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一、中文摘要 
 
本計劃之目的在於研究「雙環式網路」、

「三環式網路」、及「連接網路」。本計

劃為兩年期計劃，現為第一年，在這一年

中，我們的研究重點放在「退化的雙環式

網路」、「混合的弦環式網路」、以及「多

級式連接網路」上。 
 
本計劃截至目為止，已經完成三篇論文（請

參看後面所附論文）。其中一篇是關於「雙

環式網路」、兩篇是關於「多級式連接網

路」。 
 
在「雙環式網路」方面，我們探討當一個

雙環式網路的 L-shape 是 degenerate 時，參

數(l, h, p, n)的給法。在「多級式連接網路」

方面，我們研究 buddy networks with an 
arbitrary number of stages 的等價關係、以及

提出一個很有效率的 tag-based routing 
algorithm for the backward network of a 
bidirectional general shuffle-exchange 
network。 

 
關鍵詞：環式網路、雙環式網路、三環式

網路、連接網路、直徑 
 
Abstract 
 
The purpose of this project is to study loop 
networks and interconnection networks. This 
project is a two-year project and now it is in 

its first year. In this year, we focus on the 
study of degenerate double-loop networks, 
the equivalence relation of buddy networks, 
and the routing algorithm for the backward 
network of a bidirectional shuffle-exchange 
network. 
 
Keywords: loop network, double-loop 
network, triple-loop network, interconnection 
network, diameter 
 
二、緣由與目的 
 
本人因旁聽黃光明教授之課程而對「環式

網路」產生很大之興趣，在過去幾年中，

所做的研究也以「環式網路」為主。然而，

由於「連接網路」在現今的研究及實際應

用中，都佔有極重要的地位，故想藉由此

計劃，對「環式網路」中的一些問題再做

研究，同時，也開始「連接網路」方面之

研究。 
 
三、結果與討論 
 
本計劃在第一年內，截至目為止，已經完

成了三篇論文：其中一篇論文已經投稿、

另外兩篇論文已經全部寫完了，最近就會

投稿；除此之外，還有幾篇論文正在撰寫

中。總之，今年是豐收的一年。以下略述

已完成的那三篇論文的結果。 
 

論文一：Equivalence of buddy networks with 
arbitrary number of stages. [5] 
 
多級式連接網路的等價關係是一個重要的

研究問題，因為它能減少我們所需考慮的
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網路個數。 
 
在過去，學者們曾提出 buddy networks 及

strict buddy networks，也研究過 banyan 多

級式連接網路的等價關係（網路中的 stage 
數都有所限制）。在這篇論文裡，我們推

廣 strict buddy networks 成為 universal 
buddy networks、也推廣 P(*,*) networks 成
為 power-of-d networks。 
 
由於 banyan 多級式連接網路是 universal 
buddy networks 的 special case，在這篇論

文裡，我們研究 universal buddy networks 
with an arbitrary number of stages 的等價關

係。 
 
論文二：On degenerate double-loop L-shapes. 
[12] 
 
論文[4]及論文[9]均曾提出一個「雙環式網

路」的L-shape是degenerate case時，參數(l, 
h, p, n)的給法。然而兩篇論文所給之參數

未必一致，論文二之目的即在討論兩者之

關係。 
 
我們首先得出了一個雙環式網路的

L-shape 是 degenerate 的充分必要條件；接

著，我們證明了 L-shape 是 degenerate 時，

只會有 7 種可能的 shapes： (S1), (S2), …, 
(S7)。 
 
為方便，稱論文[9]的參數(l, h, p, n) 的給法

為 CH-ALGO ， 稱 論 文 [4] 的 給 法 為

CH-RULE。我們證明了：CH-ALGO 只會

得出(S1), (S2), (S3), (S5)；CH-RULE 只會

得出(S2), (S3), (S5), (S6)。我們也推導出：

何時 CH-ALGO 和 CH-RULE 會得出一致

的(l, h, p, n)，何時它們會得出不一致的(l, h, 
p, n)，以及當它們會得出不一致的(l, h, p, n)
時、它們得出的(l, h, p, n)之間的關係。 
 
論文三 ：An efficient tag-based routing 
algorithm for the backward network of a 
bidirectional general shuffle-exchange 
network. [8] 
 
Shuffle-exchange network 是很常被用到的

多 級 式 連 接 網 路 。 在 論 文 [13] 裡 ，

Padmanbhan 提 出 了 general shuffle- 
exchange network (GSEN)，這是 shuffle- 
exchange network 的推廣，使得網路中的節

點數不在受限為 k 的次方（假設 switch 
elements 都是 k × k），Padmanbhan 同時

也提出了一個很有效率的 tag-based routing 
algorithm。在論文[7]裡，Chen、Liu 和 Qiu
又推廣 GSEN 成為所有的邊都是雙向的，

並稱之為 bidirectional GSEN。 
 
一個 bidirectional GSEN 裡包含了兩個網

路：the forward network 及 the backward 
network。The forward network 的 routing 可

以利用 Padmanbhan 所提出的 tag-based 
routing algorithm 來完成。至於 the backward 
network，Chen、Liu 和 Qiu 提出了一個

tag-based routing algorithm；這個 algorithm
必 須 先 執 行 Padmanbhan 的 tag-based 
routing algorithm ， 並 「 逆 向 」 使 用

Padmanbhan 的 algorithm 所產生的 tag。 
 
在論文[8]裡，我們證明了 the backward 
network of a bidirectional GSEN 有一個非

常好的性質是：對每個 destination i 而言，

會有兩個 backward control tags 伴隨著

它，任何 source j 都可利用這兩個 tags 中的

某一個走到 i。我們利用這個性質得出

efficient routing algorithms。 
 
四、計劃成果自評 
 
本計劃之執行成果與預期成果相符，目前

已經完成了三篇論文。 
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Equivalence of Buddy Networks with Arbitrary
Number of Stages∗

Chiuyuan Chen†, Frank K. Hwang‡and Kuo-Yuan Lan

Department of Applied Mathematics
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Hsinchu 300, Taiwan

Abstract

Equivalence of multistage interconnection networks is an important concept since
it reduces the number of networks to be studied. Equivalence among the banyan
networks has been well studied. Occasionally, the study was extended to networks
obtained by concatenating two banyan networks (identifying the output stage of the
preceding network with the input stage of the succeeding one). Recently, equivalence
among the class of networks which are obtained from banyan networks by adding
extra stages has also been studied. Note that all these above-mentioned networks
are in the general class of buddy networks. In this paper we study equivalence of
buddy networks with an arbitrary number of stages.

Keywords: Multistage interconnection networks, topological equivalence, banyan prop-

erty, buddy property, bit permutation.

1 Introduction

Let N = dn be the number of inputs and outputs of a network. A d-nary s-stage network

is a network with s columns (stages) where each column consists of N/d d× d crossbars

(switches) such that links exist only between crossbars of adjacent stages (note that we

do not allow multi-links between crossbars). An n-stage network is a banyan network if

each input has a unique path to each output (see Figure 1). If a network has more than

∗This research was partially supported by the National Science Council of the Republic of China under
the grants NSC93-2115-M-009-011 and NSC93-2115-M-009-013.

†The corresponding author, e-mail: cychen@mail.nctu.edu.tw
‡This paper was written when the author was visiting Center of Mathematical Sciences, Zhejiang

University, Hangzhou, Zhejiang, P.R. China.
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n stages, then we say such a network has extra stages. In all the figures, the arcs are

directed from left to right.

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

Figure 1: A binary 3-stage banyan network (the Baseline network), G1, and G1.

We can associate an s-stage network with a directed graph G in which vertices rep-

resent crossbars and arcs the communication links. Throughout this paper, Gi,j denotes

the subgraph of G induced by the vertices from stage i to stage j. When there is no

confusion, Gi,j also denotes the subnetwork from stage i to stage j. Set Gi = Gi,i+1 for

easy writing (see Figure 1).

Two s-stage networks are topologically equivalent (or simply equivalent) if their associ-

ated directed graphs are isomorphic. In other words, two s-stage networks are equivalent

if one can be obtained from the other by permuting crossbars in the same stage. Note

that equivalence in this sense preserves the connecting properties of the network. Hence

once we prove a nonblocking property for a network, it extends to all equivalent networks.

Parker [10] first established the equivalence of several n-stage banyan networks includ-

ing the Baseline network. Wu and Feng [13] expanded the equivalence class. Dais and

Jump [6] introduced the “buddy” notation: Let v and v′ be two crossbars in stage i and let

Vv and Vv′ be two sets of crossbars in stage j that v and v′ can reach, respectively. Then

the network is a buddy network if for any i and j = i + 1, either Vv = Vv′ or Vv ∩ Vv′ = ∅.
Agrawal [1] called a buddy network a strict buddy network if the buddy condition also

holds for j = i + 2. In this paper, we further generalize the strict buddy network to the

universal buddy network by allowing j to be arbitrary. In [1], Agrawal claimed that the

strict buddy property characterizes the Baseline-equivalent networks. Bermond, Fourneau

and Jean-Marie [2, 3] gave a counterexample to Agrawal’s claim. Instead, they defined
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the P (∗, ∗) property for characterization: A network is a P(∗, ∗) network if for any two

stages i ≤ j, the number of components in the subgraph Gi,j is dn−1−(j−i).

Siegel and Smith [12] proposed an extra stage to the Baseline-equivalent class of net-

works, and Shyy-Lea [11] considered the k-extra-stage version. Hwang, Liao and Yeh

(see [8]) pointed out that the extra stage versions of Baseline-equivalent networks are not

necessarily equivalent. Equivalence depends not only on the base network (Baseline or

others), but also on how the extra stages are added. Previously, equivalence of extra-stage

networks has been studied only for the double-concatenation type [4, 7] since it contains

the famous Beneš network as a special case.

To study the equivalence of extra-stage networks for arbitrary number of stages,

Chang, Hwang and Tong [5] proposed the class of bit permutation networks. Label

the crossbars in a stage by distinct d-nary (n− 1)-sequences x1x2 · · ·xn−1. A bit-i group

(or simply an i-group) consists of the d crossbars whose labels differ only in bit i (there

are dn−2 bit-i groups). An s-stage network is a bit permutation network if for every Gi,

1 ≤ i ≤ s − 1, the links always go from bit-ui groups G′ of stage i to bit-vi+1 groups G′′

of stage i + 1 for some ui, vi+1, where G′′ is a permutation of G′. (A detailed definition of

bit permutation networks is in Section 2.) They proved that a bit permutation network

is equivalent to one whose Gi has the property that vi+1 = ui for all i. Such a network

can be characterized by the vector (u1, u2, · · · , us−1).

Recently, Li [9] proposed the bit permuting network. He view the outputs of stage i

and the inputs of stage i+1 as the vertices of a bipartite graph Gi and label the outputs of

stage i (inputs of stage i+1) by distinct d-nary n-sequences; see Figure 1. Then Gi gives a

bijection from the dn outputs to the dn inputs and hence can be treated as a permutation.

Such a permutation is called an bit permutation if it can be characterized by a permutation

σi of the n bits. A network is a bit permuting network if each Gi corresponds to a σi. Li

gave an elegant “guide” algorithm to route any n-stage bit permuting network.

The notions of universal buddy (UB), bit permutation (BP ) and bit permuting (BPT )

are applicable to networks with any number of stages. Since P (∗, ∗) is defined only for
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n-stage networks, we generalize it to the power-of-d networks. An s-stage network is a

power-of-d network if for any i, j, 1 ≤ i ≤ j ≤ s, the number of components in Gi,j is

a power of d. An s-stage network is a power-of-d universal buddy network if it is both

power-of-d and universal buddy. The notion of power-of-d (dP ) and power-of-d universal

buddy (dP UB) are applicable to networks with any number of stages. In this paper, the

notations of UB, BP , BPT , dP and dP UB also denote their corresponding classes of

networks.

Let A ⊃ B denote A properly contains B. Let A = B denote A is equal to B, meaning

any network in class A is a network in class B (no permutation of crossbars allowed), and

vice versa. Let A ∼ B denote A is equivalent to B, meaning any network in class A

is topologically equivalent to a network in class B (permutations of crossbars allowed),

and vice versa. Note that the permutation of crossbars is neither unique nor one-to-one.

Hence A ∼ B does not imply |A| = |B|. In particular, A ⊃ B does not preclude A ∼ B.

In this paper, we will establish:

UB ⊃
dP ⊃ dP UB ⊃ BP = BPT. (1.1)

dP UB ∼ BP, but UB � dP , UB � dP UB and dP � dP UB. (1.2)

Since the BP network has the vector characterization and is defined for any number

of stages, it is of interests to know whether this very useful class can be further extended

with all connecting properties preserved. (1.1) shows that dP UB generalizes BP and (1.2)

shows that they are equivalent.

