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Abstract

Consensus sequence identification (CSI) in multiple DNA sequences has been discussed
widely in last two decades. Many current methods of solving CSI problems are based on the
maximum likelihood techniques [ Stormo 1989, Ecker et al 2002]. These methods, however,
have no guarantee to find a globally optimal solution of a CSl problem. In addition, they are
difficult to handle large-size CSl problems with hundreds of DNA sequences. This project
proposes a haive method to solve alarge CSl problem to find a global optimum. We first
formulate the CSI problem as nonlinear 0-1 optimization model. Such a model is then
converted into alinear O-1 problem by linearization techniques to reach a best fitted solution.

Given L DNA sequences with a consensus sequence known having & locations, we can
formulate the related CSI problem as alinear 0-1 model which only contains 44 0-1 variables.
Since L (i.e., the number of sequences) has no effect on the number of 0-1 variables, our
model can treat large size CSI problem. A distributed computation system is then devel oped to
solve a CSl problem with hundreds of DNA sequences. The whole project will be executed in
three years. Thefirst year is emphasized on building an optimization model for solving CSl
problems. The second year is to extend the previous model to discover the suboptimal
solutions for biologists as more usable consultation. Software of distributed network
computation system for solving the CSI problems will be developed in the third year.

Keywords: optimization, molecular biology, protein binding, consensus sequence
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The methods for determining a consensus pattern can be split into two parts. The first
part is the model for describing the shared pattern; the second part is the algorithm for
identifying the optimal common site according to its shared pattern. This study belongs to the
second part. A consensus sequence identification (CSI) problem is, given a set of sequences
known to contain binding sites for acommon factor but not knowing where the site are,
discover the location of the sitesin each sequence (Stormo, 2000).

This study proposes a linear programming method for solving a CSl problem to reach the
globally optimal consensus sequence. Two examples of searching for CRP-binding sites and
for FNR-binding sites in the Escherichia coli genome are used to illustrate the proposed
method. The CSI problem isfirstly formulated as a nonlinear mixed 0-1 program for
alignment of DNA sequences, each of the four bases are coded with two binary variables and
amatching score is designed. This nonlinear mixed 0-1 program is then converted into a
linear mixed O-1 program by linearization techniques. This study decomposes a CS| problem
into several subprograms to be solved by a set of distributed computers linked via internet.
Owing to some special features of the binary relationships, thislinear 0-1 program includes
2m binary variables where m is the number of active letters in the common site. Some very
attractive properties of this method are firstly that the required number of binary variablesis
independent of the number of sequences and the size of each sequence. That means, the
proposed method is computationally efficient in solving a CSl problem with alarge data size.
Secondly, the proposed method is guaranteed to find the global optimum instead of alocal
optimum. Thirdly, many kinds of specific features accompanied with a CSI problem can be
formulated straight forwardly aslogical constraints and embedded into the linear program.

The CSl problem is critical in research on gene expression such as the protein-binding
sitein a DNA strand. For the last decade several good methods have been devel oped for
solving such problems (Brazmaet a., 1998). Of those methods, the maximum likelihood
approach (Stormo et al., 1989; Hertz et a., 1990) is the best known. The traditional maximum
likelihood approach, which measures information content to determine alignments, works
fairly well and is reliable on discovering the common sites. However, they are still not able to
determine the compl ete set of regulatory interactions for complicated promoters typical of
metazoans (Stormo, 2000).

Recently, Ecker et a. (2002) utilized optimization techniques to reformulate the
maximum likelihood approach for solving CSI problems. They adopted a probabilistic model



and formulated a well-designed nonlinear model with reference to the expectation
maximization algorithm of Lawrence and Reilly (1990). Their method, however, occasionally
only finds afeasible solution or alocal optimum: which means the best solution may not be
found. Additionally, no further structural feature in a CSl problem can be embedded
conveniently in their model.

