given in [1].
Definition. A bidirectional general shuffle-exchange network GSEN(k,r,n + 1) is a
GSEN with bidirectional links. The switch elements are aligned in n + 1 stages, la-
belled 0,1,2,...,n. Each stage consists of r switch elements, labelled 0,1,2,...,r — 1.
And each switch element is a k x k bidirectional crossbar.

For example, if each link is a bidirectional link, then the network in Figure 1(a) is

GSEN(2,11,5). Note that in GSEN(k,r,n + 1), there are totally
N =kxr

ports on each side of a stage, labelled 0,1, 2, ..., N'—1. The parameters k, r and n satisfy
the following equation:

[log,(k -r)] = [log, N'] =n+ 1.

Throughout this paper, let
N =N+ M, with N=Fk"and k <M < (k—1)N. (2.1)

The switch elements in the same stage are considered cyclic; that is, switch element
labelled 0 is the next switch element of the switch element labelled »—1. Also, throughout
this paper, node 7 is assumed on the left-hand side of the network and node j, the right-
hand side. Thus when we say a request is from i to j (j to i), we mean the request is sent

through the forward (backward) network.

3 Previous tag-based routing algorithms

A tag-based control routing algorithm is one that sets up a path from an input to an
output by using a control tag 7. Each digit ¢, of the k-ary representation (tot; ...t,) of

T controls the switch element at stage ¢ in the path. We now briefly describe previous

5

tag-based routing algorithms of GSEN(k,r,n + 1). Recall that GSEN(k,r,n + 1) can be
divided into the forward network and the backward network. Also recall that the forward
network is a GSEN and Padmanbhan’s tag-based routing algorithm can be applied on it.

The following two theorems were given in [1].

Theorem 1 [1] In the forward network of GSEN(k,r,n+ 1), a path from i to j can be

set up by using the forward control tag T given by
Ty = (j + kMi) (mod N'). (3.2)
In addition, other forward control tags (and paths) may be available, specified by

T,=T,+(p—1)N' if T,<kN, 1<p<k. (3.3)

The backward network is not a GSEN. Thus Padmanbhan’s algorithm can not be
applied on it. In [1], Chen et al. proposed a tag-based routing algorithm for it by using

the forward control tag inversely.

Theorem 2 [1] In the backward network of GSEN(k,r,n+ 1), a path from j to i can be

set up by using the backward control tag (sosy ... S,) computed by the following procedure:

Procedure GetBackwardControlTag.

1. Use (3.2) and (3.3) to get the forward control tag T". Derive the k-ary representation

(totl . tn) of T.

2. Get the port sequence Ry, Ry, ..., R, based on (tot;...t,) as follows:

k-i (mod N')+tg if ¢ =0,
k-Ro_y (mod N/)—i-tg if1<i<n.

Ry =

3. Use Ry, Ry, ..., R, to get the backward control tag (sgs; ...s,) as follows:

Ll we=o
{“Wﬁ if1<¢<n.

Nl

Consider Figure 1(a) as an example. Suppose j = 9 wants to get to i = 2. In Step 1,
we derive T'= 11 = (01011). In Step 2, we derive Ry = 4, Ry = 9, Ry = 18, R3 = 15 and
Ry, = 9. In Step 3, we have (s¢s1525354) = (00011), which means j = 9 can get to i = 2
via sub port 1 at stage 4, sub port 1 at stage 3, sub port 0 at stage 2, sub port 0 at stage
1 and sub port 0 at stage 0.

Procedure GetBackwardControlTag takes O(n) time to derive the backward control
tag for j to get to 4. It takes O(n) time to route a one-to-one request and O(N"?-n) time

to construct the routing table.

4 The one-to-one routing

Recall that 7 is on the left-hand side of a bidirectional GSEN. Also recall that the switch
elements in each stage are labelled 0,1,2,..., » — 1 and the next switch element of the
switch element labelled » — 1 is the switch element labelled 0.

The following observations are crucial to our algorithm: At stage 0, only one switch
element can get to 7. At stage 1, exactly k switch elements can get to ¢ and these switch
elements are consecutive. At stage 2, exactly k% switch elements can get to ¢ and these
switch elements are consecutive. In general, at stage £, 0 < ¢ < n — 1, exactly k’ switch
elements can get to ¢ and these switch elements are consecutive. Clearly, at stage n, all
the r switch elements can get to 1.

