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以全域最佳化方法求解 DNA序列之共同區間定址問題(1/3) 
 

A Global Optimization Method for Identifying Common Sites on DNA 
Sequences (1/3) 

 
計畫編號：NSC 93-2213-E-009-070 
執行期限：93年 8月 1日至 94年 7月 31日 
主持人：黎漢林   國立交通大學資訊管理研究所 

 
一、中英文摘要 

DNA 序列之共同區間定址問題從過去 20 年至今一直被廣泛討論。目前許多求解
CSI(Consensus Sequence Identification)問題的方法多引用最大相似技術[Stormo 1989, 
Ecker et al 2002]。這類方法不僅無法確認得到的解答是否為全域最佳解，而且無法處理
包含有上百筆序列之大尺度 CSI 問題。本研究計畫提出一新的方法以求解大尺度 CSI
問題以得到全域最佳解。我們首先將 CSI問題轉成一非線性 0-1規劃問題；此一問題可
經由線性化的處理後轉化成一線性 0-1規劃問題。給定 L筆 DNA序列資料，欲找出在
此 L 條序列中長度為 k 的共同區間，則我們可將其相關的 CSI 問題轉化為一只含有 4k
個 0-1 變數之線性 0-1 規劃問題。由於 L（序列的筆數）不會影響 0-1 變數的個數，我
們的模式可以處理大筆數的 CSI問題。因此我們可以發展一分散式計算系統求解包含數
百筆 DNA序列的問題。本研究計畫擬分三年進行。第一年著重於發展 CSI問題的最佳
化求解模式。第二年為拓展此模式尋找多個次佳解，以提供生物學家更多 CSI的參考答
案。第三年則為在 PC上發展一分散式計算軟體以處理共同區間定址問題。 

 
關鍵詞：關鍵字：最佳化、分子生物學、蛋白質接合、共同區間 
 
Abstract 

Consensus sequence identification (CSI) in multiple DNA sequences has been discussed 
widely in last two decades. Many current methods of solving CSI problems are based on the 
maximum likelihood techniques [Stormo 1989, Ecker et al 2002]. These methods, however, 
have no guarantee to find a globally optimal solution of a CSI problem. In addition, they are 
difficult to handle large-size CSI problems with hundreds of DNA sequences. This project 
proposes a naïve method to solve a large CSI problem to find a global optimum. We first 
formulate the CSI problem as nonlinear 0-1 optimization model. Such a model is then 
converted into a linear 0-1 problem by linearization techniques to reach a best fitted solution. 

Given L DNA sequences with a consensus sequence known having k locations, we can 
formulate the related CSI problem as a linear 0-1 model which only contains 4k 0-1 variables. 
Since L (i.e., the number of sequences) has no effect on the number of 0-1 variables, our 
model can treat large size CSI problem. A distributed computation system is then developed to 
solve a CSI problem with hundreds of DNA sequences. The whole project will be executed in 
three years. The first year is emphasized on building an optimization model for solving CSI 
problems. The second year is to extend the previous model to discover the suboptimal 
solutions for biologists as more usable consultation. Software of distributed network 
computation system for solving the CSI problems will be developed in the third year. 
 
Keywords: optimization, molecular biology, protein binding, consensus sequence 
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二、前言 
 

The methods for determining a consensus pattern can be split into two parts. The first 
part is the model for describing the shared pattern; the second part is the algorithm for 
identifying the optimal common site according to its shared pattern. This study belongs to the 
second part. A consensus sequence identification (CSI) problem is, given a set of sequences 
known to contain binding sites for a common factor but not knowing where the site are, 
discover the location of the sites in each sequence (Stormo, 2000). 