An example of searching CRP-binding sites, as discussed in Stormo et al. (Stormo et al.,
1989) and Ecker et al. (Ecker et al., 2002), is described as follows. Given eighteen |etter
sequences each 105 positions long, where each position contains a letter from the set {A, T, C,
G}, find acommon site of length16 with the pattern

LL,L,L,L.O00000 LL,LyLyLy,

where L, O O {A, T, C,G}and O 's mean the positions of ignored |etters.

Restated, the problem is to specify
(i) the L, ’sof thecommon site pattern

(i) the location of the site in each given sequence, which can fit most closely the common
site.
The following are difficulties associated with the method of Ecker ef a/. (2002) and other
maximum likelihood methods (as reviewed in Brazmaet al., 1998) for solving a CSI problem:

(i) Only alocal optimal or feasible solution is obtained

Since Ecker et al. (2002) formulated a CSI problem as a non-convex nonlinear program,
their method may only find local optima, as has been acknowledged (Ecker et al., 2002).
Other maximum likelihood methods, which intend to maximize the probability of binding to
the promoters in the sequences, may only find a feasible solution instead of finding alocal
optimal solution. It is not guaranteed that current maximum likelihood methods can reach the
global optimum for general CSl problems.

(i1) Heavy computational burden

The nonlinear program in Ecker et al. (2002) contains too many nonlinear terms. The
heavy computational burden in their method prohibitsit from treating a CSI problem with a
large number of sequences.

(i) Difficulty of adding logical constraints

When identifying protein binding sites, there usually exists some specific features to be
considered as logical constraints. For example, the letters of position L, and L,,_, are
expected to be complement (i.e. G with C and A with T). Formulating such a constraint in
maximum likelihood approaches is a complex task. It is even impossible to formulate more
complicated logical constraints (e.g. those with some ambiguity) when applying these
approaches.

(iv) Fixed number of ignored letters

Maximum likelihood methods are mainly used to solve CSl problems with fixed number
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of ignored letters (e.g. six in the above example). However, in real world this number is
unknown and need to be found by some preliminary processes.

(v) Difficulty of finding the second and the third best solutions

Since current methods may only find alocal optimum. It is hard to find other solutions
next to the best solution.

In order to overcome the above difficulties of solving a CSl problem, this study proposes
anovel method to treat the same problem that molecular biologists actually are interested in
solving. We formulate a CSI problem as the identification of a consensus sequence that
minimizes the number of differences between the proposed sites. Our basic concept isto
reformulate a CSl problem as amixed 0-1 linear program which only contains a limited
number of 0-1 variables and most variables are continuous. Such a mixed 0-1 linear program
can be solved effectively by commonly used branching-and-bound algorithms or a branch-cut
algorithm (Balas et al. 1996). The advantages of the proposed method are listed below:

(i) Itisguaranteed to find the globally optimal solution. Since the objective function and

constraints are all linear, the program should converge to the global optimum.

(i) It can effectively solve a CSl problem by a set of on-line computers asillustrated by our
numerical experiments.

(iif) Itisconvenient to add logical constraints. Since the binary variables are very suitable to
express logical relationship, various complicated constraints can be embedded directly
into the proposed method.

(iv) It can be extended to treat CSl problems with unknown number of ignored |etters.

(v) Itisvery straight forward to find the complete set of the second, third, etc. best
CONSeNnsus sequences.

This study firstly formulates a CSl problem as a nonlinear mixed 0-1 program. Then it
converts this nonlinear mixed O0-1 program into alinear mixed 0-1 program using linearization
techniques. To reduce the computational burden, many 0-1 variablesin this linear mixed 0-1
program can actually be solved as continuous variables by an all or nothing assignment
technique which improves greatly the computational efficiency of this program.

Nonlinear mixed 0-1 program

Here we use the example datain Stormo (1989), aslisted in Appendix, to describe the
proposed method. Firstly, represent the datain Appendix as an 18* 105 data matrix D:

by b, N by

by by N by
M M O M

bigy by N Digies

D= D

where b, , istheletter in the position p of the sequence /.