2 The BP and BPT classes

We now give a detailed definition of BP networks; this definition is from [5]. An s-

stage network is a bit permutation network if for every Gi, 1 ≤ i ≤ s − 1, there exists

a permutation ρi on {1, 2, · · · , n} such that ρi(n) 6= n and each crossbar x1x2 · · ·xn−1 is

adjacent to crossbar xρi(1)xρi(2) · · · xρi(n−1), where xn ∈ {0, 1, · · · , d − 1}. Note that xn

has d values and and whenever it appears in the coordinates, d sequences are generated
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by running xn through the set {0, 1, · · · , d− 1}. For example, the network in Figure 1 is

a bit permutation network with ρ1 = (132) and ρ2 = (23). Since ρ1 = (132), x1x2x3 is

mapped to x3x1x2 and the links go from bit-2 groups of stage 1 to bit-1 groups of stage

2. In particular, crossbars 00 and 01 at stage 1 are adjacent to crossbars 00 and 10 at

stage 2. Since ρ2 = (23), x1x2x3 is mapped to x1x3x2 and the links go from bit-2 groups

of stage 2 to bit-2 groups of stage 3. Thus crossbars 00 and 01 at stage 2 are adjacent to

crossbars 00 and 01 at stage 3.

The stages in Figure 2 and Figure 3 are drawn horizontally to save space. These two

figures are the same (they have the same connections between crossbars) except their

labels. The labels in Figure 2 are outputs of stage i and inputs of stage i + 1. The labels

in Figure 3 are crossbars of stage i and crossbars of stage i + 1. The permutation in

Figure 2 illustrates a bit permutation σi = (1234) in Gi, while the permutation in Figure

3 illustrates a permutation ρi = (1234) in Gi.

0010     00110000     0001 0100     0101 0110     0111 1000     1001 1010     1011 1100     1101 1110     1111

0010     00110000     0001 0100     0101 0110     0111 1000     1001 1010     1011 1100     1101 1110     1111

Figure 2: A bit permutation σi in Gi.

001000 010 011 100 101 110 111

001000 010 011 100 101 110 111

Figure 3: A permutation ρi of crossbars in Gi.

We now prove

Theorem 1 BPT = BP .
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Proof. First consider a BPT network. For every Gi, there exists a bit permutation

σi on {1, 2, · · · , n} such that each output x1x2 · · ·xn of stage i is adjacent to input

xσi(1)xσi(2) · · ·xσi(n) of stage i+1. Note that the label of a crossbar of stage i (i+1) can be

obtained from the labels of its d outputs (inputs) by dropping the last bit. Thus crossbar

x1x2 · · · xn−1 is adjacent to crossbar xσi(1)xσi(2) · · · xσi(n−1). Note that σi(n) 6= n; otherwise,

there are multi-links between crossbar x1x2 · · · xn−1 and crossbar xσi(1)xσi(2) · · · xσi(n−1).

Since σi(n) 6= n, crossbar x1x2 · · · xn−1 is adjacent to crossbar xσi(1)xσi(2) · · · xσi(n−1), where

xn ∈ {0, 1, · · · , d − 1}. Thus a BPT network is a BP network. On the other hand,

consider a BP network. For every Gi, there exists a permutation ρi on {1, 2, · · · , n}
such that ρi(n) 6= n and each crossbar x1x2 · · · xn−1 of stage i is adjacent to crossbar

xρi(1)xρi(2) · · · xρi(n−1) of stage i + 1, where xn ∈ {0, 1, · · · , d − 1}. Thus each output

x1x2 · · · xn of stage i is adjacent to input xρi(1)xρi(2) · · ·xρi(n) of stage i+1. Since a permu-

tation on {1, 2, · · · , n} is a bit permutation, a BP network is a BPT network. Theorem

1 now follows.

We now show that a bit permutation σi of Gi defines a mapping from u-groups of stage

i to v-groups of stage i + 1. In fact, we can pinpoint u and v.

Lemma 2 Suppose Gi is represented by the bit permutation σi. Then Gi induces a map-

ping from σi(n)-groups of stage i to σ−1
i (n)-groups of stage i + 1.

Proof. Note that each output x1x2 · · ·xn of stage i is adjacent to input xσi(1)xσi(2) · · ·xσi(n)

of stage i + 1. The label of a crossbar of stage i (i + 1) can be obtained from the labels

of its d outputs (inputs) by dropping the last bit. Since xσi(n) is the last bit and get

dropped in the crossbar label of stage i + 1, the d stage-i crossbars differing only in bit

σi(n), i.e., the σi(n)-group, are mapped to the same set of stage-(i+ 1) crossbars. On the

other hand, the stage-i crossbar containing d outputs whose labels differ only in bit σi(n)

is mapped to the σ−1
i (n)-group of stage i + 1. Lemma 2 is proved.

For the example in Figure 2, the mapping is from (σi(4) = 1)-groups of stage i to
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(σ−1
i (4) = 3)-groups of stage i + 1. We now give a vector characterization of a BPT

network. First a lemma.

Lemma 3 Suppose Gi corresponds to a bit permutation σi which maps σi(n)-groups of

stage i to σ−1
i (n)-groups of stage i + 1 and suppose Gi+1 corresponds to a bit permutation

σi+1. Suppose we permute the crossbars of stage i + 1 such that the j-th crossbars of the

σ−1
i (n)-groups are lined up with the j-th crossbars of the σi(n)-groups, j = 0, 1, · · · , d− 1.

Then after the lining-up operation, Gi corresponds to the bit permutation (ui n) and Gi+1

corresponds to the bit permutation (σ−1
i+1(σ

−1
i (n)) σ−1

i+1(σi(n))) ◦ σi+1.

Proof. Take a σ−1
i (n)-group of stage i+1. The j-th crossbar in this group is mapped (lined

up) to the j-th crossbar of the corresponding σi(n)-group of stage i under this lining-up

operation; see Figure 4. Then the only difference is that before lining up, the bit permu-

tation σi maps σi(n)-groups to σ−1
i (n)-groups, while after lining up, the mapping is from

ui-groups to ui-groups. Note that the mapping from ui-groups to ui-groups corresponds

to the bit permutation (ui n). After lining up, σ−1
i (n)-groups of stage i+1 become σi(n)-

groups. Since σi+1 maps σ−1
i+1(σ

−1
i (n)) to σ−1

i (n) and σ−1
i+1(σi(n)) to σi(n), swapping bit

σ−1
i (n) with bit σi(n) corresponds to applying (σ−1

i+1(σ
−1
i (n)) σ−1

i+1(σi(n))) on σi+1. Thus

after lining up, Gi+1 corresponds to bit permutation (σ−1
i+1(σ

−1
i (n)) σ−1

i+1(σi(n))) ◦ σi+1.

0 0

0 1

1 1

1 0

i i+1

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

Figure 4: Lining up stage-(i + 1) crossbars.

By Lemma 2, we know that in every Gi of a BPT network, the links go from ui-

groups to vi+1-groups for some ui, vi+1. The lining-up operation enables us to permute

the crossbars of stage i+1 so that the links go from ui-groups to ui-groups. For example,
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in Figure 4, the links go from 2-groups to 1-groups. After lining up the stage-(i + 1)

crossbars, the links go from 2-groups to 2-groups.

Theorem 4 Consider an s-stage BPT network. By permuting the crossbars of stage 2,

3, · · · , s, each Gi corresponds to a bit permutation which maps u′i-groups to u′i-groups,

i = 1, 2, · · · , s− 1.

Proof. We prove this theorem by induction on s. This theorem is trivially true for s = 2

since we can permute the crossbars of stage 2 to line up with their mates in stage 1. Then

G1 corresponds to a bit permutation which maps u1-groups to u1-groups. Suppose this

theorem holds for up to s − 1 stages. We now prove for s stages. Again, permute the

crossbars of stage 2 to line up with their mates in stage 1. By Lemma 3, G2 remains

to correspond to a bit permutation. Thus we may apply induction on this (s -1)-stage

BPT network such that Gi is characterized by a bit permutation which maps u′i-groups

to u′i-groups, i = 1, 2, · · · , s− 1.

Since BPT = BP , the above characterization is also a vector characterization of a

BP network, but our proof is simpler than the original proof in [5]. Recall that an s-stage

network is a BP network if for every Gi, the links always go from ui groups G′ of stage i

to vi+1 groups G′′ of stage i + 1 for some ui, vi+1, where G′′ is a permutation of G′. If we

drop the requirement that G′′ is a permutation of G′, then the lining-up operation would

not yield a vector characterization. See Figure 5 as an example. In Figure 5(a), the links

in G1 go from 1-groups to 2-groups and the links in G2 go from 1-groups to 3-groups. In

Figure 5(b), the links in G1 go from 1-groups to 1-groups, but the links in G2 do not go

from u-groups to u-groups for any u.

3 The dPUB class

We now show that neither dP ⊆ UB nor vice versa; hence the definition of dP UB makes

sense. Figure 6(a) shows a 2P network which is not a UB network since C reaches {C ′,
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Figure 5: (a) Before lining up and (b) after lining up.

D′, F ′, G′} and E reaches {C ′, E ′, F ′, H ′}; the two sets intersect but are not identical.

Figure 6(b) shows a UB network which is not a 2P network since G1,3 has 3 components.

C

D

E

F

G

H

C

D

E

F

G

H

Figure 6: (a) A 2P network and (b) a UB network.

We first quote a result of [5].

Theorem 5 Suppose an s-stage d-nary BP network has dn inputs, dn outputs, and is

characterized by the vector (u1, u2, · · · , us−1) which contains k distinct elements. Then the

network has dn−1−k components.
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Corollary 6 BP ⊆ dP .

Proof. It is not difficult to see that every subnetwork Gi,j of a BP network is still a BP

network. By Theorem 5, the number of components in Gi,j is a power of d. Since i, j are

arbitrary, the network is in dP .

Theorem 7 BP ⊆ UB.

Proof. Consider an s-stage BP network characterized by (u1, u2, · · · , us−1). Let v be

a crossbar in stage i which reaches a set Vj(v) of crossbars in stage j. Then Vj(v) con-

sists of crossbars whose labels are the same in bits in the set I = {1, 2, · · · , n − 1} \
{ui, ui+1, · · · , uj−1}. Let v′ be another crossbar in stage i. If v′ differs from v in a bit in I,

then clearly, Vj(v
′) ∩ Vj(v) = ∅; if not, then Vj(v

′) = Vj(v). Since i, j, v, v′ are arbitrary,

the network is in UB.

Theorem 8 BP ⊂ dP UB.

Proof. That BP ⊆ dP UB follows from Corollary 6 and Theorem 7. That the con-

tainment is strict follows from Figure 7 (crossbars 00 and 11 in stage 2 are connected

to crossbars 00 and 11 in stage 3; so, the links from stage 2 to stage 3 do not go from

ui-groups to vi+1-groups for any ui, vi+1).

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

0 0

0 1

1 1

1 0

Figure 7: A dP UB network which is not a BP network.

Theorem 9 dP UB ∼ BP .
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Proof. Since dP UB ⊃ BPT , it suffices to prove that a dP UB network is equivalent to a

BP network. We prove this by induction on the number s of stages.

(1) s = 2. Suppose v of stage 1 is connected to the set V2(v). Let v′ be another crossbar

in stage 1 and connected to a given w ∈ V2(v). By the UB property, V2(v
′) = V2(v).

Since there are d − 1 choices of v′ from w, these v′ together with v form a d × d

complete bipartite graph Kd,d with V2(v). Further, V2(v
′′) ∩ V2(v) = ∅ for any

v′′ 6∈ v ∪ {v′}. Since v is arbitrary, G1,2 consists of dn−2 Kd,d whose equivalence to

a BP network is clear.

(2) s = 3. By the dP property, the network has dn−k components for some 1 ≤ k ≤ n.

Recall that from (1) the subgraphs G1,2 and G2,3 must each consist of dn−2 Kd,d.

Hence k = 1 is impossible.

For k = 2, then no two Kd,d in G1,2 can be connected through G2,3. Therefore G1,3

must consist of dn−2 copies of concatenation of two Kd,d, with the outputs of the

former identified with the inputs of the latter (see Figure 8). Clearly, subnetwork

G1,3 is equivalent to a BP network.

Figure 8: Concatenation of K2,2.

