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This paper attempts to solve a comprehensive design problem for a spare part logistic system. The design
factors encompass logistic network design, part vendor selection, and transportation modes selection. Two
approaches to solve the problem were proposed. In Approach 1, we simultaneously considered all the
design factors and proposed two algorithms (SGA-1 and TGA-1). In Approach 2, the design problem
was solved in two stages. Firstly, we aimed to find a near-optimal logistic network. Secondly, with the
obtained logistic network, we proposed three algorithms (SGA-2, TGA-2, and NN-GA-Tabu) to find optimal
combinations for part vendor and transportation modes selection. Numerical experiments indicate that
Approach 2 outperforms Approach 1, and the NN-GA-Tabu outperforms all the other four algorithms.
The proposed NN-GA-Tabu might also be a good solution architecture for solving other comprehensive
space search problems.
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1. Introduction

Spare part management is a very important issue for capitally-
intensive industries (e.g., semiconductor manufacturing, aero-
space, defense, and high-speed train). Building a leading-edge
semiconductor wafer fab may cost up to 2 billion dollars; and the
associated spare parts inventory may need 10–15% of the total
expenditure. Other capitally-intensive industries also reveal the
same characteristics. Thus, the design and operation of a spare part
logistic system is very important for these industries.

A spare part logistic system (also called a logistic network) typ-
ically involves a group of stations that are hierarchically structured
as shown in Fig. 1. In the hierarchy, terminal stations, essentially
designed to repair machines in the service field, are equipped with
machine-repairing staffs and spare parts inventory. Other higher-
layer stations are designed to store and repair spare parts in order
to supply spare parts to terminal stations. Parts delivery between
any two stations needs a transportation time. In literature, such a
logistic network is characterized as a multi-echelon system (Sher-
brooke, 1968)

As shown in Fig. 2, a machine typically comprises a hierarchical
assembly of parts – called bill of materials (BOM). In literature, a
spare part logistic system that considers only one kind of part is
called a single-indenture system. In contrast, a multi-indenture sys-
tem is a spare part logistic system that considers a BOM hierarchy
involving many kinds of parts. This research is concerned with a
ll rights reserved.

u).
multi-indenture, multi-echelon (simply called MIME) spare part sup-
ply chain system.

Several survey papers on spare part logistics in a MIME system
have been published (Guide & Srivastava, 1997; Kennedy, Patter-
son, & Fredendall, 2002). Prior studies could be essentially grouped
in two categories.

One category aimed to find optimal operation policies for a given
spare part logistic system; that is, how to determine optimal
inventory level and repair-staff level for each station in order to re-
duce the total operational cost. Some assumed that each station is
equipped with an infinite staffing capacity for repairing parts; and
paid attention to the decision of stocking levels. The pioneer one
is the METRIC model developed by Sherbrooke (1968); many of
its extensions have been developed (e.g., Graves, 1985; Muckstadt,
1973; Sherbrooke, 1986). Given a finite staffing capacity for repair-
ing parts, some others investigated the decision for optimum stock-
ing levels (e.g., Diaz & Fu, 1997; Kim, Shin, & Park, 2000; Perlman,
Mehrez, & Kaspi, 2001). Extending the frontier, Sleptchenko, van
der Heijden, and van Harten (2003) aimed to solve a more complex
problem – finding an optimum combination for both repair-staff
capacities and stocking levels.

The other category attempted to find an optimal design for a
spare part logistic system. Some aimed to design an optimal logis-
tic network (Candas & Kutanoglu, 2007; Jeet, Kutanoglu, & Partani,
2009; Rappold & van Roo, 2009); some focused on optimal selec-
tion of part vendors (Wu & Hsu, 2008); and some others examined
optimal selection of transportation modes (Kutanoglu & Lohiya,
2008). Such design factors were only partially addressed in prior
studies. Their obtained solutions might leave a space for further
improvement if more design factors are simultaneously addressed.

http://dx.doi.org/10.1016/j.eswa.2010.08.088
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Fig. 1. The hierarchical structure of a logistic network.
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Fig. 2. The BOM hierarchy of each machine.

M.-C. Wu et al. / Expert Systems with Applications 38 (2011) 2990–2997 2991
Yet, such a comprehensive inclusion of design factors may require
formidable computational efforts.

In this paper, we attempt to solve a comprehensive design prob-
lem for a spare part logistic system. The design factors encompass
logistic network design, part vendor selection, and transportation
modes selection. Two approaches to solve the problem were
proposed.