Recall the example discussed in previous section, the common site we want to find has

16 positions (ten L,’s and six ignored |etters), a sequence has 90 corresponding sites, o an
18*900 data matrix D’ is generated from D.

& N d &, A dD
di, A dS dl, A df
M M
dhy A B dy, N dY,

1 10
dl,QO /\ dl,QO
1 10
d2 ,90 /\ d2, 90

M

1 10
d18, 90 /\ dlS, 90

D'= (2)

> 0 > >

where

gi = b (for i=12,..5)
o bl,i+s+5 (fOri:6,7,...,1O) ’

and s = 1...90 is the starting position of each candidate site.

For L O{A,T,C, G}, two binary variables u, and v, canbeusedtoexpress L, an
element of the consensus sequence, as shown in Tab. 1.

Tab. 1indicatesthat if L, isA, T, C, or G respectively, then a,=1, t,=1, ¢,;=1o0r
g,= 1, which implies following conditions.

a, =1-u)1-v,)

I, =uv, (3)
¢, =(L-u,)v,
g =u,(1-v)

Now let Score, be the degree of fitting to the found common site, specified as

90
Score, = ZZIYS ((9]1’S + 0]2“? +o + 9,12) 4
s=1

where 6, isthe element of candidate sites extracted from D’. The constraints
associated with (4) are below:

90
i)  Yz,=1 z, 0{0gforallands. 5)
s=1
a, if d,=A
N ,- t. ifd =T
Gy o, ={" Y ©)
ci zfdl,s_C
gi #d;,s:G

Clearly, 0< Score, <10.And the objective is to maximize the total sum of Score, .



(@)
AAGACTGTTTTTTTGATC
GATTATTTGCACGGCGTC

(b)
I=1,5s=1 |[AAGAQTGITTTTTTGATC
I=1,5s=2 AAGACTIGTTTTTITTGATC
I=1,5=3 AAGACTGTTTTTTTGATC
I=2,5=1 [GATTATTTGCACGGOGTC
1=2,s=2 GATTATTTGCAJGGOGIC
1=2,5=3 GATTATTITGCACGGOGTQ
(©)
AAGACTTTGA ~ AGACTTTGAT ~GACTGTGATC
GATTACGGCG ATTATGGCGT TTATTGCGTC

Fig. 1. A small example of finding consensus sequence: (a) two sequences to be compared,;
(b) Schematic representation of the candidate sites; (C) The associated D’ matrix

Consider the sample datain Fig. 1 for instance:

Score, = zyi(a;+a, tgyta, tegtig ti, Tt getay) (7
tz,(ay + g, tagte, tig g ti, +gg tag i)
tzi5(g ta, tegti, tggtitg t g, tagtiy teoy)

Score, = z,,(g ta, iy, tagtcgt g, tgstcgtgy) ©))
+zy,(a i, Yy ta, vt ge T g, teg g tly)

+Zz,3(t1+t2 tag+it, tigtgeto, tggtigtey)

All z, in(4) are binary variables. Equation (5) implies that for a sequence /, only one
site is chosen and no other sites contribute to Score, . Suppose the £ 'th site is selected, then
z,, =1 and z, =0 foral s0{1,2,..90}, s#k.Sinceahugeamountof z (i.e
|/|* |s|) areinvolved, totreat z, asbinary variables would cause a heavy computational
burden. Therefore z, . should be resolved as continuous variables rather than binary
variables. An important proposition is introduced below:

Proposition 1 (All or nothing assignment) Let z, >0 be continuous variables instead of

Tab. 1. Base code in the determined common site

Base
u, v a L, ¢ &
A 0 0 1 0 0 0
T 1 1 0 1 0 0
C 0 1 0 0 1 0
G 1 0 0 0 0 1




binary variables. If thereisak, £[{1,2,...,90}, such that
>0, =max{d> "0 fors=12,..90, then assigning z,, =1 and

z,, =0 foral s#k, s0{12,..,90, can maximizethe value of Score, .