For k = 3, first suppose G1,3 is obtained by connecting each d-set D = {D1, D2,

· · ·, Dd}, where each Di is a Kd,d in G1,2, into one component in G1,3. Note that

the connection is done by a d-set D′ = {D′
1, D

′
2, · · · , D′

d} of Kd,d in G2,3. If two

crossbars of the same Di are connected to a D′
j, then one member of D \Di will not
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be connected to D′
j, violating the UB property. Therefore, the d crossbars in a Di

must go to distinct D′
j, or all D′

j. Since we can permute the stage-2 crossbars in a

D arbitrarily, and independently for each D, the stage-2 crossbars in each D can be

ordered such that the k-th one goes to the k-th D′, which is clearly a BP network.

Figure 9 illustrates how to permute.

Permute  the  bottom  2  crossbars

in  stages  2  and  3

Figure 9: A permutation to achieve BP .

Suppose G1,3 is obtained otherwise. There must exist a d′-set of Kd,d, d′ > d, in

G1,2 connected in G2,3 through a d′-set of Kd,d in G2,3. Note that an input in this

component touches only d2 among the dd′ outputs. Hence there must exist another

input reaching some, but not all, of these d2 outputs, violating the UB property.

For k ≥ 4, then the situation described in the last paragraph must also happen.

(3) s ≥ 4. Consider the two subnetworks G1,3 and G2,s. By induction, G1,3 can be

represented by a vector (u1, u2) and G2,s by (u′1, u
′
2, · · · , u′s−2). By Lemma 3, we can

permute the crossbars in stage k, 2 ≤ k ≤ s, such that u′1 = u2 and u′′k = u′k−1

for 3 ≤ k ≤ s − 1. Therefore the subnetwork G1,s is represented by the vector

(u1, u2, u
′′
3, · · · , u′′s−1), i.e., G1,s is a BP network.

Corollary 10 Two dP UB networks are equivalent if the characterization vector of one

can be obtained from the other through a permutation.
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Figure 6(a) gives an example of a dP network which is not equivalent to a UB network.

Hence dP � UB. Since UB ⊃ BP , Figure 6(a) is also an example of a dP network which

is not equivalent to a BP network. Therefore the UB condition can not be dropped from

Theorem 9. Since BP ∼ dP UB, it follows that dP � dP UB. Figure 6(b) gives a UB

(or strict buddy) network which is equivalent to neither a dP nor a BP network. Hence

UB � BP . Since BP ∼ dP UB, it follows that UB � dP UB.

4 Conclusions

We established the containment relation as given in (1.1), and the equivalence relation as

given in (1.2). By so doing, we achieve three desirable generalizations:

(1) We make the logical extension of the buddy network and the strict buddy network

to the universal buddy network; a network with more structure but still includes all

banyan-type networks and their extra-stage versions.

(2) We generalize the notion of BP to dP UB which is a larger class, yet preserves all

connecting properties of BP .

(3) We generalize P (∗, ∗) which is defined only for n = logd N stages to general s stages.

The equivalence relations we established also help in simplifying some existing proofs:

(1) The proof of vector characterization of BP in [5] is quite complicated. We gave a

simple proof of vector characterization of BPT and the equality that BPT = BP

makes the proof valid for BP too.

(2) The proof that P (∗, ∗) characterizes the Baseline-equivalent class of banyan-type

networks is very long, as admitted in [2]. Our proofs of Theorem 9 and Corollary

10 are much shorter and more general.

Acknowledgement. The author wishes to thank H. Zhou for providing a counterex-

ample to a conjecture prior to our discovery of Theorem 9. We also thank the comments

of referees which led to a better version of the paper.
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Abstract

Most of the results about the L-shapes of double-loop networks are given
in terms of the four parameters `, h, p, n. But these parameters are not well
defined in the degenerate case. Recently, Cheng and Hwang gave an efficient
algorithm to compute the four parameters `, h, p, n of an L-shape which works
for both the regular and the degenerate cases. On the other hand, Chen and
Hwang gave a set of rules to determine the four parameters of a degenerate
L-shape. Unfortunately, the solutions given by the above two methods do not
always coincide. In this paper, we try to understand their respective meanings
and their relations.

Keywords: Double-loop network, L-shape, degenerate.

1 Introduction

The double-loop network has been well studied (see [6] for a recent survey) as the topology

for a communication network or computer network. For example, SONET (synchronous

optical network) is a double-loop network. Formally, a double-loop network DL(N ; a, b)

has N nodes 0, 1, · · · , N−1 and 2N links, i → i+a, i → i+b (mod N), i = 0, 1, · · · , N−
∗This research was partially supported by the National Science Council of the Republic of China under

the grant NSC93-2115-M-009-011.
†e-mail: cychen@mail.nctu.edu.tw
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1. We assume that the weight of each of the 2N links is 1 and assume that gcd(N, a, b) = 1

so that the network is strongly connected.

The minimum distance diagram (MDD) of DL(N ; a, b) is a diagram with node 0 in

cell (0, 0), and node v in cell (i, j) if and only if ia + jb ≡ v (mod N) and i + j is the

minimum among all (i′, j′) satisfying the congruence. Namely, a shortest path from 0 to

v is through taking i a-links and j b-links (in any order). Note that in a cell (i, j), i is the

column index and j is the row index. An MDD includes every node exactly once (in case

of two shortest paths, the convention is to choose the cell with the smaller row index, i.e.,

the smaller j). Since DL(N ; a, b) is clearly node-symmetric, there is no loss of generality

in assuming: node 0 is the origin of a path.

Wong and Coppersmith (WC) [8] proved that the MDD of DL(N ; a, b) (their proof

for DL(N ; 1, h) is easily extended to the general case) is always an L-shape which can be

characterized by four parameters `, h, p, n (see Fig. 1 (a)). These four parameters are the

lengths of four of the six segments on the boundary of the L-shape. Clearly,

N = `h− pn.

In [2], Chen and Hwang showed that necessarily ` > n and h ≥ p. Fig. 1 (b) illustrates

an MDD with a regular L-shape. Fig. 1 (c) illustrates one with an L-shape degenerate

into a rectangle.

h

`

p
n

(a) The four parameters

0 1 2 3

4 5 6 7

8

` = 4

h = 3

n = 1
p = 3

(b) a = 1, b = 4

0 1 2

3 4 5

6 7 8

` = 3

h = 3

(c) a = 1, b = 3

Figure 1: Minimum distance diagrams and L-shapes.

Most of the results about the L-shape are given in terms of the four parameters

`, h, p, n. But these parameters are not well defined in the degenerate case. Recently,
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Cheng and Hwang [4] gave an O(log N)-time algorithm to compute the four parameters

`, h, p, n of an L-shape which works for both the regular and the degenerate cases. On the

other hand, Chen and Hwang [3] gave a set of rules to determine the four parameters of

a degenerate L-shape. Unfortunately, the solutions given by the above two methods do

not always coincide. In this paper, we try to understand their respective meanings and

their relations. Since it is also of interest to know when will an L-shape degenerate, in

this paper we give necessary and sufficient conditions depending on N , a, and b only.

2 Necessary and sufficient conditions for degenerate

L-shapes

The following five notations will be used throughout this paper:

d = gcd(N, a), d′ = gcd(N, b), N ′ = N/d, a′ = a/d, and b′ = b (mod N ′). (2.1)

Since gcd(N, a, b) = 1, clearly gcd(d, d′) = 1. Chen and Hwang [3] proved

Lemma 1 [3] A degenerate L-shape of height h and width ` satisfies one of the following

three conditions:

(1) hb 6≡ `a ≡ 0 (mod N).

(2) `a 6≡ hb ≡ 0 (mod N).

(3) `a ≡ hb ≡ 0 (mod N).

We now prove

Theorem 2 The L-shape of DL(N ; a, b) is degenerate if and only if one of the following

three conditions holds:

(C1) d > 1 and there exists 1 ≤ i ≤ min{d, N
d
− 1} such that db ≡ ia (mod N).

(C2) d′ > 1 and there exists 1 ≤ j ≤ min{d′ − 1, N
d′ − 1} such that d′a ≡ jb (mod N).
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(C3) d > 1, d′ > 1 and d′a ≡ db ≡ 0 (mod N).

Moreover, (C1) ⇔ (1), (C2) ⇔ (2) and (C3) ⇔ (3). Also, if (C1) holds, then the

degenerate L-shape is of height d and width N/d; if (C2) holds, then the degenerate L-

shape is of height N/d′ and width d′; if (C3) holds, then the degenerate L-shape is of height

d and width d′.

Proof. Necessity. Suppose the L-shape is degenerate and is a rectangle of height h and

width `. Then by Lemma 1, it satisfies (1) or (2) or (3). We first prove two claims.

Claim 1. If `a ≡ 0 (mod N), then h = d, ` = N/d and d > 1.

Proof of Claim 1. Let a = αd for some integer α. Note that the L-shape being

degenerate implies N = `h. Thus `a ≡ 0 (mod N) implies a ≡ 0 (mod h). Let a = βh

for some integer β. Then a = αd = βh. Hence d = βh
α

. Since 1 = gcd(α, N
d
) =

gcd(α, `h
βh
α

) = gcd(α, `α
β

), necessarily α|β. Therefore β
α

is an integer. Since d|N , we have

β
α
|`. Suppose β

α
> 1. Let `′ = `

β
α

. Then `′ < ` and `′a = `
β
α

βh = `hα = Nα ≡ 0 (mod N).

Then row 0 of the L-shape will contain two entries of 0, one at cell (0,0) and the other at

cell (`′, 0), a contradiction to the definition of an L-shape (recall that an MDD includes

every node exactly once). Therefore β
α

= 1. Consequently, h = d and ` = N/d. Since

` < N and `d = N , clearly d > 1.

Claim 2. If the L-shape is degenerate and hb ≡ 0 (mod N), then h = N/d′, ` = d′

and d′ > 1.

Proof of Claim 2. Since this proof is similar to that of Claim 1, we omit it.

We now prove the necessity of this theorem. First, assume the L-shape satisfies condition

(1). By Claim 1, we have d > 1, h = d and ` = N/d. By the definition of an MDD, hb is

the first element in column 0 satisfying

hb ≡ ia + jb (mod N) with i + j ≤ h, i ≥ 0, j ≥ 0.

Therefore j = 0 for otherwise (h−j)b would be the first element. Also, i ≥ 1 for otherwise

hb ≡ 0 (mod N). Thus db = hb ≡ ia (mod N) for 1 ≤ i ≤ d. Since ` = N/d, we have
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i ≤ N
d
− 1. We conclude db ≡ ia (mod N) for 1 ≤ i ≤ min{d, N

d
− 1}, which means (C1)

holds. The above discussion also shows that (1) implies (C1), i.e., (1) ⇒ (C1).

Next, assume the L-shape satisfies condition (2). Then the argument is similar except

at the end we have

`a ≡ ia + jb (mod N) with i + j < `, i ≥ 0, j ≥ 0.

The reason for the strict inequality that i + j < ` is by our construction on tie-breaking

in defining the MDD. Thus (C2) holds. So (2) ⇒ (C2).

Finally, assume the L-shape satisfies condition (3). By Claim 1, we have d > 1, h = d

and ` = N/d. By Claim 2, we have d′ > 1, h = N/d′ and ` = d′. Thus d′a = `a ≡ 0

(mod N) and db = hb ≡ 0 (mod N), which means (C3) holds. So (3) ⇒ (C3).

Sufficiency. Let the L-shape of DL(N ; a, b) be (`, h, p, n). First, assume that (C1) is

satisfied. Since db ≡ ia (mod N) for 1 ≤ i ≤ min{d, N
d
− 1}, we have h ≤ d. On the

other hand, ` ≤ N/d since (N/d)a = N(a/d) ≡ 0 (mod N). Therefore

N = `h− pn ≤ `h ≤ (N/d)d = N.

Necessarily,

` = N/d, h = d.

It follows

`h = N,

i.e., the L-shape is degenerate. Moreover, `a = (N/d)a = N(a/d) ≡ 0 (mod N); hb =

db ≡ ia 6≡ 0 (mod N) since 1 ≤ i ≤ `− 1. So (C1) ⇒ (1).

The proof of (C2) is similar to that of (C1). Finally, assume that (C3) is satisfied.

Then since d′a ≡ db ≡ 0 (mod N), we have ` ≤ d′ and h ≤ d. Since d|N , d′|N and

gcd(d, d′) = 1, we have d′d ≤ N . Therefore

N = `h− pn ≤ `h ≤ d′d ≤ N.
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Necessarily,

` = d′, h = d.

It follows

`h = N,

i.e., the L-shape is degenerate. Moreover, `a = d′a ≡ 0 (mod N); hb = db ≡ 0

(mod N). So (C3) ⇒ (3).