In Approach 1, all the design factors are simultaneously consid-
ered. That is, a new solution could be generated by varying the
selection for any of the design factors. Based on such a solution
representation, two meta-heuristic algorithms were proposed to
solve the design problem. The two algorithms, adapted from liter-
ature (Goldberg, 1989; Tsai, Liu, & Chou, 2004), are respectively
called SGA-1 (simple genetic algorithm in Approach 1) and TGA-
1 (Taguchi genetic algorithm in Approach 1).

Approach 2 decomposes the design problems into two sub-
problems. That is, we solve the design problem in two stages. In
stage 1, we focus on finding a near-optimal logistic network, by
the application of a technically sound heuristic rule. In stage 2,
with the obtained logistic network, we proposed three meta-heuris-
tic algorithms to find optimal combinations for part vendor and
transportation modes selection. The three algorithms are called
SGA-2 (simple genetic algorithm in Approach 2), TGA-2 (Taguchi
genetic algorithm in Approach 2), and NN-GA-Tabu (neural net-
work-genetic algorithm-tabu-search).

Numerical experiments indicate that Approach 2 outperforms
Approach 1. This advocates the use of a problem-decomposition
approach in solving a large-scale problem, if a technically sound
heuristic rule can be found. Of the three algorithms in Approach
2, the NN-GA-Tabu outperforms the other two both in solution
quality and computation time. We developed the NN-GA-Tabu
based on two ideas. First, we develop an efficient yet rough perfor-
mance evaluator to quickly justify a solution. Second, we use GA to
find a quality solution and then use a tabu-search (a local tuning
process) to obtain an improved one.

The remainder of this paper is organized as follows: Section 2
describes the problem in more detail. Section 3 formulates the
comprehensive design problem and analyzes possible ways to
solve the problem. Section 4 describes the two algorithms in Ap-
proach 1. Section 5 describes the solution architecture of Approach
2 and the proposed NN-GA-Tabu algorithm. Experiment results of
all the five algorithms are compared in Section 6. Concluding re-
marks are in the last section.
2. Problem statement

In this research, machines are capitally-intensive and their
availabilities are very important. Machine availabilities are deter-
mined by the installing levels of two resources: (1) spare part
inventory and (2) repair-staffs. Having a higher installing level
for any of the two resources would lead to higher machine avail-
abilities, yet at a price of incurring higher costs. How to make such
a trade-off decision is critical to capitally-intensive industries.

As shown in Fig. 2, the BOM of a machine is a hierarchy com-
prising many assembly/parts. An assembly/part hereafter is called
an item. The failure of each item follows a Poisson process. With
long-lead times for acquisition, all items if failure need to be re-
paired. Repair time is an exponential distribution and first-come-
first-serve policy is adopted.

The failure of any item in the BOM would lead to machine-
down and reduce its availability. Quick replacement of the failure
item can alleviate the effect of machine unavailability. This is
achievable by installing a high stocking level, yet would incur high-
er inventory costs. By installing a higher level of repair-staffs, we
would shorten the failure duration of items and consequently
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require a lower stocking level, yet at a price of increasing staffing
costs.

A spare part logistic network is as shown in Fig. 1. Each node in
the network is called a logistic station (simply called station). Each
station is equipped with two kinds of resources: (1) spare part
inventory and (2) repair-staffs. The purpose of a logistic network
is to maintain a target average availability for machines in field,
which are directly supported by terminal stations. Each station
has one and only one parent station. Each station has a probability
of successfully repairing an item. A failure item that cannot be suc-
cessfully repaired by a station should be sent to its parent for
repair.

Items-repairing may require various techniques. Therefore, dif-
ferent items may need different types of repair-staffs. An inventory
replacement policy ðs; s� 1Þ is adopted in each station (Feeney &
Sherbrooke, 1966). Consider a case in which an inventory level sij

is installed for item i at station j. Two features of this inventory
replacement policy is explained below. First, for item i at station
j, its total number of stocks (including failure ones) should always
be kept at sij. Second, a failure stock at station j, if sent to its parent,
should get a good unit back for exchange. Likewise, receiving a fail-
ure stock from its son station should give the son a good stock in
exchange. A failure stock that cannot be repaired in the logistic
network will ultimately be sent to its external vendor, who can al-
ways successfully repair the stock but requiring much longer lead
time.