Since the switch elements at stage ¢ that can get to ¢ are consecutive, we only need to

remember the label of the first one of them. Let C, denote this label. Clearly, we have
Cy=ixk" (modr).
A critical value v(i) associated with i is defined to be
v(i) = C, X k.

For example, in Figure 2(a), the switch elements that can get to i = 6 are highlighted,;
moreover, Cy = 6, C; =1, Cy =2, C3 = 4, Cy = 8 and v(i) = 16. In Figure 2(b), the

7

switch elements that can get to i = 5 are highlighted; moreover, Cy =5, C} = 10, Cy =9,
C3 =17, Cy =3 and v(i) = 6. We now propose an algorithm to compute the backward

control tags.

BACKWARD-CONTROL-TAGS.
Input: ¢ on the left-hand side of a bidirectional GSEN(k,r,n + 1).

Output: The critical value v(i) and two control tags (sosi ... s,) and (s(s]...s).

1. /* Compute Cy, Cy,...,Cp. */
for /=0 ton do
Cyp i x k* (mod r);

2. /* Compute the critical value v(i). */
v(i) «— C, X k;

3. /* Compute sy, s,...,s,. */

n
, 1
Sop<— | — |

0 7“’

for /=1tondo
, \‘k’XCg_lJ
sp— | ——|;

”
4. /* Compute Fy, Fy,..., F,. */

if (r—Cu1)xk>r
then
begin
for { =0ton—1do F, + O;
F, — 1,
end
else
for /=0tondo
if C,+ k!> r then F, — 1 else F, — 0;

5. /* Compute sg, S1,...,8p. =/

for /=0 ton do
s¢ — sy + F, (mod k);

® N s ON = O

9

10
1

12
13

14
15
16
17

18
19
20
21

0
1
2
3
4
5
6
7
8
9
10
"
12
13
14
15
16
17
18
19
20
21

Figure 2: GSEN(2,11,5) with the switch elements that can get to (a) ¢ =6 and (b) i =5
being highlighted.

Again, consider Figure 2 (a) as an example. Then k = 2, r = 11 and n = 4. Suppose
¢t = 6. Then after Step 1, Cy =6, C1, =1, Cy = 2, (3 = 4 and Cy = 8. After Step 2,
v(i) = 16. After Step 3, (s)s]s555sy) = (01000). After Step 4, Fop =0, Fy =0, F», =0,
F3; = 0 and Fy = 1. After Step 5, (sos1525354) = (01001). It is easy to verify that: if
j < 16, then j can get to 6 by using the tag (01000); if j > 16, then j can get to 6 by

using the tag (01001). We summarize the above results in the following table.

destination i | (s¢s1525354) | (S45155555,) | v(4)

1=06 01001 01000 16

Recall that there are totally N’ ports on each side of a stage, labelled 0,1,2, ..., N'—1.
A port R consists of two parts: the number y of the switch element where R is located,
and the sub port number z in the switch element where R is located; see [1]. R and y

and z satisfy R = ky + z. The following result was proved in [1].

Lemma 3 [1] Suppose port u of stage £ — 1 and port v of stage ¢ are connected by a link,

where u = ky; + 21 and v = kys + 25. Then 2z = _%J

Thus we have

Lemma 4 Let u, v, yi,21, Y2, 22 be defined as in Lemma 3 and consider the switch
elements labelled y, and ys. Then the backward control tag for yo to get to y1 (or to get

to w) is zy; moreover, zy = L%J

Proof. Clearly, the tag is zo. Since N’ = k x r, by Lemma 3, z5 = _%J [

We now prove that
Lemma 5 If j = v(i), then j can get to i by using the tag (sys) ...s,).

Proof. Suppose j = v(i). Then j can get to i via switch elements labelled C,,, C;,_1, . . ., Cy.
For each ¢, 1 < ¢ < n, Cy is linked to Cy_; via sub port 0 of Cy_;. Sub port 0 of Cy_; is
port u of Cy_1, where u = k x Cy_;. Thus by Lemma 4, the tag for C, to get to Cy_; is
{%J . Also by Lemma 4, the tag for Cj to get to ¢ is L%J In Step 3 of BACKWARD-

CONTROL-TAGS, we set s, = L%J and s, = LMJ, for ¥ =1,2,...,n. Thus we have

this lemma. (]

Lemma 6 If j > v(i), then j can get to i by using the tag (sis] ... sh).

n

Proof. By (2.1), k" < N’ < k"1, Set d = j—wv(i) for easy writing. Then 0 < d < N'—1.