Remarks. From the proof of Theorem 2, when an L-shape(`, h, p, n) degenerates into

a rectangle, it is reasonable to set ` to the width and h to the height of the rectangle.

Moreover, it is reasonable to set p = 0 or n = 0 since N = `h − pn and `h = N hold

simultaneously.

3 Strongly isomorphic double-loop networks and de-

generate L-shapes

The following property was proved in [1].

Lemma 3 [1] If α and β are integers, not both zero, then there exist integers x and y

such that yα + xβ = gcd(α, β) and gcd(x, gcd(α, β)) = 1.

Let DL(N ; a, b) be a double-loop network. Then

Lemma 4 There exists an integer x such that gcd(x,N) = 1 and ax ≡ d (mod N).

Proof. Since gcd(N, a) = d, by Lemma 3, there exist integers x and y such that yN +

xa = d and gcd(x, d) = 1. Hence ax ≡ d (mod N). Moreover, y(N/d) + x(a/d) = 1

implies gcd(x,N/d) = 1. It follows that gcd(x,N) = gcd(x, (N/d)d) = 1. Hence the

lemma.

Two double-loop networks DL(N ; a, b) and DL(N ; a′, b′) are strongly isomorphic if

there exists a z prime to N such that a′ ≡ az, b′ ≡ bz (mod N) or a′ ≡ bz, b′ ≡ az
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(mod N) [7]. It is well known that two strongly isomorphic double-loop networks realize

the same L-shape. The following property greatly simplifies the proofs in the remaining

sections.

Theorem 5 Let x be an integer such that gcd(x,N) = 1 and ax ≡ d (mod N). Let

b′′ = bx (mod N). Then DL(N ; a, b) and DL(N ; d, b′′) are strongly isomorphic.

Proof. This theorem follows from Lemma 4.

In the following, we characterize a degenerate L-shape by the four independent pa-

rameters `, h, p, n. Set

m = `− p, q = h− n

for convenience; see Fig. 2(a). Then

Lemma 6 For a degenerate L-shape, at least one of m,n, p, q is zero and at most two of

m,n, p, q are zero. Moreover, it is impossible that both m and p, both n and q, or both m

and q are zero.

Proof. It is obvious that at least one of m,n, p, q is zero. Since ` = m+p and h = n+q,

if more than two of m,n, p, q are zero, then ` = 0 or h = 0 will happen, which is impossible.

Suppose two of m,n, p, q are zero. If both m and p (n and q) are zero, then ` = m+p = 0

(h = n + q = 0), which is impossible. If both m and q are zero, then ` = p, h = n, and

then N = `h− pn = 0, which is also impossible. Hence the lemma.

Corollary 7 There are only seven possible ways to view a degenerate L-shape. We define

these shapes by identifying the parameters which are set to zero: (S1): only m = 0, (S2):

only n = 0, (S3): only p = 0, (S4): only q = 0, (S5): m = 0 and n = 0, (S6): p = 0

and q = 0, (S7): n = 0 and p = 0.
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h

`

p
n

m

q

(a)

m = ε

(S1)

n = ε

(S2)

p = ε

(S3)

q = ε

(S4)

m = ε, n = ε

(S5)

p = ε, q = ε

(S6)

n = ε, p = ε

(S7)

Figure 2: The ways to degenerate an L-shape.

By Corollary 7, there are seven ways to view a degenerate L-shape as the product of a

limiting process operated on a regular L-shape. Fig. 2 (S2), (S3), (S5), (S6) and (S7) show

five processes of shrinking a subrectangle with a side (or two sides) of length approaching

zero; Fig. 2 (S1) and (S4) show two processes of cutting off a subrectangle with a side of

length approaching ` or h. When ε = 0, they all represent the same rectangle. But the

different underlying process can induce different values of (`, h, p, n).

Fiol, Yebra, Alegre, and Valero [5] pointed out that an L-shape, regular or degenerate,

always tessellates the plane. Then (`,−n) and (−p, h) are simply two independent vectors

characterizing the distribution of the nodes labelled by 0 (will be referred to as the 0-

nodes) as seen by the equations:

`a − nb ≡ 0 (mod N)

−pa + hb ≡ 0 (mod N).
(3.2)
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Note that (`,−n) is a vector in the fourth quadrant, and (−p, h) one in the second. But

there are other choices of two independent vectors.

4 Cheng-Hwang’s algorithm

Cheng and Hwang [4] gave an algorithm (CH-ALGO in short) to solve for (`, h, p, n) for

DL(N ; a, b). The algorithm works regardless whether the L-shape is regular or not. For

completeness, we give a brief review of this algorithm (note that the weight of each link

in the given double-loop network is assumed to be 1).

CHENG-HWANG-ALGORITHM.

Input: DL(N ; a, b).

Output: (`, h, p, n) of the L-shape of DL(N ; a, b).

Let d, d′, N ′, a′ and b′ be defined as in (2.1).

Let s0 be the integer with

a′s0 + b′ ≡ 0 (mod N ′), 0 ≤ s0 < N ′.

Let s−1 = N ′ and define qi, si, recursively (by the Euclidean algorithm) as follows:

s−1 = q1s0 + s1, 0 ≤ s1 < s0

s0 = q2s1 + s2, 0 ≤ s2 < s1

s1 = q3s2 + s3, 0 ≤ s3 < s2

· · ·
sk−2 = qksk−1 + sk, 0 ≤ sk < sk−1

sk−1 = qk+1sk, 0 = sk+1 < sk.

(4.3)

Define integers Ui by U−1 = 0, U0 = 1, and

Ui+1 = qi+1Ui + Ui−1, i = 0, 1, · · · , k. (4.4)

By induction,

siUi+1 + si+1Ui = N ′, i = 0, 1, · · · , k. (4.5)

Regard s−1/U−1 = ∞ > x for real number x. Since {si}k+1
i=−1 and {Ui}k+1

i=−1 are strictly

decreasing and increasing, respectively, we have

0 =
sk+1

Uk+1

<
sk

Uk

< · · · < s0

U0

<
s−1

U−1

= ∞.

9



Let u be the largest odd integer such that d < su

Uu
. Define

v =

⌈
su − dUu

su+1 + dUu+1

⌉
− 1.

Let

`′ = su − vsu+1, h′ = Uu + (v + 1)Uu+1, p′ = su − (v + 1)su+1, n′ = Uu + vUu+1.

Then

(`, h, p, n) = (`′, dh′, p′, dn′).

End-of-CHENG-HWANG-ALGORITHM.

Now we characterize the (`, h, p, n) obtained by CH-ALGO when DL(N ; a, b) has a

degenerate L-shape. By Theorem 5, it suffices to consider the case that a|N . Since a|N ,

CH-ALGO derives

d = a, d′ = gcd(N, b), N ′ = N/d = N/a, a′ = 1, b′ = b (mod N ′), s−1 = N ′.

So we have

Lemma 8 si ≡ (−1)iUis0 (mod N ′) for 1 ≤ i ≤ k + 1.

Proof. By (4.3) and (4.4), s1 = s−1 − q1s0 = N ′ − U1s0, s2 = s0 − q2s1 = s0 − q2(N
′ −

U1s0) = −q2N
′+(1+q2U1)s0 = −q2N

′+U2s0. Thus s1 ≡ (−1)1U1s0 (mod N ′) and s2 ≡
(−1)2U2s0 (mod N ′). We prove the general case by induction on i. Assume this lemma

holds for i ≤ t. Then, by (4.3) and (4.4), st+1 = st−1 − qt+1st and Ut+1 = Ut−1 + qt+1Ut.

Thus by induction,

st+1 ≡ (−1)t−1Ut−1s0 − qt+1(−1)tUts0 (mod N ′)

= (−1)t+1(Ut−1 + qt+1Ut)s0 (mod N ′)

= (−1)t+1Ut+1s0 (mod N ′).

10



Theorem 9 If DL(N ; a, b) satisfies

(C1), then CH-ALGO derives an L-shape of shape (S2) with (`, h, p, n) = (N ′, d, i, 0);

(C2), then CH-ALGO derives an L-shape of shape

(S1) with (`, h, p, n) = (d′, j +
⌈

d′−j
N
d′

⌉
N
d′ , d

′, j + (
⌈

d′−j
N
d′

⌉
− 1)N

d′ ) if j < N
2d′ ;

(S3) with (`, h, p, n) = (d′, N
d′ , 0, j) if j ≥ N

2d′ ;

(C3), then CH-ALGO derives an L-shape of shape

(S1) with (`, h, p, n) = (d′,
⌈

d′
d

⌉
d, d′, (

⌈
d′
d

⌉− 1)d) if d < d′;

(S5) with (`, h, p, n) = (d′, d, d′, 0) if d > d′.

Proof. First suppose DL(N ; a, b) satisfies (C1). Then there exists 1 ≤ i ≤ min {d,N ′−
1} such that db ≡ ia (mod N). Since a = d, we have b ≡ i (mod N ′). Since b′ = b

(mod N ′) and 1 ≤ i ≤ N ′ − 1, it follows that

b′ = i.

By (4.3), we have s−1 = q1s0 + s1 and q1 ≥ 1. Note that s0 = N ′ − b′ and U1 = q1. So

s1

U1

=
s1

q1

=
s−1

q1

− s0 = N ′(
1

q1

− 1) + b′ ≤ b′ = i ≤ d.

Therefore u = −1. Since b′ = i ≤ d, N ′ ≤ (N ′ − b′) + d; therefore
⌈

N ′
(N ′−b′)+d

⌉
= 1.

Thus v =
⌈

s−1−dU−1

s0+dU0

⌉
− 1 =

⌈
N ′

(N ′−b′)+d

⌉
− 1 = 0. Hence, m = s0 = N ′ − b′ > 0, n =

d(U−1 + vU0) = 0, p = s−1 − (v + 1)s0 = b′ = i > 0, q = dU0 = d > 0. Thus the L-shape

is of shape (S2) and

(`, h, p, n) = (N ′, d, i, 0).

Now suppose DL(N ; a, b) satisfies (C2). So DL(N ; a, b) does not satisfy (C3). Hence

N > dd′. Assume that N = dd′N ′′, where N ′′ > 1. By Theorem 2, there exists 1 ≤ j ≤
min {d′ − 1, N/d′ − 1} such that d′a ≡ jb (mod N). Since d = a, we have d′d ≡ jb

(mod N). Since gcd(N, b) = d′ and N = dd′N ′′, it follows that d|j. Let j = dj′. Then

d′d ≡ dj′b (mod dN ′), which implies d′ ≡ j′b (mod N ′). Thus

d′ ≡ j′b′ (mod N ′).

11



Note that gcd(N ′, b′) = gcd(N ′, b) = gcd(N, b). Thus

gcd(N ′, b′) = d′.

We now have

sk = gcd(s−1, s0) = gcd(N ′, N ′ − b′) = gcd(N ′, b′) = d′

and sk+1 = 0. By (4.5), skUk+1 + sk+1Uk = N ′. Since sk = d′ and sk+1 = 0, it follows that

d′Uk+1 = d′N ′′. Thus

Uk+1 = N ′′.

By Lemma 8, sk ≡ (−1)kUks0 ≡ (−1)kUk(N
′ − b′) ≡ (−1)k+1Ukb

′ (mod N ′). Since k is

either odd or even, there are two cases:

Case 1. k is odd.

Then sk ≡ Ukb
′ (mod N ′). Since sk = d′ ≡ j′b′ (mod N ′), we have Ukb

′ ≡ j′b′

(mod N ′). Thus (Uk − j′)b′ ≡ 0 (mod N ′). Since Uk < Uk+1, Uk < N ′′. Since j < N/d′,

j′ < N ′′. By the facts that gcd(N ′, b′) = d′ and j′ < N ′′ and Uk < N ′′, it follows from

(Uk − j′)b′ ≡ 0 (mod N ′) that

Uk = j′.

Then

sk

Uk

=
d′

j′
> d.

Hence u = k. Since dUk = dj′ = j and dUk+1 = dN ′′ = N
d′ ,

v + 1 =

⌈
sk − dUk

sk+1 + dUk+1

⌉
=

⌈
d′ − j

N
d′

⌉
.

Thus m = sk+1 = 0, n = d(j′ + vN ′′) = j + vN
d′ > 0, p = sk − (v + 1)sk+1 = d′ > 0, q =

dUk+1 = N
d′ > 0. So the L-shape is of shape (S1) and

(`, h, p, n) = (d′, j +

⌈
d′ − j

N
d′

⌉
N

d′
, d′, j + (

⌈
d′ − j

N
d′

⌉
− 1)

N

d′
).
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Note that since k is odd and {Ui}k+1
i=−1 are strictly increasing, Uk−1 ≥ 1. Note also that

qk+1 ≥ 2. Thus by (4.4),

j = dj′ = dUk = d
(Uk+1 − Uk−1)

qk+1

< d
Uk+1

2
= d

N ′′

2
=

N

2d′
.