 
三、研究目的 
 

This study proposes a linear programming method for solving a CSI problem to reach the 
globally optimal consensus sequence. Two examples of searching for CRP-binding sites and 
for FNR-binding sites in the Escherichia coli genome are used to illustrate the proposed 
method. The CSI problem is firstly formulated as a nonlinear mixed 0-1 program for 
alignment of DNA sequences, each of the four bases are coded with two binary variables and 
a matching score is designed. This nonlinear mixed 0-1 program is then converted into a 
linear mixed 0-1 program by linearization techniques. This study decomposes a CSI problem 
into several subprograms to be solved by a set of distributed computers linked via internet. 
Owing to some special features of the binary relationships, this linear 0-1 program includes 
2m binary variables where m is the number of active letters in the common site. Some very 
attractive properties of this method are firstly that the required number of binary variables is 
independent of the number of sequences and the size of each sequence. That means, the 
proposed method is computationally efficient in solving a CSI problem with a large data size. 
Secondly, the proposed method is guaranteed to find the global optimum instead of a local 
optimum. Thirdly, many kinds of specific features accompanied with a CSI problem can be 
formulated straight forwardly as logical constraints and embedded into the linear program. 

 
四、文獻探討 
   

The CSI problem is critical in research on gene expression such as the protein-binding 
site in a DNA strand. For the last decade several good methods have been developed for 
solving such problems (Brazma et al., 1998). Of those methods, the maximum likelihood 
approach (Stormo et al., 1989; Hertz et al., 1990) is the best known. The traditional maximum 
likelihood approach, which measures information content to determine alignments, works 
fairly well and is reliable on discovering the common sites. However, they are still not able to 
determine the complete set of regulatory interactions for complicated promoters typical of 
metazoans (Stormo, 2000). 

Recently, Ecker et al. (2002) utilized optimization techniques to reformulate the 
maximum likelihood approach for solving CSI problems. They adopted a probabilistic model 
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and formulated a well-designed nonlinear model with reference to the expectation 
maximization algorithm of Lawrence and Reilly (1990). Their method, however, occasionally 
only finds a feasible solution or a local optimum: which means the best solution may not be 
found. Additionally, no further structural feature in a CSI problem can be embedded 
conveniently in their model. 

An example of searching CRP-binding sites, as discussed in Stormo et al. (Stormo et al., 
1989) and Ecker et al. (Ecker et al., 2002), is described as follows. Given eighteen letter 
sequences each 105 positions long, where each position contains a letter from the set {A, T, C, 
G}, find a common site of length16 with the pattern 

54321 LLLLL □□□□□□ 109876 LLLLL  

where iL , □ ∈  {A, T, C, G}and □’s mean the positions of ignored letters. 
Restated, the problem is to specify 

(i) the iL ’s of the common site pattern 
(ii) the location of the site in each given sequence, which can fit most closely the common 

site. 

The following are difficulties associated with the method of Ecker et al. (2002) and other 
maximum likelihood methods (as reviewed in Brazma et al., 1998) for solving a CSI problem: 

(i) Only a local optimal or feasible solution is obtained 

Since Ecker et al. (2002) formulated a CSI problem as a non-convex nonlinear program, 
their method may only find local optima, as has been acknowledged (Ecker et al., 2002). 
Other maximum likelihood methods, which intend to maximize the probability of binding to 
the promoters in the sequences, may only find a feasible solution instead of finding a local 
optimal solution. It is not guaranteed that current maximum likelihood methods can reach the 
global optimum for general CSI problems. 

(ii) Heavy computational burden 

The nonlinear program in Ecker et al. (2002) contains too many nonlinear terms. The 
heavy computational burden in their method prohibits it from treating a CSI problem with a 
large number of sequences. 

(iii)Difficulty of adding logical constraints 

When identifying protein binding sites, there usually exists some specific features to be 
considered as logical constraints. For example, the letters of position iL  and iL −11  are 
expected to be complement (i.e. G with C and A with T). Formulating such a constraint in 
maximum likelihood approaches is a complex task. It is even impossible to formulate more 
complicated logical constraints (e.g. those with some ambiguity) when applying these 
approaches. 