The logistic network for supporting a particular group of ma-
chines can be in various configurations. That is, given a generic net-
work (Fig. 1), we can close some stations and reassign the parent–
son relationships to create a network instance (Fig. 3). Consider a
generic network that has E layers and each layer has l1, l2, . . . , lE sta-
tions to open/close. Each station at layer e should be assigned to
one parent in layer e � 1, therefore, it has le�1 possible assign-
ments. As a result, all stations at layer e as a whole have lle

e�1 possi-
ble assignments. This implies that the possible number of network
instances is

QE
e¼2lle

e�1.
To reduce the total costs of a logistic network, we have two

other design alternatives: (1) changing item vendors, (2) changing
transportation mode for the path connecting each pair of parent
and son stations. That is, consider a network instance that has s
items and each item has k vendors to select. We have ks possible
choices in vendor selection. Such a vendor selection is a trade-off
decision because the price of an item charged by a vendor with a
lower failure rate is more expensive. Likewise, consider a network
instance that has p paths connecting all pairs of parent–son-sta-
(7)
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Vendor

Station (4)

(8) (9) (10) (11)

Station (1)

Station (3)

Fig. 3. An example design
tions, and each path has m types of transportation modes. We then
have mp possible transportation configurations.

In summary, we have three decisions in the design of a logistic
system: (1) logistic network instance selection, (2) item vendor
selection and (3) transportation mode selection. Therefore, the
possible number of design configurations is

QE
e¼2lle

e�1 � ks �mp.
Noticeably, in justifying the effectiveness of each design configura-
tion, we need to determine its optimal operating conditions; that
is, its optimal item stocking levels and repair-staffing levels.

3. Formulation and analysis

This section firstly formulates the research problem and pro-
ceeds to analyze possible ways to solve it.

3.1. Formulation

Sets and indices.

I = set of items, with index i 2 I;
K = set of staff-types for repairing items, with index c 2 K;
Ic = set of items that could be repaired by staff-type c 2 K,

with index i 2 Ic;
P = set of possible part vendors, with index l 2P;
C = set of possible transportation modes, with index t 2 C;
K = set of possible stations, with index j, m 2K;
Ks = set of terminal stations, with index j, m 2Ks;
Kup

j = set of possible parent-stations for station j 2K, with index
m 2 Kup

j ;
Kdown

j = set of possible son-stations for station j 2K, with index
m 2 Kdown

j ;

3.2. Decision variables

D ¼ ½xj�; ½yjm�; ½zjt�; ½v il�
� �

= set of decision variables for logis-
tic system design;
O ¼ ½kcj�; ½sij�

� �
= set of decision variables for logistic system

operation;

xj ¼
1; if station j 2 K is opened;
0; otherwise;

�

yjm¼
1; if station m2K is assigned as the parent of station j2K;
0; otherwise;

�

zjt ¼
1; if the path between station j2K and its parent is through transportation mode t2C;
0; otherwise;

�

(12)

Station (5) Station (6)

(13) (14) (15) (16)

Station (2)

Station (5)

of logistic networks.
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v il ¼
1; if item i 2 I is supplied by part vendor l 2 P;
0; otherwise;

�
�k ¼ ½kcj�, where kcj = installed capacity of staff-type c 2 K at sta-
tion j 2K;
�s ¼ ½sij�, where sij = the base stock level of item i 2 I at station
j 2K;

3.3. Derived variables

Aavg D;O
� �

: average machine availability for a design D operated
at O;
kij D
� �

: mean arrival rate of item i 2 I at station j 2K for a
deign D;

3.4. Parameters

Aobj = target average availability of machines;
prep

ij = the probability that item i 2 I could be repaired at sta-
tion j 2K;

pfailure
il = failure rate of item i 2 I while supplied by vendor

l 2P;
nitem

i = total number of item i 2 I per machine;

nmachine
j ¼ total number of machines at station j 2 Ks;

0; if j R Ks;

�
lij = the mean repair rate of item i 2 I at station j 2K;
cloc

j = the fixed cost of opening station j 2K;
ctrans

j;m;t = the transportation cost from station j to station m by
transportation mode t;

ttrans
j;m;t = the transportation time from station j to station m by

transportation mode t;
ccap

c = cost of adding one more staff for staff-type c 2 K;
cstock

il unit inventory holding cost of item i 2 I supplied by
vendor l 2P;

3.5. Formulation

Minimize
X
j2K

xj � cloc
j þ

X
j2K

X
m2K

X
t2C

yjm � zjt � ctrans
j;m;t þ

X
j2K

X
c2K

kcj � ccap
c

þ
X
i2I

X
j2K

X
l2P

sij � v il � cstock
il

s.t.X
m2K

yjm ¼ 1; 8j 2 K; ð1ÞX
m2Kup

j

yjm ¼ 1; 8j 2 K; ð2Þ

yjm 6 xm; 8j; 8m 2 K; ð3Þ
xj ¼ 1; 8j 2 Ks; ð4ÞX
t2C

zjt ¼ 1; 8j 2 K; ð5ÞX
l2P

v il ¼ 1; 8i 2 I; ð6Þ

kij D
� �
¼

X
m2Kdown

j

1� prep
im

� �
� kim D

� �
� ymj þ

X
l2P

nitem
i � nmachine

j � pfailure
il � v il;