Case 2. k is even.

Then sk ≡ −Ukb
′ (mod N ′). Since sk = d′ ≡ j′b′ (mod N ′), we have −Ukb

′ ≡ j′b′

(mod N ′). Thus (Uk + j′)b′ ≡ 0 (mod N ′). Since Uk < Uk+1, Uk < N ′′. Since j < N/d′,

j′ < N ′′. By the facts that gcd(N ′, b′) = d′ and j′ < N ′′ and Uk < N ′′, it follows from

(Uk + j′)b′ ≡ 0 (mod N ′) that

Uk = N ′′ − j′.

Then by (4.3), (4.4) and the facts that qk+1 ≥ 2 and d′ > j,

sk−1 − dUk−1 = qk+1sk − d(Uk+1 − qk+1Uk)

= qk+1d
′ − d(N ′′ − qk+1(N

′′ − j′))

= qk+1(d
′ +

N

d′
− j)− N

d′
> 0.

Hence u = k − 1. Since dUk = d(N ′′ − j′) = N
d′ − j,

v + 1 =

⌈
sk−1 − dUk−1

sk + dUk

⌉
=

⌈
qk+1(d

′ + N
d′ − j)− N

d′

d′ + N
d′ − j

⌉
=

⌈
qk+1 −

N
d′

d′ + N
d′ − j

⌉
= qk+1.

Thus m = sk = d′ > 0, n = d(Uk−1 +(qk+1−1)Uk) = d(Uk+1−Uk) = d(N ′′− (N ′′− j′)) =

j > 0, p = sk−1 − qk+1sk = sk+1 = 0, q = dUk = N
d′ − j > 0. So the L-shape is of shape

(S3) and

(`, h, p, n) = (d′,
N

d′
, 0, j).

Note that since Uk−1 ≥ 0 and qk+1 ≥ 2,

j = dj′ = d(N ′′ − Uk) =
N

d′
− d

(Uk+1 − Uk−1)

qk+1

≥ N

d′
− d

N ′′

2
≥ N

d′
− N

2d′
=

N

2d′
.

Note that when k is even, we have j ≥ N
2d′ . This implies that if j < N

2d′ , then k is

odd, which means Case 1 occurs. Therefore CH-ALGO derives an L-shape of shape (S1)

if j < N
2d′ and an L-shape of shape (S3) if j ≥ N

2d′ .
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Finally, suppose DL(N ; a, b) satisfies (C3). By Theorem 2, N = dd′; thus N ′ = d′.

Since db ≡ 0 (mod N), we have b ≡ 0 (mod N ′). Since b′ = b (mod N ′), b′ = 0.

Therefore s0 = 0 and

s0

U0

=
0

1
< d.

Hence u = −1 and v =
⌈

N ′
d

⌉− 1 =
⌈

d′
d

⌉− 1. Since d 6= d′, there are two cases:

Case 1. d < d′.

Then v > 0. So m = s0 = 0, n = d(U−1 + vU0) = dv > 0, p = s−1 − s0 = d′ > 0, q =

dU0 = d > 0. Thus the L-shape is of shape (S1) with

(`, h, p, n) = (d′,
⌈

d′

d

⌉
d, d′, (

⌈
d′

d

⌉
− 1)d).

Case 2. d > d′.

Then v = 0. So m = s0 = 0, n = d(U−1 + vU0) = 0, p = s−1− s0 = N ′− 0 = d′ > 0, q =

dU0 = d > 0. Thus the L-shape is of shape (S5) with

(`, h, p, n) = (d′, d, d′, 0).

5 Chen-Hwang’s rule

Chen and Hwang [3] gave a set of rules (CH-RULE in short) to determine the parameters

`, h, p, n for a degenerate L-shape. Their rules always set ` to the width and h to the

height of the rectangle (the degenerate L-shape). We now briefly describe their rules.

CHEN-HWANG-RULE.

(i) Suppose hb 6≡ `a ≡ 0 (mod N). Let the zero immediately above the L-shape occurs

at column j. Then

p = `− j, n = 0.
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(ii) Suppose `a 6≡ hb ≡ 0 (mod N). Let the zero immediately to the right of the

L-shape occurs at row i. Then

p = 0, n = h− i.

(iii) Suppose `a ≡ hb ≡ 0 (mod N). If h > `, follow rule (i); otherwise, follow rule (ii).

End-of-CHEN-HWANG-RULE.

The `, h, p, n chosen by CH-RULE satisfy the basic congruence equations in (3.2).

Fig. 3 illustrates these rules.

0 3 6 9 12

7 10 13 1 4

14 2 5 8 11

0

0

(`, h, p, n) = (5, 3, 2, 0)

(a) rule (i)

0 4 8 12 1

5 9 13 2 6

10 14 3 7 11 0

0

(`, h, p, n) = (5, 3, 0, 1)

(b) rule (ii)

0 3 6 9 12 0

5 8 11 14 2

10 13 1 4 7

0

(`, h, p, n) = (5, 3, 0, 3)

(c) rule (iii)

Figure 3: The (`, h, p, n) determined by CH-RULE.

W now characterize the (`, h, p, n) obtained by CH-RULE when DL(N ; a, b) has a

degenerate L-shape.

Theorem 10 If DL(N ; a, b) satisfies

(C1), then CH-RULE derives an L-shape of shape (S2) with (`, h, p, n) = (N ′, d, i, 0);

(C2), then CH-RULE derives an L-shape of shape (S3) with (`, h, p, n) = (d′, N
d′ , 0, j);

(C3), then CH-RULE derives an L-shape of shape

(S6) with (`, h, p, n) = (d′, d, 0, d) if d < d′;

(S5) with (`, h, p, n) = (d′, d, d′, 0) if d > d′.

Proof. First, suppose DL(N ; a, b) satisfies (C1). Then there exists 1 ≤ i ≤ min{d,N ′−
1} such that db ≡ ia (mod N). By Theorem 2, ` = N ′, h = d; also, (C1) ⇒ (1). So
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hb 6≡ `a ≡ 0 (mod N). Let the zero immediately above the L-shape occurs at column

j. Since `a ≡ 0 (mod N), j = ` − i. So CH-RULE will follow rule (i) and will set

p = `−j = i and set n = 0. Thus m = `−p = j > 0, n = 0, p = i > 0, q = h−n = h > 0;

so the L-shape is of shape (S2).

Next, suppose DL(N ; a, b) satisfies (C2). Then there exists 1 ≤ j ≤ min{d′, N
d′ − 1}

such that d′a ≡ jb (mod N). By Theorem 2, ` = d′ and h = N/d′; also, (C2) ⇒ (2).

So `a 6≡ hb ≡ 0 (mod N). Let the zero immediately to the right of L-shape occurs at

row i. we have i = h − j. So CH-RULE will follow rule (ii) and will set p = 0 and set

n = h− i = j. Thus m = `− p = ` > 0, n = j > 0, p = 0, q = h− n = N/d′ − j > 0; so

the L-shape is of shape (S3).

Finally, suppose DL(N ; a, b) satisfies (C3). By Theorem 2, (C3) ⇒ (Condition 3). So

`a ≡ hb ≡ 0 (mod N). Let the zero immediately above the L-shape occurs at column

j and to the right of L-shape occurs at row i. Then i = j = 0. If d < d′, then h < `.

So CH-RULE will follow rule (ii) and will set p = 0 and set n = h − i = h = d. Thus

m = `− p = ` > 0, n = d > 0, p = 0, q = h− n = 0; so the L-shape is of shape (S6). If

d > d′, then h > `. So CH-RULE will follow rule (i) and will set p = `− j = ` = d′ and

set n = 0. Thus m = `− p = 0, n = 0, p = d′ > 0, q = h− n = d > 0; so the L-shape is

of shape (S5).

6 The relations between CH-ALGO and CH-RULE

Both CH-ALGO and CH-RULE determine the four parameters `, h, p, n for a degenerate

L-shape. Unfortunately, the solution of (`, h, p, n) using CH-RULE [3] does not always

coincide with the values given by the CH-ALGO. For the example in Fig. 3 (b), the

solution of the CH-RULE is

(`, h, p, n) = (5, 3, 0, 1)

and the solution of the CH-ALGO is

(`, h, p, n) = (5, 7, 5, 4)
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(see Fig. 4). In this section, we will explain the relations between the two sets of solutions.

0 4 8 12 1

5 9 13 2 6

10 14 3 7 11

0

0

` = 5

h = 7 p = 5

n = 4

Figure 4: An alternative representation of the L-shape in Fig. 3 (b).

From Theorem 9 and Theorem 10, we know that CH-ALGO will not derive an L-shape

of shape (S4) or (S6) or (S7) and CH-RULE will not derive an L-shape of shape (S1) or

(S4) or (S7). We now further explain the reason below. CH-ALGO will not derive an

L-shape of shape (S4) or (S6) because it always has q = h − n = dUu+1 > 0 (recall that

{Ui}k+1
i=−1 is strictly increasing and U−1 = 0). Also, CH-ALGO will not derive an L-shape

of shape (S7) since if n = d(Uu + vUu+1) = 0, then u = −1 and v = 0 and therefore

p = su − (v + 1)su+1 = s−1 − s0 > 0, a contradiction to the assumption that the L-shape

is of shape (S7). CH-RULE will not derive an L-shape of shape (S1) or (S4) since it

always sets ` to the width and h to the height of the degenerate L-shape. Also CH-RULE

will not derive an L-shape of shape (S7) since it always has n and p not both zero. We

now summarize the results of Theorem 9 and Theorem 10 in Table 1 and compare the

degenerate shapes derived by CH-ALGO and CH-RULE in Table 2.

The following three corollaries follow from Theorem 9 and Theorem 10.

Corollary 11 CH-ALGO and CH-RULE derive the same shape when DL(N ; a, b) sat-

isfies (C1), satisfies (C2) and j ≥ N
2d′ or satisfies (C3) and d > d′. CH-ALGO and

CH-RULE derive different shapes when DL(N ; a, b) satisfies (C2) and j < N
2d′ or satisfies

(C3) and d < d′.
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Table 1: The shapes derived by CH-ALGO and CH-RULE.

shape S1 S2 S3 S4 S5 S6 S7

CH-ALGO v v v v

CH-RULE v v v v

Table 2: The comparison between CH-ALGO and CH-RULE.

condition C1
C2 C3

j < N
2d′ j ≥ N

2d′ d < d′ d > d′

CH-ALGO S2 S1 S3 S1 S5

CH-RULE S2 S3 S3 S6 S5

consistent yes no yes no yes

Let (ˆ̀, ĥ, p̂, n̂) denote the solution of CH-ALGO and ( ˙̀, ḣ, ṗ, ṅ), the solution of CH-

RULE. Corollary 12 and Corollary 13 show that when the two sets of solutions are differ-

ent, one can be obtained from the other.

Corollary 12 If DL(N ; a, b) satisfies (C2) and j < N
2d′ , then

ˆ̀= p̂ = ˙̀, ĥ = ṅ +

⌈
˙̀− ṅ

ḣ

⌉
ḣ, n̂ = ṅ + (

⌈
˙̀− ṅ

ḣ

⌉
− 1)ḣ,

and

˙̀ = ˆ̀, ḣ = ĥ− n̂, ṗ = 0, ṅ = j.

Corollary 13 If DL(N ; a, b) satisfies (C3) and d < d′, then

ˆ̀= p̂ = ˙̀, ĥ =

⌈
˙̀

ḣ

⌉
ḣ, n̂ = (

⌈
˙̀

ḣ

⌉
− 1)ḣ,

and

˙̀ = ˆ̀, ḣ = ṅ = ĥ− n̂, ṗ = 0.
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Efficient Tag-Based Routing Algorithms for
the Backward Network of

a Bidirectional General Shuffle-Exchange Network∗
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Abstract

In [7], Padmanbhan proposed the general shuffle-exchange network (GSEN)
and an efficient tag-based routing algorithm for it. In [1], Chen, Liu and Qiu
further enhanced the GSEN with bidirectional links. The bidirectional GSEN
can be divided into two dependent networks, the forward network and the
backward network. Since the forward network is a GSEN, Padmanbhan’s tag-
based routing algorithm can be applied on it. As for the backward network,
Chen et al. [1] proposed a routing algorithm which is based on the idea of
inversely using the forward control tag. In this paper, we will show that the
backward network has a wonderful property: for each destination i, there are
two backward control tags associated with it such that every source j can get
to i by using one of the two control tags. We will use this property to derive
efficient algorithms for one-to-one routing and for constructing a routing table.