(iv) Fixed number of ignored letters 

Maximum likelihood methods are mainly used to solve CSI problems with fixed number 
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of ignored letters (e.g. six in the above example). However, in real world this number is 
unknown and need to be found by some preliminary processes. 

(v) Difficulty of finding the second and the third best solutions 

Since current methods may only find a local optimum. It is hard to find other solutions 
next to the best solution. 
 
五、研究方法 

 
In order to overcome the above difficulties of solving a CSI problem, this study proposes 

a novel method to treat the same problem that molecular biologists actually are interested in 
solving. We formulate a CSI problem as the identification of a consensus sequence that 
minimizes the number of differences between the proposed sites. Our basic concept is to 
reformulate a CSI problem as a mixed 0-1 linear program which only contains a limited 
number of 0-1 variables and most variables are continuous. Such a mixed 0-1 linear program 
can be solved effectively by commonly used branching-and-bound algorithms or a branch-cut 
algorithm (Balas et al. 1996). The advantages of the proposed method are listed below: 

(i) It is guaranteed to find the globally optimal solution. Since the objective function and 
constraints are all linear, the program should converge to the global optimum. 

(ii) It can effectively solve a CSI problem by a set of on-line computers as illustrated by our 
numerical experiments. 

(iii) It is convenient to add logical constraints. Since the binary variables are very suitable to 
express logical relationship, various complicated constraints can be embedded directly 
into the proposed method. 

(iv) It can be extended to treat CSI problems with unknown number of ignored letters. 

(v) It is very straight forward to find the complete set of the second, third, etc. best 
consensus sequences. 

 
This study firstly formulates a CSI problem as a nonlinear mixed 0-1 program. Then it 

converts this nonlinear mixed 0-1 program into a linear mixed 0-1 program using linearization 
techniques. To reduce the computational burden, many 0-1 variables in this linear mixed 0-1 
program can actually be solved as continuous variables by an all or nothing assignment 
technique which improves greatly the computational efficiency of this program. 

 
Nonlinear mixed 0-1 program 

Here we use the example data in Stormo (1989), as listed in Appendix, to describe the 
proposed method. Firstly, represent the data in Appendix as an 18*105 data matrix D: 



















=

105,182,181,18

105,22,21,2

105,12,11,1

bbb

bbb
bbb

D

Λ
ΜΟΜΜ

Λ
Λ

 (1) 

where plb ,  is the letter in the position p of the sequence l.  
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Recall the example discussed in previous section, the common site we want to find has 
16 positions (ten iL ’s and six ignored letters), a sequence has 90 corresponding sites, so an 
18*900 data matrix D’ is generated from D. 





















=

10
90,18

1
90,18

10
2,18

1
2,18

10
1,18

1
1,18

10
90,2

1
90,2

10
2,2

1
2,2

10
1,2

1
1,2

10
90,1

1
90,1

10
2,1

1
2,1

10
1,1

1
1,1

'

dddddd

dddddd
dddddd

D

ΛΛΛΛ
ΜΟΜΜ

ΛΛΛΛ
ΛΛΛΛ

 (2) 

where 





=
=

=
++

−+

)10,...,7,6(
)5,...,2,1(

5,

1,
, iforb

iforb
d

sil

sili
sl  ,  

and s = 1…90 is the starting position of each candidate site. 

For ∈iL {A, T, C, G}, two binary variables iu  and iv  can be used to express iL , an 
element of the consensus sequence, as shown in Tab. 1. 

Tab. 1 indicates that if iL  is A, T, C, or G respectively, then ia = 1, it = 1, ic = 1 or 

ig = 1, which implies following conditions. 