ð7ÞX
i2Ic

kij D
� �
6 lij � kcj; 8j 2 K; 8c 2 K; ð8Þ

Aavg D;O
� �

¼ Queueing Network D;O
� �

; ð9Þ

Aavg D;O
� �

P Aobj
; ð10Þ

kcj; sij 2 Z; 8i 2 I; 8j 2 K; 8c 2 K; ð11Þ
xj; yjm; zjt; v il are binary variables: ð12Þ
In the above formulation, the objective function is to minimize total
logistic costs, which involve: opening costs of logistic stations,
transportation costs, costs of equipping repair-staffs, and inventory
holding costs of items. Constraints (1) and (2) denote that each sta-
tion has only one parent. Constraint (3) ensures that a station that
has been closed cannot be a parent. Constraint (4) denotes that each
terminal station should be opened. Constraint (5) denotes that only
one transportation mode can be selected for each path. Constraint
(6) denotes that only one vendor can be selected for each item. Con-
straint (7) describes a recursive formula for computing mean arrival
rate for each item at each station. Constraint (8) defines the mini-
mum capacity for each type of repair-staff. Constraint (9) denotes
that average machine availability for a particular design/operation
option can be obtained by a queuing network model. Constraint
(10) defines the target availability. Constraints (11) and (12) ensure
decision variables are in valid ranges.
3.6. Analysis of solution approaches

The formulation is a nonlinear program, in which constraint (7)
is a recursive formula and constraint (9) is a complicated proce-
dure which cannot be expressed by an explicit function. Therefore,
we cannot solve the problem by analytical methods.

The problem by nature is a huge space search problem which
involves two groups of decision variables – one group
D ¼ ½xj�; ½yjm�; ½zjt �; ½v il�

� �
is for design optimization and the other

group O ¼ ½kcj�; ½sij�
� �

is for operational optimization. To effectively

justify a given D, we have to know its optimal O. Sleptchenko et al.
(2003) has developed a technique to determine an optimal O for a
given D. Therefore, we consider this problem as a space search
problem that involves only D; and the minimum operational costs
for each D is obtainable by computing its optimal O. To solve such a
space search problem, we naturally consider the use of meta-heu-
ristic algorithms.

Two approaches to solve the problem were proposed. In
Approach 1, all the design factors D ¼ ½xj�; ½yjm�; ½zjt�; ½v il�

� �
are

simultaneously considered, and two meta-heuristic algorithms
(SGA-1 and TGA-1) were developed. In Approach 2, we decompose
the design problem into two sub-problems, which are proceeded in
two stages. In stage 1, we focus on finding a near-optimal logistic
network, L� ¼ ½xj��; ½yjm�

�� �
. In stage 2, with the obtained logistic

network L*, we develop three meta-heuristic algorithms (SGA-2,
TGA-2, NN-GA-Tabu) to find S� ¼ ½zjt��; ½v il��

� �
. Herein, S* denotes

an optimal combination for the part vendor and transportation
modes selection decisions.

Of the meta-heuristic algorithms, SGA-1 and SGA-2 are adapted
from traditional GAs (Gen & Cheng, 2000; Goldberg, 1989). TGA-1
and TGA-2 are adapted from an enhanced GA, which additionally
embeds the Taguchi experimental design technique in a traditional
GA. The NN-GA-Tabu, partly adapted from Wu and Hsu (2008) and
partly adapted from Chiou and Wu (2009), embeds neural network
and tabu-search techniques in a traditional GA.

The reasons why we proposed the development of TGA-1, TGA-
2 and NN-GA-Tabu are described below. By a pilot study, determin-
ing an optimal O for a given D requires about 6 s in computation
time. This implies that applying a typical meta-heuristic algorithm
such as genetic algorithm (GA) would be computationally exten-
sive. For example, evaluating 20,000 solutions – a relatively small
number in a typical GA application even requires about 1.5 days.