Keywords: Interconnection network, multistage network, shuffle-exchange network, Omega

network, tag-based routing algorithm.

1 Introduction

The purpose of this paper is to derive tag-based routing algorithms for the backward

network of a bidirectional general shuffle-exchange network. Throughout this paper, N ′

∗This research was partially supported by the National Science Council of the Republic of China under
the grant NSC93-2115-M-009-011.

†The corresponding author, e-mail: cychen@mail.nctu.edu.tw
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denotes the number of inputs and the number of outputs of a network. We assume that

all the switch elements in a network are identical and of size k × k.

Shuffle-exchange networks have been proposed as a popular architecture for intercon-

nection networks [2, 3, 6, 5, 7, 8]. The perfect shuffle operation on N ′ terminals (k | N ′)

is the permutation π defined by

π(i) = (ki +

⌊
ki

N ′

⌋
) mod N ′, 0 ≤ i ≤ N ′ − 1.

In particular, when k = 2, the perfect shuffle operation separates the top N ′/2 terminals

from the bottom N ′/2 terminals and precisely interleaves them, with the bottom terminal

still remaining at the bottom. A shuffle-exchange network is a network with N ′ = kd

inputs and outputs and each stage consists of the perfect shuffle on N ′ terminals followed

by N ′/k switch elements.

In a multistage interconnection network, a path from an input to an output can be

described by a sequence of labels that label the successive edges on this path. Such a

sequence is called a control tag [7] (or tag [1] or path descriptor [4]). The control tag may

be used as a header for routing a message: each successive node uses the first element

of the sequence to route the message, and then discard it. For example, in Figure 1(a),

input 2 can get to output 9 by using the control tag 11 (01011), which means input 2 can

get to output 9 via sub port 0 at stage 0, sub port 1 at stage 1, sub port 0 at stage 2 and

sub port 1 at stage 3 and sub port 1 at stage 4; see Figure 1(b) for an illustration of sub

ports.

In a shuffle-exchange network, the number of stages may be equal to or be greater

than logk N ′. When the number of stages is exactly logk N ′, a shuffle-exchange network

is identical to the Omega network defined in [5] and its control tags depend only on the

destination.

In [7], Padmanbhan proposed the general shuffle-exchange network (GSEN), which

allows N ′ 6= kd and contains exactly dlogk N ′e stages. Padmanbhan showed that the

control tags of a GSEN depend on both the source and the destination when N ′ is not

2
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Figure 1: (a) The GSEN with N ′ = 22 and k = 2; this figure also shows GSEN(2,11,5).
(b) A k × k switch element and its sub ports.

a power of k. Padmanbhan also proposed an elegant tag-based routing algorithm for the

GSEN.

In [1], Chen, Liu and Qiu enhanced the GSEN with bidirectional links. Their reason for

the enhancement is that although unidirectional links are widely used, bidirectional links

also have many applications as suggested in [2]. A bidirectional GSEN can be divided into

two dependent networks: the forward network and the backward network. The forward

network is from the left-hand side of the network to the right-hand side of the network;

thus a request in it is sent from left to right. On the other hand, the backward network

is from the right-hand side of the network to the left-hand side of the network; thus a

request in it is sent from right to left. The control tags used in the forward (backward)

network are called the forward (backward) control tags.
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Since a forward network is a GSEN, Padmanbhan’s tag-based routing algorithm can

be used in it. As for the backward network, Chen et al. [1] implemented a tag-based

routing algorithm by using the forward tag inversely. More precisely, their algorithm first

runs Padmanbhan’s tag-based routing algorithm to derive the forward control tag; then,

their algorithm runs another procedure to convert the forward control tag to the backward

control tag. If the number of stages is n + 1, then the algorithm in [1] takes O(n) time to

derive the tag for a source j to get to a destination i and it takes O(N ′2n) to construct

the routing table (a table that contains the backward control tags for routing the N ′×N ′

pairs of nodes in the backward network).

In this paper, we show that the backward network has a wonderful property: for each

destination i, there are two backward control tags associated with it such that every

source j can get to i by using one of the two tags. We show that the two tags can be

derived in O(n) time. Therefore, it is possible to derive in O(n) time not only a tag for

a j to get to i but also the tags for every j to get to i. So, constructing the routing table

can be done in O(N ′n) time. We now summarize results of the backward network of a

bidirectional GSEN below.

time required to use the algorithm in [1] use our algorithm

find a tag for a j to get to i O(n) O(n)

find the tags for every j to get to i O(N ′n) O(n)

construct the routing table O(N ′2n) O(N ′n)

This paper is organized as follows. In Section 2, we formally define the bidirectional

GSEN and give conventions used in this paper. In Section 3, we describe the tag-based

routing algorithms in [7] and [1]. In Section 4, we describe our algorithm.
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2 The bidirectional GSEN and conventions used in

this paper

The following definition was given in [1].

Definition. A bidirectional general shuffle-exchange network GSEN(k, r, n + 1) is a

GSEN with bidirectional links. The switch elements are aligned in n + 1 stages, la-

belled 0, 1, 2, . . . , n. Each stage consists of r switch elements, labelled 0, 1, 2, . . . , r − 1.

And each switch element is a k × k bidirectional crossbar.

For example, if each link is a bidirectional link, then the network in Figure 1(a) is

GSEN(2,11,5). Note that in GSEN(k, r, n + 1), there are totally

N ′ = k × r

ports on each side of a stage, labelled 0, 1, 2, . . . , N ′−1. The parameters k, r and n satisfy

the following equation:

dlogk(k · r)e = dlogk N ′e = n + 1.

Throughout this paper, let

N ′ = N + M, with N = kn and k ≤ M ≤ (k − 1)N. (2.1)

The switch elements in the same stage are considered cyclic; that is, switch element

labelled 0 is the next switch element of the switch element labelled r−1. Also, throughout

this paper, node i is assumed on the left-hand side of the network and node j, the right-

hand side. Thus when we say a request is from i to j (j to i), we mean the request is sent

through the forward (backward) network.

3 Previous tag-based routing algorithms

A tag-based control routing algorithm is one that sets up a path from an input to an

output by using a control tag T . Each digit t` of the k-ary representation (t0t1 . . . tn) of

T controls the switch element at stage ` in the path. We now briefly describe previous
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tag-based routing algorithms of GSEN(k, r, n + 1). Recall that GSEN(k, r, n + 1) can be

divided into the forward network and the backward network. Also recall that the forward

network is a GSEN and Padmanbhan’s tag-based routing algorithm can be applied on it.

The following two theorems were given in [1].

Theorem 1 [1] In the forward network of GSEN(k, r, n + 1), a path from i to j can be

set up by using the forward control tag T given by

T1 = (j + kMi) (mod N ′). (3.2)

In addition, other forward control tags (and paths) may be available, specified by

Tp = T1 + (p− 1)N ′ if Tp < kN, 1 < p ≤ k. (3.3)

The backward network is not a GSEN. Thus Padmanbhan’s algorithm can not be

applied on it. In [1], Chen et al. proposed a tag-based routing algorithm for it by using

the forward control tag inversely.

Theorem 2 [1] In the backward network of GSEN(k, r, n + 1), a path from j to i can be

set up by using the backward control tag (s0s1 . . . sn) computed by the following procedure:

Procedure GetBackwardControlTag.

1. Use (3.2) and (3.3) to get the forward control tag T . Derive the k-ary representation

(t0t1 . . . tn) of T .

2. Get the port sequence R0, R1, . . . , Rn based on (t0t1 . . . tn) as follows:

R` =





k · i (mod N ′) + t0 if ` = 0,

k ·R`−1 (mod N ′) + t` if 1 ≤ ` ≤ n.

3. Use R0, R1, . . . , Rn to get the backward control tag (s0s1 . . . sn) as follows:

s` =





⌊
k·i
N ′

⌋
if ` = 0,⌊

k·R`−1

N ′

⌋
if 1 ≤ ` ≤ n.
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Consider Figure 1(a) as an example. Suppose j = 9 wants to get to i = 2. In Step 1,

we derive T = 11 = (01011). In Step 2, we derive R0 = 4, R1 = 9, R2 = 18, R3 = 15 and

R4 = 9. In Step 3, we have (s0s1s2s3s4) = (00011), which means j = 9 can get to i = 2

via sub port 1 at stage 4, sub port 1 at stage 3, sub port 0 at stage 2, sub port 0 at stage

1 and sub port 0 at stage 0.

Procedure GetBackwardControlTag takes O(n) time to derive the backward control

tag for j to get to i. It takes O(n) time to route a one-to-one request and O(N ′2 ·n) time

to construct the routing table.

4 The one-to-one routing

Recall that i is on the left-hand side of a bidirectional GSEN. Also recall that the switch

elements in each stage are labelled 0, 1, 2, . . ., r − 1 and the next switch element of the

switch element labelled r − 1 is the switch element labelled 0.

The following observations are crucial to our algorithm: At stage 0, only one switch

element can get to i. At stage 1, exactly k switch elements can get to i and these switch

elements are consecutive. At stage 2, exactly k2 switch elements can get to i and these

switch elements are consecutive. In general, at stage `, 0 ≤ ` ≤ n − 1, exactly k` switch

elements can get to i and these switch elements are consecutive. Clearly, at stage n, all

the r switch elements can get to i.

Since the switch elements at stage ` that can get to i are consecutive, we only need to

remember the label of the first one of them. Let C` denote this label. Clearly, we have

C` = i× k` (mod r).

A critical value v(i) associated with i is defined to be

v(i) = Cn × k.

For example, in Figure 2(a), the switch elements that can get to i = 6 are highlighted;

moreover, C0 = 6, C1 = 1, C2 = 2, C3 = 4, C4 = 8 and v(i) = 16. In Figure 2(b), the
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switch elements that can get to i = 5 are highlighted; moreover, C0 = 5, C1 = 10, C2 = 9,

C3 = 7, C4 = 3 and v(i) = 6. We now propose an algorithm to compute the backward

control tags.

BACKWARD-CONTROL-TAGS.

Input: i on the left-hand side of a bidirectional GSEN(k, r, n + 1).

Output: The critical value v(i) and two control tags (s0s1 . . . sn) and (s′0s
′
1 . . . s′n).

1. /* Compute C0, C1, . . . , Cn. */

for ` = 0 to n do

C` ← i× k` (mod r);

2. /* Compute the critical value v(i). */

v(i) ← Cn × k;

3. /* Compute s′0, s
′
1, . . . , s

′
n. */

s′0 ←
⌊

i

r

⌋
;

for ` = 1 to n do

s′` ←
⌊

k × C`−1

r

⌋
;

4. /* Compute F0, F1, . . . , Fn. */

if (r − Cn−1)× k ≥ r

then

begin

for ` = 0 to n− 1 do F` ← 0;

Fn ← 1;

end

else

for ` = 0 to n do

if C` + k` > r then F` ← 1 else F` ← 0;

5. /* Compute s0, s1, . . . , sn. */

for ` = 0 to n do

s` ← s′` + F` (mod k);
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Figure 2: GSEN(2,11,5) with the switch elements that can get to (a) i = 6 and (b) i = 5
being highlighted.

Again, consider Figure 2 (a) as an example. Then k = 2, r = 11 and n = 4. Suppose

i = 6. Then after Step 1, C0 = 6, C1 = 1, C2 = 2, C3 = 4 and C4 = 8. After Step 2,

v(i) = 16. After Step 3, (s′0s
′
1s
′
2s
′
3s
′
4) = (01000). After Step 4, F0 = 0, F1 = 0, F2 = 0,

F3 = 0 and F4 = 1. After Step 5, (s0s1s2s3s4) = (01001). It is easy to verify that: if

j < 16, then j can get to 6 by using the tag (01000); if j ≥ 16, then j can get to 6 by

using the tag (01001). We summarize the above results in the following table.

destination i (s0s1s2s3s4) (s′0s
′
1s
′
2s
′
3s
′
4) v(i)

i = 6 01001 01000 16
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Recall that there are totally N ′ ports on each side of a stage, labelled 0, 1, 2, . . . , N ′−1.

A port R consists of two parts: the number y of the switch element where R is located,

and the sub port number z in the switch element where R is located; see [1]. R and y

and z satisfy R = ky + z. The following result was proved in [1].

Lemma 3 [1] Suppose port u of stage `− 1 and port v of stage ` are connected by a link,

where u = ky1 + z1 and v = ky2 + z2. Then z2 =
⌊

k·u
N ′

⌋
.