 

)1(
)1(

)1)(1(

iii

iii

iii

iii

vug
vuc

vut
vua

−=
−=

=
−−=

 (3) 

Now let lScore  be the degree of fitting to the found common site, specified as 

∑
=

+++=
90

1

10
,

2
,

1
,, )......(

s
slslslsll θθθzScore  (4) 

where i
slθ ,  is the element of candidate sites extracted from D’. The constraints 

associated with (4) are below: 

(i) ∑
=

∈=
90

1
,, }1,0{,1

s
slsl zz for all l and s. (5) 

(ii) 











=
=
=
=

=

G
C
T
A

,

,

,

,

,

i
sli

i
sli

i
sli

i
sli

i
sl

difg
difc
dift
difa

θ  (6) 

Clearly, 100 ≤≤ lScore . And the objective is to maximize the total sum of lScore . 
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Consider the sample data in Fig. 1 for instance: 

1Score  =  )( 109876543211,1 agtttcagaaz +++++++++  (7) 

  )( 109876543212,1 tagtttcagaz ++++++++++  

  )( 109876543213,1 ctagtgtcagz ++++++++++  

2Score  =  )( 109876543211,2 gcggcattagz +++++++++  (8) 

  )( 109876543212,2 tgcggtattaz ++++++++++  

  )( 109876543213,2 ctgcgttattz ++++++++++  

All slz ,  in (4) are binary variables. Equation (5) implies that for a sequence l, only one 

site is chosen and no other sites contribute to lScore . Suppose the k’th site is selected, then 

1, =klz  and 0, =slz  for all ∈s {1, 2, ..., 90}, ks ≠ . Since a huge amount of slz ,  (i.e, 

sl * ) are involved, to treat slz ,  as binary variables would cause a heavy computational 

burden. Therefore slz ,  should be resolved as continuous variables rather than binary 

variables. An important proposition is introduced below: 

Proposition 1 (All or nothing assignment) Let 0, ≥slz  be continuous variables instead of 

Tab. 1. Base code in the determined common site 
Base 

iu iv  ia it ic ig

A 0 0  1 0 0 0
T 1 1  0 1 0 0
C 0 1  0 0 1 0
G 1 0  0 0 0 1

 

(a) 
AAGACTGTTTTTTTGATC 
GATTATTTGCACGGCGTC 

(b) 
l = 1, s = 1 AAGACTGTTTTTTTGATC 
l = 1, s = 2 AAGACTGTTTTTTTGATC 
l = 1, s = 3 AAGACTGTTTTTTTGATC 
l = 2, s = 1 GATTATTTGCACGGCGTC 
l = 2, s = 2 GATTATTTGCACGGCGTC 
l = 2, s = 3 GATTATTTGCACGGCGTC 

(c) 









TTATTGCGTCATTATGGCGTGATTACGGCG
GACTGTGATCAGACTTTGATAAGACTTTGA

 
Fig. 1. A small example of finding consensus sequence: (a) two sequences to be compared; 

(b) Schematic representation of the candidate sites; (c) The associated D’ matrix 
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binary variables. If there is a k, }90...,,2,1{∈k , such that 

}90,...,2,1max{ 10

1 ,
10

1 , == ∑∑ ==
sforθθ

i
i

sli
i

kl , then assigning 1, =klz  and 

0, =slz  for all ks ≠ , }90,...,2,1{∈s , can maximize the value of lScore . 

Proof  Since 1, =∑s slz  and 0, ≥slz , it is true that 

∑∑∑ ∑ ==≤
i

i
kli

i
sls i

i
slsl θsθθz ,,,, }90,...,2,1for{max})({max  

 

Remark 1 The objective function of a CSI problem f(x) can be rewritten as 

∑ ∑∑∑∑
= ∈∈∈∈

+++=
10

1 ),(
,

),(
,

),(
,

),(
, }{)(

i SGsl
sli

SCsl
sli

STsl
sli

SAsl
sli

iiii

zgzcztzaxf  (9) 

where }|),{( , AdslSA i
sli == , }|),{( , TdslST i

sli == , 
}|),{( , CdslSC i

sli == , and }|),{( , GdslSG i
sli ==  for i=1,2,…10.  

 

This result implies that iSA (or iST , iSC , iSG ) is a set composed of (l, s) in which the 
product term isl az ,  (or isl tz , , isl cz , , isl gz ,  respectively) appears on the right hand side of 
(4) because that i

i
sl aθ =, .  