To alleviate the computational issues, two techniques are con-
sidered. One technique is by embedding an experiment design par-
adigm to efficiently generate quality solutions. The TGA-1 and TGA-
2 are applications of this technique. The other technique is by the
application of neural network (NN) algorithm to develop an
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efficient yet rough performance evaluator for D. With such a rough
performance estimator, we can quickly justify much greater num-
ber of solutions to obtain a candidate list, and then use the accurate
performance evaluator to select the best one from the list. Then,
the obtained solution is further refined by a tabu-search process
to get an improved one. The NN-GA-Tabu is an application of this
technique.
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net net

a bX X− 1, 1,
vendor vendor

a bX X− 1, 1,
trans trans
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trans trans
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Fig. 4. The crossover operator and its corresponding chromosomes.
4. Approach 1

This section describes the two algorithms (SGA-1 and TGA-1) in
Approach 1. We first describe the chromosome (or solution) repre-
sentation in the two algorithms; then present how to obtain the
fitness (or quality) of a chromosome; and finally explain the basic
ideas of the two algorithms.

4.1. Chromosome representation

In Approach 1, we simultaneously consider three types of de-
sign factors: logistic network design, part vendor selection, and trans-
portation mode selection. A design solution (called a chromosome) is
a string that comprises three segments. Each segment (a smaller
string) represents a design alternative for a particular type of de-
sign factors. That is, a chromosome is represented by X = [XnetjXven-

dorjXtrans] where Xnet, Xvendor, and Xtrans are its three segments, each
of which respectively models a type of design factor.

Segment Xnet = [g1, . . . ,gn] is intended to represent an alternative
for logistic network design, where gj 2 Kup

j is the assigned parent of
station j and n is the total number of possible stations. Each station
always has a parent but not vice versa. That is, a station may not
have a son. A non-terminal station (see stations 1, 3, and 5 in
Fig. 3) that does not have a son should be closed. Therefore, Xnet de-
notes a particular logistic network – it describes which stations are
closed and how stations are supported by their possible parents.

In addition, segment Xvendor = [v1, . . . ,vk] is intended to represent
an alternative for part vendor selection, where vi 2P is a vendor
selection for item i. Segment Xtrans = [h1, . . . ,hn] is intended to rep-
resent an alternative for transportation mode selection, where hj 2 C
is a transportation mode selection for station j. Notice that each
element (gj, vi, or hj) in a chromosome X is called a gene.

4.2. Fitness evaluation

Noticeably, a chromosome X just denotes a design solution. To
evaluate the fitness of X (the solution quality), we have to obtain
its optimal operating policies which include inventory stocking
levels as well as repair-staffing levels at each station j. According
to Sleptchenko et al. (2003), such optimal operating policies can
be obtained. We therefore define the total logistic cost, under opti-
mal operating policies, as the fitness of X.

4.3. Algorithms: SGA-1 and TGA-1

The two meta-heuristic algorithms (SGA-1 and TGA-1) are both
based on a typical GA architecture, which involves four stages: ini-
tial population generation, population evolution, population updating,
and evolution termination. Yet, in the stage of population evolution,
the two algorithms are different in their ways of creating new
chromosomes. Each of the four stages is explained below.

In stage 1 – initial population generation, we randomly create N
valid chromosomes to form an initial population P0. These created
chromosomes should be valid, in the sense that each gene value
must be in its designated set (i.e., gj 2 Kup

j , vi 2P, hj 2 C). The initial
population will be iteratively updated, and the updated population
at iteration t is called Pt.
In stage 2 – population evolution, various kinds of genetic oper-
ators are developed to create new chromosomes from Pt. In SGA-1,
only two genetic operators: crossover and mutation are included.
Other than the two, TGA-1 includes one more genetic operator
(called the Taguchi operator). The mechanism for creating new
chromosomes by each genetic operator is explained below.

In the crossover operator, we randomly choose two chromo-
somes (e.g., X1 and X2), by randomly sectioning each segment into
two parts and swap their gene values, to create two new ones (e.g.,

X3 and X4). Define Xi ¼ Xnet
i Xvendor

i

			 			Xtrans
i

h i
for i = 1, 2, 3, 4. For each

segment Xseg
i

� �
in Xi, define its two sectioning parts as Xseg

i;a and Xseg
i;b .

As shown in Fig. 4, new chromosomes X3 and X4 can be created by
applying sectioning and swap operations on X3 and X4.

In the mutation operator, we randomly choose one chromo-
some (e.g., X1), by randomly changing one of its gene values for
each segment (i.e., Xnet

1 ; Xvendor
1 ; Xtrans

1 ), to create one new
chromosome.

In the Taguchi operator, we randomly choose two chromosomes
(e.g., X1 and X2), by applying the Taguchi experimental design
method, to create one new chromosome (e.g., X5). Suppose a chro-
mosome has n genes in total. Each gene, of the two chromosomes
X1 and X2, has at most two levels. Then, finding a good chromo-
some from all possible combinations of X1 and X2 can be seen as
an experimental design problem, which has n factors and each fac-
tor has two levels. Using the orthogonal array experimental design,
the Taguchi operator can efficiently obtain a new and good chro-
mosome X5.