Thus we have

Lemma 4 Let u, v, y1, z1, y2, z2 be defined as in Lemma 3 and consider the switch

elements labelled y1 and y2. Then the backward control tag for y2 to get to y1 (or to get

to u) is z2; moreover, z2 =
⌊

u
r

⌋
.

Proof. Clearly, the tag is z2. Since N ′ = k × r, by Lemma 3, z2 =
⌊

u
r

⌋
.

We now prove that

Lemma 5 If j = v(i), then j can get to i by using the tag (s′0s
′
1 . . . s′n).

Proof. Suppose j = v(i). Then j can get to i via switch elements labelled Cn, Cn−1, . . . , C0.

For each `, 1 ≤ ` ≤ n, C` is linked to C`−1 via sub port 0 of C`−1. Sub port 0 of C`−1 is

port u of C`−1, where u = k × C`−1. Thus by Lemma 4, the tag for C` to get to C`−1 is
⌊

k×C`−1

r

⌋
. Also by Lemma 4, the tag for C0 to get to i is

⌊
i
r

⌋
. In Step 3 of BACKWARD-

CONTROL-TAGS, we set s′0 =
⌊

i
r

⌋
and s′` =

⌊
k×C`−1

r

⌋
, for ` = 1, 2, . . . , n. Thus we have

this lemma.

Lemma 6 If j > v(i), then j can get to i by using the tag (s′0s
′
1 . . . s′n).

Proof. By (2.1), kn < N ′ ≤ kn+1. Set d = j−v(i) for easy writing. Then 0 < d ≤ N ′−1.

Thus 0 < d
kn−`+1 ≤ N ′−1

kn+1

k`

≤ N ′−1
N ′ k` < k` and therefore 0 ≤ ⌊

d
kn−`+1

⌋
< k`. Recall that
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at stage n, all of the r switch elements can get to i; at stage `, 0 ≤ ` ≤ n − 1, there

are exactly k` consecutive switch elements that can get to i and the first one is labelled

C`. Thus j can get to i via switch elements labelled Cn +
⌊

d
k

⌋
, Cn−1 +

⌊
d
k2

⌋
, Cn−2 +

⌊
d
k3

⌋
,

· · · , C` +
⌊

d
kn−`+1

⌋
, · · · , C1 +

⌊
d

kn

⌋
, C0 +

⌊
d

kn+1

⌋
. The connection of a GSEN ensures that

if C`, 1 ≤ ` ≤ n, is connected to C`−1 via sub port z2, then C` +
⌊

d
kn−`+1

⌋
is connected

to C`−1 +
⌊

d
kn−`+2

⌋
via sub port z2. By Lemma 4, the tag for C` +

⌊
d

kn−`+1

⌋
to get to

C`−1 +
⌊

d
kn−`+2

⌋
is z2; by Lemma 5, z2 = s′`. Note that 0 < d

kn+1 ≤ N ′−1
N ′ < 1. Thus

C0 +
⌊

d
kn+1

⌋
= C0. By Lemma 5, the tag for C0 to get to i is s′0. From the above, if

j > v(i), then j can get to i by using the tag (s′0s
′
1 . . . s′n).

Lemma 7 If j < v(i) and (r − Cn−1) × k ≥ r, then j can get to i by using the tag

(s0s1 . . . sn).

Proof. Set d = j − v(i) + N ′ for easy writing. Then j can get to i via switch elements

labelled Cn +
⌊

d
k

⌋ − r, Cn−1 +
⌊

d
k2

⌋
, Cn−2 +

⌊
d
k3

⌋
, · · · , C` +

⌊
d

kn−`+1

⌋
, · · · , C1 +

⌊
d

kn

⌋
,

C0 +
⌊

d
kn+1

⌋
. The connection of a GSEN ensures that if Cn is connected to Cn−1 via sub

port z2, then Cn +
⌊

d
k

⌋− r is connected to Cn−1 +
⌊

d
k2

⌋
via sub port z2 + 1 (mod k). By

Lemma 4, the tag for Cn +
⌊

d
k

⌋− r to get to Cn−1 +
⌊

d
k2

⌋
is z2 +1 (mod k). By Lemma 5,

z2 = s′n. In our algorithm, we set Fn = 1 and set sn = s′n +Fn (mod k). Thus sn = z2 +1

(mod k). Again, the connection of a GSEN ensures that if C`, 1 ≤ ` ≤ n−1, is connected

to C`−1 via sub port z2, then C` +
⌊

d
kn−`+1

⌋
is connected to C`−1 +

⌊
d

kn−`+2

⌋
via sub port

z2. By Lemma 4, the tag for C` +
⌊

d
kn−`+1

⌋
to get to C`−1 +

⌊
d

kn−`+2

⌋
is z2. By Lemma 5,

z2 = s′`. In our algorithm, we set F` = 0 and set s` = s′` + F` (mod k). Thus s` = z2.

Note that 0 < d
kn+1 ≤ N ′−1

N ′ < 1. Thus C0 +
⌊

d
kn+1

⌋
= C0. By Lemma 5, the tag for C0

to get to i is s′0. In our algorithm, we set F` = 0 and set s0 = s′0 + F0 (mod k). Thus

s0 = s′0. We now have this lemma.

Lemma 8 If j < v(i) and (r − Cn−1) × k < r, then j can get to i by using the tag

(s0s1 . . . sn).
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Proof. Set d = j − v(i) + N ′ for easy writing. Then j can get to i via switch elements

labelled Ln, Ln−1, · · · , L`, · · · , L1, L0, where

Ln = Cn +

⌊
d

k

⌋
− r

and for ` = n− 1, n− 2, . . . , 0,

L` =





C` +
⌊

d
kn−`+1

⌋
if C` + k` ≤ r,

C` +
⌊

d
kn−`+1

⌋− r if C` + k` > r.

The connection of a GSEN ensures that if Cn is connected to Cn−1 via sub port z2, then

Ln is connected to Ln−1 via sub port z2+1 (mod k). By Lemma 4, the tag for Ln to get to

Ln−1 is z2+1 (mod k). By Lemma 5, z2 = s′n. Note that Cn+kn > r. Thus our algorithm

sets Fn = 1. Since our algorithm sets sn = s′n +Fn (mod k), clearly sn = z2 +1 (mod k).

Again, the connection of a GSEN ensures that if C`, 1 ≤ ` ≤ n− 1, is connected to C`−1

via sub port z2, then L` is connected to L`−1 via sub port z2 if L` = C` +
⌊

d
kn−`+1

⌋
and via

sub port z2+1 (mod k) if L` = C`+
⌊

d
kn−`+1

⌋−r. Thus by Lemma 4, the tag for L` to get to

L`−1 is z2 if L` = C` +
⌊

d
kn−`+1

⌋
and is z2 +1 (mod k) if L` = C` +

⌊
d

kn−`+1

⌋−r. By Lemma

5, z2 = s′n. In our algorithm, we set F` = 0 if C` + k` ≤ r (i.e., if L` = C` +
⌊

d
kn−`+1

⌋
), set

F` = 1 if C` + k` > r (i.e., if L` = C` +
⌊

d
kn−`+1

⌋− r) and set s` = s′` + F` (mod k). Thus

s` = z2 if L` = C` +
⌊

d
kn−`+1

⌋
and s` = z2 + 1 (mod k) if L` = C` +

⌊
d

kn−`+1

⌋ − r. Note

that 0 < d
kn+1 ≤ N ′−1

N ′ < 1. Thus L0 = C0. By Lemma 5, the tag for L0 to get to i is s′0.

Note that C0 + k0 ≤ r. Thus our algorithm sets F0 = 0 and set s0 = s′0 + F0 (mod k).

Thus s0 = s′0. We now have this lemma.

Theorem 9 If j < v(i), then j can get to i by using the backward control tag (s0s1 . . . sn);

if j ≥ v(i), then j can get to i by using the backward control tag (s′0s
′
1 . . . s′n). Moreover,

it takes O(n) time to compute v(i), (s0s1 . . . sn) and (s′0s
′
1 . . . s′n).

Proof. It is obvious that it takes O(n) time to compute v(i), (s0s1 . . . sn) and (s′0s
′
1 . . . s′n).

This theorem now follows from Lemma 5, Lemma 6, Lemma 7 and Lemma 8.
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The following is a one-to-one routing algorithm for the backward network of a bidi-

rectional GSEN.

ONE-TO-ONE.

Input: i on the left-hand side and j on the right-hand side of a bidirectional GSEN

(k, r, n + 1).

Output: The backward control tag for j to get to i.

1. Use BACKWARD-CONTROL-TAGS to derive v(i), (s0s1 . . . sn) and (s′0s
′
1 . . . s′n);

2. if j < v(i) then return (s0s1 . . . sn) else return (s′0s
′
1 . . . s′n);

It is obvious that algorithm ONE-TO-ONE takes O(n) time.

5 The routing table and the all-to-all routing

In this section, we will propose an algorithm to construct the routing table of the back-

ward network of a bidirectional GSEN. This algorithm is based on the one-to-one routing

algorithm proposed in the previous section and can be used for the all-to-all routing.

ROUTING-TABLE.

Input: A bidirectional GSEN(k, r, n + 1).

Output: Its routing table.

1. /* Recall the function all to one */

for i = 0 to N ′ − 1 do

run algorithm BACKWARD-CONTROL-TAGS for i and GSEN(k, r, n + 1);

endfor;
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It is obvious that algorithm ROUTING-TABLE takes O(N ′n) time. In the appendix,

we list the computer output of the routing tables derived by algorithm ROUTING-TABLE

for N ′ = 18, 20, 22, . . . , 32. Note that in the table of N ′ = 32, each v(i) is zero, which

means we can get to every i by using only one tag. This result reflects the known result

that when the number of stages is exactly logk N ′, a shuffle-exchange network is identical

to the Omega network defined in [5] and its control tags depend only on the destination.
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A Backward control tags for N ′ = 18, 20, . . . , 32

GSEN(2, 9, 5)
i = 0 0 0 0 0 1 0 0 0 0 0 vi = 0
i = 1 0 0 0 1 0 0 0 0 0 1 vi = 14
i = 2 0 0 1 0 0 0 0 0 1 1 vi = 10
i = 3 0 0 1 1 0 0 0 1 0 1 vi = 6
i = 4 0 1 0 0 0 0 0 1 1 1 vi = 2
i = 5 0 1 0 0 1 0 1 0 0 0 vi = 16
i = 6 0 1 0 1 1 0 1 0 1 0 vi = 12
i = 7 0 1 1 0 1 0 1 1 0 0 vi = 8
i = 8 0 1 1 1 1 0 1 1 1 0 vi = 4
i = 9 1 0 0 0 1 1 0 0 0 0 vi = 0
i = 10 1 0 0 1 0 1 0 0 0 1 vi = 14
i = 11 1 0 1 0 0 1 0 0 1 1 vi = 10
i = 12 1 0 1 1 0 1 0 1 0 1 vi = 6
i = 13 1 1 0 0 0 1 0 1 1 1 vi = 2
i = 14 1 1 0 0 1 1 1 0 0 0 vi = 16
i = 15 1 1 0 1 1 1 1 0 1 0 vi = 12
i = 16 1 1 1 0 1 1 1 1 0 0 vi = 8
i = 17 1 1 1 1 1 1 1 1 1 0 vi = 4