Thus 0 < i < 87t < Y224k8 < & and therefore 0 < | % | < k°. Recall that

Kl

10

at stage n, all of the r switch elements can get to i; at stage £, 0 < ¢ < n — 1, there
are exactly k’ consecutive switch elements that can get to i and the first one is labelled
Cy. Thus j can get to i via switch elements labelled C,, + [%J, Ch_1+ M%J, Cho+ L,;%J,

, Cr+ Lk" z+1J - O+ [d J Cy+ Lknﬂj The connection of a GSEN ensures that
if Cp, 1 < ¢ < n, is connected to Cy_; via sub port z,, then Cy + LWJ is connected
to Cy_y + \.k“ sz via sub port z,. By Lemma 4, the tag for Cy + _k:" e+1j to get to

Coor + Lietea 5 221 by Lemma 5, 2 = s, Note that 0 < b < ¥ < 1. Thus

Co + Lknﬂj = Cy. By Lemma 5, the tag for Cy to get to i is sj. From the above, if

J > (i), then j can get to i by using the tag (s)s] ... s).]

Lemma 7 If j < v(i) and (r — C,_1) X k > r, then j can get to i by using the tag

(S(]Sl Ce 8n>.

Proof. Set d = j — v(i) + N’ for easy writing. Then j can get to i via switch elements
labelled C, + | 2| — 7, Coy + [%], Coa + | %], -, Cot | 5], o, O+ [,

Co + L kn“J The connection of a GSEN ensures that if C,, is connected to C,,_; via sub
port 29, then C,, + _%j — 7 is connected to C,_; + [kQJ via sub port z3 + 1 (mod k). By

Lemma 4, the tag for C, + L J —7rto get to Cp,_1 + L J is zo+ 1 (mod k). By Lemma 5,

2
2o =). In our algorithm, we set F,, = 1 and set s, = s/, + F,, (mod k). Thus s, = 20+ 1
(mod k). Again, the connection of a GSEN ensures that if Cy, 1 < ¢ < n—1, is connected
to Cp_y via sub port 2, then C, + LWJ is connected to Cy_1 + Lknf++zj via sub port
29. By Lemma 4, the tag for C, + LWJ to get to Cp_1 + Lknj++2J is zo. By Lemma 5,
2y = 5. In our algorithm, we set Fy = 0 and set s, = s, + F; (mod k). Thus s, = 2.
Note that 0 < k;% < M-l 1. Thus Cp + Lknﬂj = (Cy. By Lemma 5, the tag for Cj

to get to i is sp. In our algorithm, we set Fy, = 0 and set sop = s;, + Fo (mod k). Thus

sp = s;. We now have this lemma.]

Lemma 8 If j < v(i) and (r — Cy—1) X k < r, then j can get to i by using the tag
(8081 Ce Sn).

11

Proof. Set d = j — v(i) + N’ for easy writing. Then j can get to i via switch elements
labelled L,,, L,_1, -+, Ly, -+, L1, Ly, where

and for{ =n—1,n—2,...,0,

Cg—l— \Jﬁ” Z-HJ if Cg‘i‘k’z S r,
Cot | o] =7 £ Co+E >

L, =

The connection of a GSEN ensures that if C,, is connected to C,,_; via sub port z3, then
L,, is connected to L, via sub port 2o+1 (mod k). By Lemma 4, the tag for L,, to get to
L,_1is zo4+1 (mod k). By Lemma 5, zo = s/,. Note that C,,+k™ > r. Thus our algorithm
sets F,, = 1. Since our algorithm sets s,, = s/, + F,, (mod k), clearly s, = 2o +1 (mod k).
Again, the connection of a GSEN ensures that if Cp, 1 < /¢ <mn — 1, is connected to Cy_;
via sub port zs, then L, is connected to L,_; via sub port zy if L, = C; + Lkn_;ﬂﬂj and via
sub port zo+1 (mod k) if L, = Cp+ Lknf++1j —r. Thus by Lemma 4, the tag for L, to get to
Ly 1iszif Ly = Cy+ Lk" ,HJ and is zo+1 (mod k) if L, = Cp+ LML%J —r. By Lemma
5, 29 = s/. In our algorithm, we set I, = 0if C, + k* <r (i.e., if Ly = Cy + _kn%‘leﬂj), set
F=1ifCo+k >r (ie.,if Ly = Cy+ Lkn++1j —r) and set s, = s, + F; (mod k). Thus