In each iteration, the total number of newly created chromo-
somes is N(Pcr + Pmu + Pta), where 0 6 Pcr, Pmu, Pta 6 1 represent
parameters of various genetic operators. This implies that, at the
end of stage 2, we have N(1 + Pcr + Pmu + Pta) chromosomes in total.

In stage 3 – population updating, we use roulette wheel selec-
tion method (Michalewicz, 1996) to screen N chromosomes from
the N(1 + Pcr + Pmu + Pta) ones to form a new population. In stage
4 – evolution termination, the population evolution/updating proce-
dures will be terminated if the iteration number has achieved an
upper bound (i.e., t = Tmax) or a best solution has sustained over a
certain number of iterations (Tbest).
5. Approach 2

Approach 2 is intended to solve the comprehensive design
problems in two stages. In stage 1, we focus on finding a near-opti-
mal logistic network. In stage 2, with the obtained logistic network,
we use three meta-heuristic algorithms (SGA-2, TGA-2, and NN-
GA-Tabu) to find optimal combinations for part vendor and trans-
portation modes selection.
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5.1. Stage 1: determining logistic network

In stage 1, the solution space of possible logistic networks can
be quite large. Consider a logistic network that has E layers and
l1, l2, . . . , lE stations to open/close. As stated, the possible number
of network instances is Q ¼

QE
e¼2lle

e�1; that is. Q = 224 = 1.68 � 107

for E = 3, l1 = 2, l2 = 4, and l3 = 10.
To select an optimal one from the solution space, we need to

evaluate each candidate solution. Yet, evaluating a candidate logis-
tic network may be computationally extensive because it has a
huge number of possible versions, due to the variations caused
by the selection of item vendors and transportation modes. Con-
sider a scenario with s items and p connecting paths, each item
has k vendors and each path has m transportation modes to select.
Then a logistic network has V = ks �mp possible versions; that is
V = 322 = 3.14 � 1010 for a typical application case with m = k = 3,
p = 10, s = 12. Moreover, evaluating such a version may be also
time-consuming, because for each possible version we need to
compute its optimal operating policies.

To reduce the computational extensive issues, this research pro-
poses one heuristic rule in finding a near-optimal logistic network.
The heuristic rule, which appears to be technically sound, request
that the parent of each station j is the one in Kup

j that is open
and is the nearest one in transportation distance. With this heuris-
tic rule, we only have to determine whether a station should be
open or close. As a result, the solution space of possible logistic
networks is greatly reduced. For a logistic network with E layers
and l1, l2, . . . , lE stations, its possible number of network instances
now becomes Q 0 ¼

QE�1
e¼1 2le � 1
� �

; that is. Q0 = 45 if E = 3, l1 = 2,
l2 = 4, and l3 = 10.

For a logistic network, the number of its possible versions is quite
huge (V = ks �mp). We randomly sample 30 versions and compute
the total logistic cost for each version while it is under optimal oper-
ating policies. That is, for a logistic network with E layers and
l1, l2, . . . , lE stations, we only have to evaluate N0 ¼ 30Q 0 ¼
30
QE�1

e¼1 2le � 1
� �

logistic network versions. For a case with E = 3,

l1 = 2, l2 = 4, and l3 = 1, we have N0 = 1350 while the complexity of
its original solution space is N = QV = 224 � 322 = 5.2 � 1017.
5.2. Stage 2: selecting vendor and transportation modes

The output of stage 1 is a near-optimal logistic network (say,
L*). With the logistic network L*, in stage 2, we aim to find an opti-
mal combination for the decisions of part vendor and transporta-
tion modes selection. For this purpose, three meta-heuristic
algorithms (SGA-2, TGA-2, and NN-GA-Tabu) were developed, in
which a chromosome is now represented by a smaller string, say
X = [XvendorjXtrans]. The procedures of SGA-2 and TGA-2 are similar
to that of SGA-1 and TGA-1 as described in Section 4. Thus we only
explained the procedure of NN-GA-Tabu herein.

The procedure of NN-GA-Tabu comprises four major steps.
Firstly, we apply the neural network technique to develop an effi-
cient yet rough performance evaluator of a chromosome. Secondly,
with such an efficient evaluator, we use a traditional GA to obtain a
list of candidate solutions. Thirdly, we use the original perfor-
mance evaluator, developed by Sleptchenko et al. (2003), to select
Table 1
Station opening cost and the number of machines at each terminal station (cost: $K).