Proof Since 3z, =1 and z,, 20, itistruethat
max { Zs (21, Z,- 0;,)} < max{ Z,- g, fors=12,.,90} = Z,- 0],

Remark 1 The objective function of a CSI problem f{x) can be rewritten as

f(x)= z{ai zzl,s * zzl,s *t¢ zzl,s tg; zzl,s} 9)

i=1 (1,5)084; (1,5)0ST; (1,5)08C; (1,5)0SG;

where S4, ={(,s)|d}, = A}, ST, ={(l,s)|d;, =T},
SC, ={(l,s)|d;, =C},and SG, ={(l,s)|d}, =G} fori=12,...10.

Thisresult impliesthat S4,(or S7,, SC., SG,)isaset composed of (/, s) in which the
product term z, a, (or z,t,, z ., z g respectively) appearson theright hand side of
(4) becausethat 6, =g,

For instance, the sum of Score, and Score, in(7) and (8) becomes

+. +g1(215+2p,) ¥ + 210721 (10)

Some logical constraints can be conveniently expressed by binary variables. For instance,
the constraint that a CRP dimer binds a symmetrical site requires that

_ A thenL, =T,
if L =
C thenL,, =G.
Such alogical structure can be formulated conveniently as the following constraints.

w, +uy =1 .
fori =1234,5

Vit = (11)

wherewu,, v, u;,_., v, 0{0, 1.

With referenceto Tab. 1, clearly if L, = A (i.e, u, =0andv, =0)then L, =T (i.e
u,,_;, =landv,,_, =1) and viceversa; (ii) if L, =C (i.e, u, =0andv, =1)then L, =G
(i.e, uy,_, =landv,,_, =0) and vice versa. A CSl problem can then be formulated as a

nonlinear mixed 0-1 program below based on these constraints:

Program 1 (Nonlinear 0-1 CSI program)

Maximize ZSCOWI Z{a Dzt Doz te, Dz tg D) (12)

i=1 (1,5)084; (1,)0ST; (1,5)0SC; (1,s)0SG;




) %
subject to > z,=1 z,, =0fordlls

s=1

a, =1-u,)1-v,)

t,=u,v, Conservative constraints
c, =(-u,)v, fori=12,...,10

g =u;(1-v,)

u, tuy,_, =1 Logical constraints

v, +v,, =1 } fori=12,..,5

u,v, {0, fori=12..5
O<u,,v,<1 fori=6,7,..,10
0<a,,t, c,g <1 fori=12,..10

i1

This program intends to solve{ a,, ¢,, ¢;, g, } for i =1,2, ...10 thus to maximize the total
degree of fitting to the common site for the given 18 sequences, subjected to a possible logical
constraint. A very important feature of Program 1 isthat wecantreat z, ascontinuous
variables rather than binary variables, which can improve the computational efficiency

dramatically. We can ensure all found z,; till have binary values as discussed in the next
section.

Linearization of Program 1
Program 1 isamixed nonlinear 0-1 program where inzm for ¢, 0{a,,t,g.,c}
and u,v, areproduct terms. These product terms can be linearized directly by the following
propositions:
Proposition 2 The product term A, = q[zZ,’S where A, isto be maximized and
g, 0{0,1} can belinearized as follows:
/11 2 ZZI,S +M(q1‘ _1)
A, =20

A < ZZI’S

A <Mgq,

(13)

where M is abig constant larger than or equal to the number of sequences.

Proof If g,=1then A =)z ;andotherwise A,=0.