For instance, the sum of 1Score  and 2Score  in (7) and (8) becomes 

1Score + 2Score  = 1,1102,22,11,11 ......)( zazzza ++++  
 1,2101,23,11 ......)(...... zgzzg +++++  (10) 

Some logical constraints can be conveniently expressed by binary variables. For instance, 
the constraint that a CRP dimer binds a symmetrical site requires that 





=
=

=
−

−

G.thenC
T,thenA

if
11

11

i

i
i L

L
L  

Such a logical structure can be formulated conveniently as the following constraints. 

}.1 ,0{ , , , where

5,4,3,2,1for
1
1

1111

11

11

∈

=




=+
=+

−−

−

−

iiii

ii

ii

vuvu

i
vv
uu

 (11) 

With reference to Tab. 1, clearly if ALi =  (i.e, 0 and 0 == ii vu ) then TL i =−11  (i.e, 
1 and 1 1111 == −− ii vu ) and vice versa; (ii) if CLi =  (i.e, 1 and 0 == ii vu ) then GL i =−11  

(i.e, 0 and 1 1111 == −− ii vu ) and vice versa. A CSI problem can then be formulated as a 
nonlinear mixed 0-1 program below based on these constraints: 

Program 1 (Nonlinear 0-1 CSI program) 

Maximize ∑ ∑ ∑∑∑∑
= = ∈∈∈∈

+++=
18

1

10

1 ),(
,

),(
,

),(
,

),(
, }{

l i SGsl
sli

SCsl
sli

STsl
sli

SAsl
slil

iiii

zgzcztzaScore  (12)
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subject to 

10...,,2,1for 1,,,0
10...,,7,6for 1,0
5...,,2,1for }1,0{,

5...,,2,1for 
sconstraint Logical

1
1

10...,,2,1for 
sconstraint veConservati

)1(
)1(

)1)(1(

allfor0,1

11

11

,

90

1
,

=≤≤
=≤≤
=∈

=



=+
=+

=










−=
−=

=
−−=

≥=

−

−

=
∑

igcta
ivu
ivu

ivv
uu

i
vug
vuc

vut
vua

sl,zz

iiii

ii

ii

ii

ii

iii

iii

iii

iii

sl
s

sl

 

This program intends to solve { iiii gcta ,,, } for i =1,2, …10 thus to maximize the total 
degree of fitting to the common site for the given 18 sequences, subjected to a possible logical 
constraint. A very important feature of Program 1 is that we can treat slz ,  as continuous 
variables rather than binary variables, which can improve the computational efficiency 
dramatically. We can ensure all found slz ,  still have binary values as discussed in the next 
section. 

 
Linearization of Program 1 

Program 1 is a mixed nonlinear 0-1 program where ∑ sli zq ,  for },,,{ iiiii cgtaq ∈  
and iivu  are product terms. These product terms can be linearized directly by the following 
propositions: 

Proposition 2 The product term ∑= slii zq ,λ  where iλ  is to be maximized and 

}1,0{∈iq can be linearized as follows: 

 

ii

sli

i

isli

qM

z

qMz

≤

≤

≥

−+≥

∑

∑

λ
λ
λ
λ

,

,

0

)1(

 (13) 

  where M is a big constant larger than or equal to the number of sequences. 

Proof If iq = 1 then ∑= sli z ,λ ; and otherwise iλ = 0.  

Proposition 3 The product term iii vuw =  where }1,0{, ∈ii vu can be linearized as follows: 

 

.1
0

−+≥
≥
≤
≤

iii

i

ii

ii

vuw
w

vw
uw

 (14) 



 9

Denote ∑ ∈
=

iSAsl slii zaaZ
),( ,)( , ∑ ∈

=
iSTsl slii zttZ

),( ,)( , ∑ ∈
=

iSCsl slii zccZ
),( ,)( , and 

∑ ∈
=

iSGsl slii zggZ
),( ,)( . Program 1 is then linearized into Program 2 below based on 

Proposition 2 and Proposition 3. 