Station ID 1 2 3 4 5 6 7

Layer ID 1 1 2 2 2 2 3
Open cost 6800 5000 2000 1800 1900 1200 1000
# of machines – – – – – – 1
the best one from the candidate list. Finally, the obtained solution
is further refined by a tabu-search process, which is adapted from
Glover and Laguna (1997). Each step is further explained below.

The development of the rough performance evaluator is based
on the back-propagation (BP) neural network algorithm (Fausett,
1994), which has been widely used to emulate a system’s behavior
by a sampled data set. That is, for a system with vectors Xi as input
and Zi as its corresponding output, we can randomly sample n1

pairs of {Xi,Zi} to train (or establish) a BP neural network, which

can compute an estimated output bZi for each sampled Xi. Then n2

pairs of {Xi,Zi} are randomly sampled to test the BP neural network.

If the predicted error e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn2
i¼1

Zi�bZ i

� �2

n2

r
is acceptable, then the BP

network can be used to emulate the system’s behavior; that is,

computing for bZi for other Xi. A detailed algorithm for developing
such a BP neural network can be referred to Fausett (1994).

Based on the BP neural network algorithm, a procedure
Rough_Evaluator is developed to quickly and roughly estimate the
fitness of a chromosome, as stated below.
5.2.1. Procedure Rough_Evaluator

� Sample Nt chromosomes, say Xi ¼ Xvendor
i jXtrans

i

h i
; i ¼ 1; . . . ;Nt .

� Use the original evaluator to compute the fitness for each
sampled chromosomes, Zi = Original_Evaluate(Xi); i = 1, . . . ,Nt.
� Use the data set {Xi,Ziji = 1, . . . ,Nt} to develop a BP neural net-

work, where Xi is input and Zi is output.
� Represent the developed BP neural network by bZi ¼ Rough E

valuateðXiÞ.

Notice that, in the above procedure, the rough evaluator (or the
BP neural network) is denoted by bZi ¼ Rough EvaluateðXiÞ and the
original evaluator is denoted by Zi = Original_Evaluate(Xi). The pro-
cedure NN-GA-Tabu can thus be stated below.

5.2.2. Procedure NN-GA-Tabu

Step 1: Establish a rough performance evaluator, bZi ¼ Rough E
valuateðXiÞ.

Step 2: Develop a traditional GA that evaluates a chromosome bybZi ¼ Rough EvaluateðXiÞ. By the GA, find a candidate set of
chromosomes S, where
8

3
1000

1

S ¼ XiðteÞ; bZiðteÞ
n o

; i ¼ 1; . . . ;N;

te is the iteration while the GA terminates:
Step 3: Find the best chromosome Xi� in S, by the original
evaluator
ZiðteÞ ¼ Original EvaluateðXiðteÞÞ; for i ¼ 1; . . . ;N;

i� ¼ Arg Min
16i6NL

ZiðteÞ:
Step 4: Use a tabu-search process to refine Xi� ; that is
Xi� ¼ Tabu SearchðXi� Þ; where
Xi� is the solution obtained by the tabu-search process:
9 10 11 12 13 14 15 16

3 3 3 3 3 3 3 3
1000 1000 1000 1000 1000 1000 1000 1000

1 2 1 1 1 2 2 2



Table 3
Transportation times/costs between layers 2 and 3, operated under transportation
mode 1 (time: hour, cost: $K).

Station 3 Station 4 Station 5 Station 6

Time Cost Time Cost Time Cost Time Cost

Station 7 24 2400 56 21,600 72 38,400 248 60,000
Station 8 32 5400 48 15,000 64 29,400 240 48,600
Station 9 40 9600 40 9600 56 21,600 232 38,400
Station 10 56 21,600 24 2400 40 9600 216 21,600
Station 11 64 29,400 32 5400 32 5400 224 29,400
Station 12 80 48,600 48 15,000 32 5400 240 48,600
Station 13 88 60,000 56 21,600 40 9600 248 60,000
Station 14 232 38,400 232 38,400 248 60,000 40 9600
Station 15 248 60,000 216 21,600 232 38,400 24 2400
Station 16 264 86,400 232 38,400 216 21,600 40 9600

Table 2
Transportation times/costs between layers 1 and 2, operated under transportation mode 1 (time: hour, cost: $K).

Vendor Station 3 Station 4 Station 5 Station 6

Time Cost Time Cost Time Cost Time Cost Time Cost

Station 1 240 2500 32 5400 48 15,000 64 29,400 34 15,000
Station 2 240 2500 80 48,600 48 15,000 32 5400 34 15,000

Table 4
Unit costs for various types of repair-staffs.

Staff type Repairing item type Cost ($K)

Type 1 Level 1 800
Type 2 Level 2 620
Type 3 Level 3 480
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Table 6
Repairable probability and repairing time for stations at each layer.