Proposition 3 The product term w, =u,v, where u,,v, {01} can be linearized as follows:

IN

IN

(14)

v

T X XX

ui
vi
0
ui

\}

+v, -1



Denote Z(a,) = q, Z(I,S)DSA[ z,., Z(t) =t Z(LS)DST[ z,., Z(c;)=c, Z(LS)DSC[ z,,,and
Z(g,) =8 ). s 21 - Program Listhen linearized into Program 2 below based on
Proposition 2 and Proposition 3.

Program 2 (Linear mixed 0-1 CSI program)

Maximize iScorel = i(z(ai) +Z(t,)+Z(c;)+Z(g,)) (15)

90
subject to ZZ,,S =1 z,,20 fordlls
s=1

a, =1-u,—-v, +w,
. =w,

C, =V, —w,

1

g, =u,—w, Conservative constraints
w, Su, fori=12,..,10

1

w, v,

1

w. 20

1

w,2u, +v, -1
u +tu, . =1 . .
P } Logical constraintsfori =1, 2, ..., 5

vty =1

ZZI,S +M(ai _]')SZ(az)S ZZI,S
(1,5)084; (1,5)084;
0<Z(a,)<Ma,
ZZI,S +M(ti _1)SZ(t1)S ZZI,S
(1,5)08T; (1,s)0ST;
0<Z(t)sM¢, Constraintsfor linearizing
Doz +M(c, =)< Z(c;)< Dz, | productterms
(1,5)0SC; (1,s)0SC;
0<Z(c,)sMc,
ZZI,S-'-M(gi _1)SZ(g1)S ZZI,S
(,5)0SG; (1,5)0SG;
0<Z(g)=Mg,

u,v, {0} fori=12,..5
O<u,,v,<1 fori=6,7,..,10
0<a,,t, c,g <1 fori=12..,10

z,, 'S are treated as non-negative continuous variablesfor / =1,2, ... ,18 and
s =1,2, ... ,90 where M can be any value greater than or equal to 18.

In Program 2, since u, and v, arebinary variables, a,, t,, ¢,,and g, should
have binary values following (3). Although z, = aretreated as continuous variables, the
valuesof z, shouldbeOor 1. Thisis because the optimal solution of alinear program
should be a vertex point satisfying z z,, =1 foral L
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Consider the following proposition.

Proposition 4 Let the optimal solution of Program 2be x" =(Z%«"v?)and ) z, =1.
Assume that a sequence / contains Sites s, s,, ..., s, such that O<z;S/_ <1
forj=1, 2, ... k, then,

2;9;’51 = Zi elivb‘z = Ziglivsk = max{zl‘glivb‘} !
whereH,"‘S/_ arespecifiedin (6) .
Proof For » z,, =1,if s,,5, 0{s;,s,,...,} where > 6/ >> &  thento
maximize Score, =) /Az,’sleﬂjvs/_ requires z,, =0.Thisconflicts with the

observationthat0<z, <1, therefore ) 6, => 6 =..= 6. .

After solving Program 2 we can obtain the globally optimum solution
“TGTGAL U L L LT TCACA” with objective value 147. The related nonzero z, ~ values
indicate the starting positions of the binding sitesin the 18 sequences, as listed below:

Zyea = Zosg — Z379 — Zae6 — 2553 — Ze63 — 27,21 — Zga2 — Zo12 — Z1017
= Zy16a = Z1oaa — Z13s1 — Z1a7a — Z15,20 — Z1656 — 217,87 — 21881 — 1
All other z ’shavevalueO.

In Program 2 the total number of 0-1 variablesis 2m and the total number of the
continuous variablesis 20m+|! |* |s| . Since the number of 0-1 variablesis independent of the
lengths of / and s, a CSI problem with many long sequences can be solved effectively.

Suboptimal common sites

Program 2 can find the exact global optimum solution. Sometimes the second best and
the third best solution may also be useful. It is very convenient for the proposed method to
find a complete set of common sites by adding some extra constraints. For instance, the
second best solution of Program 2 can be obtained conveniently by solving the following
program:

18
Maximize Y. Score, (16)

=1
subjectto (i) The same constraintsin Model 1
(i) t,+g, +t,+g, tag +tg+c, tag+cg+a, <9  (new constraint)

The new constraint is used to force the program to find a new solution different from the
solution of Program 2. The found second best common siteis“TTTGAO O O O O O
TCAAA” with score 129. Similarly we can find another solution by adding following
constraint into (16).