Sp = 29 if Ly = Cp+ Lk” 1’+1J and s, = 2o + 1 (mod k) if L, = Cp + Lk” Z+1J —r. Note

_1 < 1. Thus Ly = Cy. By Lemma 5, the tag for Ly to get to i is sj,.
Note that Cp + & < r. Thus our algorithm sets Fy = 0 and set sq = s, + Fy (mod k).

Thus so = sp. We now have this lemma.]

Theorem 9 Ifj < v(i), then j can get to i by using the backward control tag (sos1 ... Sn);

/

if j > v(i), then j can get to i by using the backward control tag (sys) ...s,). Moreover,

it takes O(n) time to compute v(i), (SoS1...5n) and (sysy...sh).

!/

Proof. It is obvious that it takes O(n) time to compute v(i), (sps1 ... s,) and (s48] ... s).

This theorem now follows from Lemma 5, Lemma 6, Lemma 7 and Lemma 8.]

12

The following is a one-to-one routing algorithm for the backward network of a bidi-

rectional GSEN.

ONE-TO-ONE.

Input: ¢ on the left-hand side and j on the right-hand side of a bidirectional GSEN
(k,r,n+1).

Output: The backward control tag for 5 to get to 7.

1. Use BACKWARD-CONTROL-TAGS to derive v(7), (5981 ... sp) and (s4s] ... Sh);

n

2. if j < v(i) then return (s¢s;...s,) else return (s,s)...s));

It is obvious that algorithm ONE-TO-ONE takes O(n) time.

5 The routing table and the all-to-all routing

In this section, we will propose an algorithm to construct the routing table of the back-
ward network of a bidirectional GSEN. This algorithm is based on the one-to-one routing

algorithm proposed in the previous section and can be used for the all-to-all routing.

ROUTING-TABLE.
Input: A bidirectional GSEN(k,r,n + 1).
Output: Its routing table.

1. /* Recall the function all to one */

for i=0to N'—1do
run algorithm BACKWARD-CONTROL-TAGS for i and GSEN(k,r,n + 1);

endfor;

13

It is obvious that algorithm ROUTING-TABLE takes O(N'n) time. In the appendix,
we list the computer output of the routing tables derived by algorithm ROUTING-TABLE
for N = 18,20,22,...,32. Note that in the table of N’ = 32, each v(i) is zero, which
means we can get to every ¢ by using only one tag. This result reflects the known result
that when the number of stages is exactly log, V', a shuffle-exchange network is identical

to the Omega network defined in [5] and its control tags depend only on the destination.

References

[1] Z. Chen, Z. Liu, and Z. Qiu, “Bidirectional shuffle-exchange network and tag-based

routing algorithm,” IEFE Communication Letters, vol. 7, no. 3, pp. 121-123, 2003.

[2] M. Gerla, E. Leonardi, F. Neri, and P. Palnati, “Routing in the bidirectional shuf-

flenet,” IEEE/ACM Trans. Networking, vol. 9, no. 1, pp. 91-103, Feb. 2001.

[3] F. K. Hwang, “The Mathmatical Theroy of Nonblocking Switching Networks,” Series
on Applied Mathmatics, vol. 15, ch. 1, pp. 12-22, 2004.

[4] C. P. Kuruskal. “A unified theory of interconnection network structure,” Theoretical

Computer Science, vol. 48, pp. 75-94, Jun. 1986.

[5] D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans.

Comput., vol. C-24, no. 12, pp. 1145-1155, Dec. 1975.

[6] S. C. Liew, “On the stability of shuffle-exchange and bidirectional shuffle-exchange
deflection network,” IEEE/ACM Trans. Networking, vol. 5, no. 1, pp. 87-94, Feb.
1997.

[7] K. Padmanabham, “Design and analysis of even-sized binary shuffle-exchange net-
works for multiprocessors,” IEEFE Trans. Parallel and Distributed Systems, vol. 2, no.

4, pp. 385-397, Jan. 1991.