GSEN(2, 10, 5)
i = 0 0 0 0 0 1 0 0 0 0 0 vi = 0
i = 1 0 0 0 1 0 0 0 0 0 1 vi = 12
i = 2 0 0 1 0 0 0 0 0 1 1 vi = 4
i = 3 0 0 1 0 1 0 0 1 0 0 vi = 16
i = 4 0 0 1 1 1 0 0 1 1 0 vi = 8
i = 5 0 1 0 0 1 0 1 0 0 0 vi = 0
i = 6 0 1 0 1 0 0 1 0 0 1 vi = 12
i = 7 0 1 1 0 0 0 1 0 1 1 vi = 4
i = 8 0 1 1 0 1 0 1 1 0 0 vi = 16
i = 9 0 1 1 1 1 0 1 1 1 0 vi = 8
i = 10 1 0 0 0 1 1 0 0 0 0 vi = 0
i = 11 1 0 0 1 0 1 0 0 0 1 vi = 12
i = 12 1 0 1 0 0 1 0 0 1 1 vi = 4
i = 13 1 0 1 0 1 1 0 1 0 0 vi = 16
i = 14 1 0 1 1 1 1 0 1 1 0 vi = 8
i = 15 1 1 0 0 1 1 1 0 0 0 vi = 0
i = 16 1 1 0 1 0 1 1 0 0 1 vi = 12
i = 17 1 1 1 0 0 1 1 0 1 1 vi = 4
i = 18 1 1 1 0 1 1 1 1 0 0 vi = 16
i = 19 1 1 1 1 1 1 1 1 1 0 vi = 8
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GSEN(2, 11, 5)
i = 0 0 0 0 0 1 0 0 0 0 0 vi = 0
i = 1 0 0 0 1 0 0 0 0 0 1 vi = 10
i = 2 0 0 0 1 1 0 0 0 1 0 vi = 20
i = 3 0 0 1 0 1 0 0 1 0 0 vi = 8
i = 4 0 0 1 1 0 0 0 1 0 1 vi = 18
i = 5 0 1 0 0 0 0 0 1 1 1 vi = 6
i = 6 0 1 0 0 1 0 1 0 0 0 vi = 16
i = 7 0 1 0 1 1 0 1 0 1 0 vi = 4
i = 8 0 1 1 0 0 0 1 0 1 1 vi = 14
i = 9 0 1 1 1 0 0 1 1 0 1 vi = 2
i = 10 0 1 1 1 1 0 1 1 1 0 vi = 12
i = 11 1 0 0 0 1 1 0 0 0 0 vi = 0
i = 12 1 0 0 1 0 1 0 0 0 1 vi = 10
i = 13 1 0 0 1 1 1 0 0 1 0 vi = 20
i = 14 1 0 1 0 1 1 0 1 0 0 vi = 8
i = 15 1 0 1 1 0 1 0 1 0 1 vi = 18
i = 16 1 1 0 0 0 1 0 1 1 1 vi = 6
i = 17 1 1 0 0 1 1 1 0 0 0 vi = 16
i = 18 1 1 0 1 1 1 1 0 1 0 vi = 4
i = 19 1 1 1 0 0 1 1 0 1 1 vi = 14
i = 20 1 1 1 1 0 1 1 1 0 1 vi = 2
i = 21 1 1 1 1 1 1 1 1 1 0 vi = 12

GSEN(2, 12, 5)
i = 0 0 0 0 0 1 0 0 0 0 0 vi = 0
i = 1 0 0 0 1 0 0 0 0 0 1 vi = 8
i = 2 0 0 0 1 1 0 0 0 1 0 vi = 16
i = 3 0 0 1 0 1 0 0 1 0 0 vi = 0
i = 4 0 0 1 1 0 0 0 1 0 1 vi = 8
i = 5 0 0 1 1 1 0 0 1 1 0 vi = 16
i = 6 0 1 0 0 1 0 1 0 0 0 vi = 0
i = 7 0 1 0 1 0 0 1 0 0 1 vi = 8
i = 8 0 1 0 1 1 0 1 0 1 0 vi = 16
i = 9 0 1 1 0 1 0 1 1 0 0 vi = 0
i = 10 0 1 1 1 0 0 1 1 0 1 vi = 8
i = 11 0 1 1 1 1 0 1 1 1 0 vi = 16
i = 12 1 0 0 0 1 1 0 0 0 0 vi = 0
i = 13 1 0 0 1 0 1 0 0 0 1 vi = 8
i = 14 1 0 0 1 1 1 0 0 1 0 vi = 16
i = 15 1 0 1 0 1 1 0 1 0 0 vi = 0
i = 16 1 0 1 1 0 1 0 1 0 1 vi = 8
i = 17 1 0 1 1 1 1 0 1 1 0 vi = 16
i = 18 1 1 0 0 1 1 1 0 0 0 vi = 0
i = 19 1 1 0 1 0 1 1 0 0 1 vi = 8
i = 20 1 1 0 1 1 1 1 0 1 0 vi = 16
i = 21 1 1 1 0 1 1 1 1 0 0 vi = 0
i = 22 1 1 1 1 0 1 1 1 0 1 vi = 8
i = 23 1 1 1 1 1 1 1 1 1 0 vi = 16
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GSEN(2, 13, 5)
i = 0 0 0 0 0 1 0 0 0 0 0 vi = 0
i = 1 0 0 0 1 0 0 0 0 0 1 vi = 6
i = 2 0 0 0 1 1 0 0 0 1 0 vi = 12
i = 3 0 0 1 0 0 0 0 0 1 1 vi = 18
i = 4 0 0 1 0 1 0 0 1 0 0 vi = 24
i = 5 0 0 1 1 1 0 0 1 1 0 vi = 4
i = 6 0 1 0 0 0 0 0 1 1 1 vi = 10
i = 7 0 1 0 0 1 0 1 0 0 0 vi = 16
i = 8 0 1 0 1 0 0 1 0 0 1 vi = 22
i = 9 0 1 1 0 0 0 1 0 1 1 vi = 2
i = 10 0 1 1 0 1 0 1 1 0 0 vi = 8
i = 11 0 1 1 1 0 0 1 1 0 1 vi = 14
i = 12 0 1 1 1 1 0 1 1 1 0 vi = 20
i = 13 1 0 0 0 1 1 0 0 0 0 vi = 0
i = 14 1 0 0 1 0 1 0 0 0 1 vi = 6
i = 15 1 0 0 1 1 1 0 0 1 0 vi = 12
i = 16 1 0 1 0 0 1 0 0 1 1 vi = 18
i = 17 1 0 1 0 1 1 0 1 0 0 vi = 24
i = 18 1 0 1 1 1 1 0 1 1 0 vi = 4
i = 19 1 1 0 0 0 1 0 1 1 1 vi = 10
i = 20 1 1 0 0 1 1 1 0 0 0 vi = 16
i = 21 1 1 0 1 0 1 1 0 0 1 vi = 22
i = 22 1 1 1 0 0 1 1 0 1 1 vi = 2
i = 23 1 1 1 0 1 1 1 1 0 0 vi = 8
i = 24 1 1 1 1 0 1 1 1 0 1 vi = 14
i = 25 1 1 1 1 1 1 1 1 1 0 vi = 20

GSEN(2, 14, 5)
i = 0 0 0 0 0 1 0 0 0 0 0 vi = 0
i = 1 0 0 0 1 0 0 0 0 0 1 vi = 4
i = 2 0 0 0 1 1 0 0 0 1 0 vi = 8
i = 3 0 0 1 0 0 0 0 0 1 1 vi = 12
i = 4 0 0 1 0 1 0 0 1 0 0 vi = 16
i = 5 0 0 1 1 0 0 0 1 0 1 vi = 20
i = 6 0 0 1 1 1 0 0 1 1 0 vi = 24
i = 7 0 1 0 0 1 0 1 0 0 0 vi = 0
i = 8 0 1 0 1 0 0 1 0 0 1 vi = 4
i = 9 0 1 0 1 1 0 1 0 1 0 vi = 8
i = 10 0 1 1 0 0 0 1 0 1 1 vi = 12
i = 11 0 1 1 0 1 0 1 1 0 0 vi = 16
i = 12 0 1 1 1 0 0 1 1 0 1 vi = 20
i = 13 0 1 1 1 1 0 1 1 1 0 vi = 24
i = 14 1 0 0 0 1 1 0 0 0 0 vi = 0
i = 15 1 0 0 1 0 1 0 0 0 1 vi = 4
i = 16 1 0 0 1 1 1 0 0 1 0 vi = 8
i = 17 1 0 1 0 0 1 0 0 1 1 vi = 12
i = 18 1 0 1 0 1 1 0 1 0 0 vi = 16
i = 19 1 0 1 1 0 1 0 1 0 1 vi = 20
i = 20 1 0 1 1 1 1 0 1 1 0 vi = 24
i = 21 1 1 0 0 1 1 1 0 0 0 vi = 0
i = 22 1 1 0 1 0 1 1 0 0 1 vi = 4
i = 23 1 1 0 1 1 1 1 0 1 0 vi = 8
i = 24 1 1 1 0 0 1 1 0 1 1 vi = 12
i = 25 1 1 1 0 1 1 1 1 0 0 vi = 16
i = 26 1 1 1 1 0 1 1 1 0 1 vi = 20
i = 27 1 1 1 1 1 1 1 1 1 0 vi = 24
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GSEN(2, 15, 5)
i = 0 0 0 0 0 1 0 0 0 0 0 vi = 0
i = 1 0 0 0 1 0 0 0 0 0 1 vi = 2
i = 2 0 0 0 1 1 0 0 0 1 0 vi = 4
i = 3 0 0 1 0 0 0 0 0 1 1 vi = 6
i = 4 0 0 1 0 1 0 0 1 0 0 vi = 8
i = 5 0 0 1 1 0 0 0 1 0 1 vi = 10
i = 6 0 0 1 1 1 0 0 1 1 0 vi = 12
i = 7 0 1 0 0 0 0 0 1 1 1 vi = 14
i = 8 0 1 0 0 1 0 1 0 0 0 vi = 16
i = 9 0 1 0 1 0 0 1 0 0 1 vi = 18
i = 10 0 1 0 1 1 0 1 0 1 0 vi = 20
i = 11 0 1 1 0 0 0 1 0 1 1 vi = 22
i = 12 0 1 1 0 1 0 1 1 0 0 vi = 24
i = 13 0 1 1 1 0 0 1 1 0 1 vi = 26
i = 14 0 1 1 1 1 0 1 1 1 0 vi = 28
i = 15 1 0 0 0 1 1 0 0 0 0 vi = 0
i = 16 1 0 0 1 0 1 0 0 0 1 vi = 2
i = 17 1 0 0 1 1 1 0 0 1 0 vi = 4
i = 18 1 0 1 0 0 1 0 0 1 1 vi = 6
i = 19 1 0 1 0 1 1 0 1 0 0 vi = 8
i = 20 1 0 1 1 0 1 0 1 0 1 vi = 10
i = 21 1 0 1 1 1 1 0 1 1 0 vi = 12
i = 22 1 1 0 0 0 1 0 1 1 1 vi = 14
i = 23 1 1 0 0 1 1 1 0 0 0 vi = 16
i = 24 1 1 0 1 0 1 1 0 0 1 vi = 18
i = 25 1 1 0 1 1 1 1 0 1 0 vi = 20
i = 26 1 1 1 0 0 1 1 0 1 1 vi = 22
i = 27 1 1 1 0 1 1 1 1 0 0 vi = 24
i = 28 1 1 1 1 0 1 1 1 0 1 vi = 26
i = 29 1 1 1 1 1 1 1 1 1 0 vi = 28

GSEN(2, 16, 5)
i = 0 0 0 0 0 0 0 0 0 0 0 vi = 0
i = 1 0 0 0 0 1 0 0 0 0 1 vi = 0
i = 2 0 0 0 1 0 0 0 0 1 0 vi = 0
i = 3 0 0 0 1 1 0 0 0 1 1 vi = 0
i = 4 0 0 1 0 0 0 0 1 0 0 vi = 0
i = 5 0 0 1 0 1 0 0 1 0 1 vi = 0
i = 6 0 0 1 1 0 0 0 1 1 0 vi = 0
i = 7 0 0 1 1 1 0 0 1 1 1 vi = 0
i = 8 0 1 0 0 0 0 1 0 0 0 vi = 0
i = 9 0 1 0 0 1 0 1 0 0 1 vi = 0
i = 10 0 1 0 1 0 0 1 0 1 0 vi = 0
i = 11 0 1 0 1 1 0 1 0 1 1 vi = 0
i = 12 0 1 1 0 0 0 1 1 0 0 vi = 0
i = 13 0 1 1 0 1 0 1 1 0 1 vi = 0
i = 14 0 1 1 1 0 0 1 1 1 0 vi = 0
i = 15 0 1 1 1 1 0 1 1 1 1 vi = 0
i = 16 1 0 0 0 0 1 0 0 0 0 vi = 0
i = 17 1 0 0 0 1 1 0 0 0 1 vi = 0
i = 18 1 0 0 1 0 1 0 0 1 0 vi = 0
i = 19 1 0 0 1 1 1 0 0 1 1 vi = 0
i = 20 1 0 1 0 0 1 0 1 0 0 vi = 0
i = 21 1 0 1 0 1 1 0 1 0 1 vi = 0
i = 22 1 0 1 1 0 1 0 1 1 0 vi = 0
i = 23 1 0 1 1 1 1 0 1 1 1 vi = 0
i = 24 1 1 0 0 0 1 1 0 0 0 vi = 0
i = 25 1 1 0 0 1 1 1 0 0 1 vi = 0
i = 26 1 1 0 1 0 1 1 0 1 0 vi = 0
i = 27 1 1 0 1 1 1 1 0 1 1 vi = 0
i = 28 1 1 1 0 0 1 1 1 0 0 vi = 0
i = 29 1 1 1 0 1 1 1 1 0 1 vi = 0
i = 30 1 1 1 1 0 1 1 1 1 0 vi = 0
i = 31 1 1 1 1 1 1 1 1 1 1 vi = 0
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