Wttt g tagtigte; tagtagtan <9
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The found third best common siteis“AAATTO O O O O O AATTT” with score 129.

Several experiments are tested here, using the example in the Appendix, to analyze the
effect of sequence length and number of sequences on the computational time. All examples
are solved by LINGO (Schrage, 1999), a widely used optimization software, on a personal
computer with a Pentium 4 2.0G CPU. A software package named “Global Site Seer” is
developed based on Program 2 for solving CSl problems. This software is available from
http://www.iim.nctu.edu.tw/~cjfu/gss.htm.

Fig. 2 illustrates the experimental results for analyzing the time complexity. Fig. 2(a) is
the computational time given various sequence lengths, where the number of sequencesis
fixed at 18. The results show that the computational time changes slightly even if the
sequence length isincreased from 105 to 1050. Fig. 2(b) is the computational time with
various numbers of sequences. It shows that the solving time is roughly proportional to the
number of sequences. The proposed model is quite promising for treating CSI problems with
large sequence length and alarge number of sequence number. Fig. 2(c) shows that the
computational time rises exponentially as the number of independent positions increases.

This study proposes a linear mixed 0-1 programming approach for solving CSI problems.
Comparing with the widely used maximum likelihood methods, the proposed method can
reach a global optimum rather than finding alocal optimum or afeasible solution.
Additionally, by utilizing binary variables some logical constraints can be embedded into the
models. It is also convenient to find the complete set of the second, third, etc. best common
sites. Since the number of binary variablesis fully independent of the number of sequences
and the length of a sequence, the proposed method can treat alarge CSI problem with many
long sequences. For treating a CSl problem with many independent positions in an acceptable
time, this study also proposes a method for distributed computing.

Two issues remaining for further study. The first is to extend this method to treat various
practical CS| problems. The second isto develop a more refined distributed algorithm to solve
some CSI problems by numerous computers via internet.
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(a) Computational time versus sequence length

Sequence  Solving Time
Length (mm:ss)
105 1:39
210 121
315 1:44
420 1:43
525 1:48
630 1:54
735 1:48
840 1:56
945 1:59
1050 2:04

2:20

2:00

1:40

*

1:20

L 3

L 2

1:00

0:40

Computationd time (mm:ss)

0:20

0:00
0

105 210 315 420 525 630 735 840
Length of asinge sequence

945 1050 1155

(b) Computational time versus number of sequences

Number of Solving Time

12:00
Sequences (mm:ss)
9 0:30 % 10:00 ¢ .
g
18 1:39 £ o800 | .
27 321 =
36 432 | m %0 o
. S .
45 6:15 B 04:00
54 6:01 g ¢
' £ 02:00
63 8:16 38 .
72 10:29 00:00 *
81 10:01 0 9 18 27 36 45 54 63 72 8 90 9
90 9:37 [I'|: Number of sequences
(c) Computational time versus number of independent positions
Number of Solving Time
100000.0
Indep Pos  (h:mm:ss) .
2 0:00:01 € 100000 | .
.00 *
3 0:00:03 g 10000 .
4 0:00:21 2 o *
= *
5 001:23 | £ 1000 -
oy
6 0:03:38 S 100 o
7 0:05:18 3 .
£ 1.0
8 0:08:25 8 .
9 0:15:52 0.1
10 0:53:27 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2:33:20 m: Number of independent positions

Fig. 2. The relationship between computational time and various factorsinvolved in aCS|
problem. This figure illustrates the computational time of solving Program 2 with (a) various
sequences sizes; (b) various number of sequences and (c) various independent positions.
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