 

Program 2 (Linear mixed 0-1 CSI program) 

Maximize ∑ ∑
= =

+++=
18

1

10

1
))()()()((

l i
iiiil gZcZtZaZScore  (15)

subject to 

10...,,2,1for 
sconstraint veConservati

1
0

1

allfor0,1 ,

90

1
,

=



















−+≥
≥
≤
≤

−=
−=

=
+−−=

≥=∑
=

i

vuw
w

vw
uw

wug
wvc

wt
wvua

sl,zz

iii

i

ii

ii

iii

iii

ii

iiii

sl
s

sl

 

5...,,2,1for  sconstraint Logical
1
1

11

11 =




=+
=+

−

− i
vv
uu

ii

ii  

rmsproduct te
glinearizinfor  sConstraint

)(0

)()1(
)(0

)()1(
)(0

)()1(
)(0

)()1(

),(
,

),(
,

),(
,

),(
,

),(
,

),(
,

),(
,

),(
,























≤≤

≤≤−+

≤≤

≤≤−+

≤≤

≤≤−+

≤≤

≤≤−+

∑∑

∑∑

∑∑

∑∑

∈∈

∈∈

∈∈

∈∈

ii

SGsl
slii

SGsl
sl

ii

SCsl
slii

SCsl
sl

ii

STsl
slii

STsl
sl

ii

SAsl
slii

SAsl
sl

gMgZ

zgZgMz
cMcZ

zcZcMz
tMtZ

ztZtMz
aMaZ

zaZaMz

ii

ii

ii

ii

10...,,2,1for 1,,,0
10...,,7,6for 1,0
5...,,2,1for }1,0{,

=≤≤
=≤≤
=∈

igcta
ivu
ivu

iiii

ii

ii

 

slz , ’s are treated as non-negative continuous variables for l =1,2, … ,18 and 
s =1,2, … ,90 where M can be any value greater than or equal to 18. 

In Program 2, since iu  and iv  are binary variables, ia , it , ic , and ig  should 
have binary values following (3). Although slz ,  are treated as continuous variables, the 
values of slz ,  should be 0 or 1. This is because the optimal solution of a linear program 
should be a vertex point satisfying 1, =∑s slz  for all l. 
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Consider the following proposition. 

Proposition 4  Let the optimal solution of Program 2 be ),,(* ∗∗∗= vuZx and 1, =∑s slz . 
Assume that a sequence l contains sites ksss ...,,, 21  such that 10 *

, <<
jslz  

for j=1, 2, … k, then, 

∑∑∑∑ ====
i

i
sli

i
sli

i
sli

i
sl k

}max{... ,,,, 21
θθθθ , 

(6)in  specified are  where ,
i

sl j
θ . 

Proof For 1, =∑s slz , if },...,{, 21 kqp sssss ∈  where ∑∑ >
i

i
sli

i
sl qp ,, θθ , then to 

maximize ∑∑=
i

i
sljl sll jj

θzScore ,, ,  requires 0, =
qslz . This conflicts with the 

observation that 10 , <<
qslz , therefore ∑∑∑ ===

i
i

sli
i

sli
i

sl k,,, ...
21

θθθ . 

After solving Program 2 we can obtain the globally optimum solution 
“TGTGA□□□□□□TCACA” with objective value 147. The related nonzero slz ,  values 
indicate the starting positions of the binding sites in the 18 sequences, as listed below: 

181,1887,1756,1620,1574,1451,1344,1264,11

17,1012,942,827,763,653,566,479,358,264,1

=========
=========

zzzzzzzz
zzzzzzzzzz  

All other slz , ’s have value 0. 

In Program 2 the total number of 0-1 variables is 2m and the total number of the 
continuous variables is 20m+ sl * . Since the number of 0-1 variables is independent of the 
lengths of l and s, a CSI problem with many long sequences can be solved effectively. 