14

[8] R. Ramaswami, “Multi-wavelength lightwave networks for computer communica-

A Backward control tags for N' = 18,20,...,32

tion,” IEEE Commun. Mag., vol. 31, no. 2, pp. 78-88, Feb. 1993.

15

GSEN(2, 9, 5) GSEN(2, 10, 5)
i=0 [00001]00000] v =0 i=0 [00001[00000][v;=0
i=1 [00010[00001 v =14 i=1 100010[00001 |v =12
i=2 [00100[00011 v =10 i=2 10010000011 |v;=4
i=3 [00110[00101|v;=6 i=3 0010100100 |v; =16
i=4 0100000111 |v= i=4 [00111[00110]|v;=38
i=5101001[01000 |v =16 i=5 [01001[01000|v =
i=6 |01011[01010 v =12 i=6 |01010[01001 |v =12
i=7 0110101100 |v = i=7 10110001011 |v;=4
i=8 |01111[01110|v= i=8 |01101][01100|v; =16
i=9 1000110000 v = i=9 0111101110 |v=
i=10[10010[10001 |v; =14 i=10[10001[10000 v =
i=11[10100[10011 |v =10 i=11/10010[10001 |v; =12
i=12[10110[10101 v =6 i=12/10100[10011 |v; =4
i=13[11000[10111|v =2 i=13/10101[10100 |v; =16
i=14[11001[11000 |v; =16 i=14/10111[10110 |v; =
i=15[11011[11010 |v =12 i=15[11001[11000 v =
i=1611101[11100 v =23 i=16/11010[11001 |v; =12
i=17[11111[11110|v; =4 i=17[11100[11011|v; =4
i=18|11101[11100 |v =16
i=19/11111[11110|v =23

GSEN(2, 11, 5)

GSEN(2, 12, 5)

R N N N N N N N N N N N N N N N N N N N D .

00001
00010
00011
00101
00110
01000
01001
01011
01100
01110
01111
10001
10010
10011
10101
10110
11000
11001
11011
11100
11110
11111

00000
00001
00010
00100
00101
00111
01000
01010
01011
01101
01110
10000
10001
10010
10100
10101
10111
11000
11010
11011
11101
11110

16

1=20
7 =

7 =

7 =

1 =4
1=29
7 =

7 =

7 =

t=9
1= 10
1 =11
1 =12
1= 13
1= 14
1 =15
1= 16
1= 17
1= 18
1 =19
1= 20
1 =21
1= 22
1= 23

00001
00010
00011
00101
00110
00111
01001
01010
01011
01101
01110
01111
10001
10010
10011
10101
10110
10111
11001
11010
11011
11101
11110
11111

00000
00001
00010
00100
00101
00110
01000
01001
01010
01100
01101
01110
10000
10001
10010
10100
10101
10110
11000
11001
11010
11100
11101
11110

GSEN(2, 13, 5)

GSEN(2, 14, 5)

R, N N DN N DN N N N N N N N N N N N N N N N N N N D, .

00001
00010
00011
00100
00101
00111
01000
01001
01010
01100
01101
01110
01111
10001
10010
10011
10100
10101
10111
11000
11001
11010
11100
11101
11110
11111

00000
00001
00010
00011
00100
00110
00111
01000
01001
01011
01100
01101
01110
10000
10001
10010
10011
10100
10110
10111
11000
11001
11011
11100
11101
11110

17

1=20
7 =

7 =

7 =

1 =4
1=29
7 =

7 =

7 =

t=9
1= 10
1 =11
1 =12
1= 13
1= 14
1 =15
1= 16
1= 17
1= 18
1 =19
1= 20
1 =21
1= 22
1= 23
1 =24
1 =25
1= 26
1= 27

00001
00010
00011
00100
00101
00110
00111
01001
01010
01011
01100
01101
01110
01111
10001
10010
10011
10100
10101
10110
10111
11001
11010
11011
11100
11101
11110
11111

00000
00001
00010
00011
00100
00101
00110
01000
01001
01010
01011
01100
01101
01110
10000
10001
10010
10011
10100
10101
10110
11000
11001
11010
11011
11100
11101
11110

(%

GSEN(2, 15, 5)

GSEN(2, 16, 5)

R N, S,

00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10001
10010
10011
10100
10101
10110
10111
11000
1001
1010
1011
1100
1101
1110
1111

— = = = = = =

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110

18

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
1001
1010
1011
1100
1101
1110
1111

— = = = = e