 
Suboptimal common sites 

Program 2 can find the exact global optimum solution. Sometimes the second best and 
the third best solution may also be useful. It is very convenient for the proposed method to 
find a complete set of common sites by adding some extra constraints. For instance, the 
second best solution of Program 2 can be obtained conveniently by solving the following 
program: 

Maximize ∑
=

18

1l
lScore  (16)

subject to 
 
(i) The same constraints in Model 1 
 
(ii) 910987654321 ≤+++++++++ acactagtgt    (new constraint) 

The new constraint is used to force the program to find a new solution different from the 

solution of Program 2. The found second best common site is “TTTGA□□□□□□

TCAAA” with score 129. Similarly we can find another solution by adding following 

constraint into (16). 

910987654321 ≤+++++++++ aaactagttt  
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The found third best common site is “AAATT□□□□□□AATTT” with score 129. 
 
六、結果與討論 

Several experiments are tested here, using the example in the Appendix, to analyze the 

effect of sequence length and number of sequences on the computational time. All examples 

are solved by LINGO (Schrage, 1999), a widely used optimization software, on a personal 

computer with a Pentium 4 2.0G CPU. A software package named “Global Site Seer” is 

developed based on Program 2 for solving CSI problems. This software is available from 

http://www.iim.nctu.edu.tw/~cjfu/gss.htm. 

Fig. 2 illustrates the experimental results for analyzing the time complexity. Fig. 2(a) is 

the computational time given various sequence lengths, where the number of sequences is 

fixed at 18. The results show that the computational time changes slightly even if the 

sequence length is increased from 105 to 1050. Fig. 2(b) is the computational time with 

various numbers of sequences. It shows that the solving time is roughly proportional to the 

number of sequences. The proposed model is quite promising for treating CSI problems with 

large sequence length and a large number of sequence number. Fig. 2(c) shows that the 

computational time rises exponentially as the number of independent positions increases. 

This study proposes a linear mixed 0-1 programming approach for solving CSI problems. 
Comparing with the widely used maximum likelihood methods, the proposed method can 
reach a global optimum rather than finding a local optimum or a feasible solution. 
Additionally, by utilizing binary variables some logical constraints can be embedded into the 
models. It is also convenient to find the complete set of the second, third, etc. best common 
sites. Since the number of binary variables is fully independent of the number of sequences 
and the length of a sequence, the proposed method can treat a large CSI problem with many 
long sequences. For treating a CSI problem with many independent positions in an acceptable 
time, this study also proposes a method for distributed computing. 

Two issues remaining for further study. The first is to extend this method to treat various 
practical CSI problems. The second is to develop a more refined distributed algorithm to solve 
some CSI problems by numerous computers via internet. 
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(a) Computational time versus sequence length
Sequence 

Length 
Solving Time 

(mm:ss) 
105 1:39 
210 1:21 
315 1:44 
420 1:43 
525 1:48 
630 1:54 
735 1:48 
840 1:56 
945 1:59 

1050 2:04  
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(b) Computational time versus number of sequences 
Number of 
Sequences 

Solving Time 
(mm:ss) 

9  0:30 
18  1:39 
27  3:21 
36  4:32 
45  6:15 
54  6:01 
63  8:16 
72 10:29 
81 10:01 
90  9:37  
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(c) Computational time versus number of independent positions 
Number of 
Indep Pos 

Solving Time 
(h:mm:ss) 

2 0:00:01 
3 0:00:03 
4 0:00:21 
5 0:01:23 
6 0:03:38 
7 0:05:18 
8 0:08:25 
9 0:15:52 

10 0:53:27 
11 2:33:20  
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Fig. 2. The relationship between computational time and various factors involved in a CSI 
problem. This figure illustrates the computational time of solving Program 2 with (a) various 
sequences sizes; (b) various number of sequences and (c) various independent positions. 