Layer 1 Layer 2 Layer 3

Repairable probability 0.8 0.7 0.6
Repairing time (h) 8 10 12
6. Numerical experiments

Numerical experiments are carried out to justify the five algo-
rithms (SGA-1, TGA-1, SGA-2, TGA-2, and NN-GA-Tabu) to solve
the comprehensive design problem. We first describe tested sce-
nario; then present the parameters of the five algorithms and the
computing hardware; and finally report and analyze the experi-
ment results.

The tested scenario, involving 16 stations in a three-layer hier-
archy (Fig. 1), has a target machine availability Aobj = 0.95. Table 1
shows the opening cost for each station and the number of ma-
chines at each terminal station. The transportation times/costs,
operated under transportation mode 1, are shown in Tables 2
and 3. We assume that the transportation times/costs, operated
Table 5
Item failure rates and unit costs of different vendors.

Item Quantity of each item Failure rates provided by each vendor (numbe

FRT1 FRT2

A 1 2835 2948.4
B 1 2205 2293.2
C 1 2520 2620.8
D 1 2835 2948.4
E 2 1575 1638
F 1 1890 1965.6
G 1 2205 2293.2
H 1 1575 1638
I 3 1890 1965.6
J 1 2205 2293.2
K 2 2835 2948.4
L 2 2835 2948.4
under different modes, are proportional; that is, ttrans
j;m;2

.
ttrans

j;m;1 ¼
0:75; ttrans

j;m;3

.
ttrans

j;m;1 ¼ 0:50; ctrans
j;m;2

.
ctrans

j;m;1 ¼ 1:20, and ctrans
j;m;3

.
ctrans

j;m;1 ¼ 1:50.
This implies the faster is a transportation mode the more expen-
sive is its transportation cost.

The BOM hierarchy for each machine involves three levels
(Fig. 2). Items in level i require type i repair-staffs and their unit
staffing costs are shown in Table 4. Table 5 shows the quantity of
each item as well as its failure rates and units costs while supplied
by different vendors. The higher the failure rates, the lower is the
unit cost. Each station is given a repairable probability – a probabil-
ity of successfully repairing an item as shown in Table 6, which
also gives repairing times.

Parameters of the five algorithms are set as follows: N = 50,
Tbest = 100, Tmax = 100, Pcr = 0.8, Pmu = 0.2, and Pta = 0.04. In NN-
GA-Tabu, a BP neural network, with e = 0.00795, is established by
using n1 = 1300 and n2 = 200. For each experiment, we run 10 rep-
licates, by using personal computers equipped with 3.4G CPU and
504 MB RAM.

Table 7 compares the experiment results of the five algorithms,
in terms of solution quality (total logistic cost) and computation
time. The table indicates that Approach 2 significantly outperforms
Approach 1 both in solution quality and computation time. More-
over, the qualities of solutions obtained in Approach 1 have a high-
er variation. That is, Approach 2 is not only more effective but also
more robust.

The reason why Approach 2 outperforms may be due to the
adoption of the heuristic rule – the parent of each station is just
the nearest one in its upper layer. This heuristic rule appears to
be technically sound. Therefore, a chromosome violating the heu-
ristic rule tends to be inferior. In Approach 1, many such violating
chromosomes are likely to be generated in the population evolu-
r of failures per 106 h) Unit cost charged by each vendor ($K)

FRT3 C1 C2 C3

3175.2 1300 1200 1000
2469.6 220 200 190
2822.4 310 280 250
3175.2 180 170 160
1764 40 38 35
2116.8 50 40 30
2469.6 30 25 20
1764 50 42 36
2116.8 35 30 25
2469.6 55 48 45
3175.2 40 30 20
3175.2 30 28 25



Table 7
Experiment results of Approach 1 and Approach 2 (time: hour, cost: $K).

Replicate Approach 1 Approach 2

SGA-1 TGA-1 SGA-2 TGA-2 NN-GA-Tabu

Cost Time Cost Time Cost Time Cost Time Cost Time

1 74,747 49.5 75,406 47.8 74,225 39.7 74,199 35.8 74,216 7.3
2 76,251 72.3 74,625 73.2 74,081 51.2 74,081 74.0 74,081 7.1
3 78,907 53.7 74,511 106.7 74,113 38.6 74,205 57.3 74,081 7.6
4 75,659 53.8 74,244 85.8 74,255 27.5 74,101 54.3 74,081 7.1
5 74,560 48.6 78,512 148.4 74,205 30.6 74,241 42.9 74,081 7.1
6 76,774 44.7 74,229 72.0 74,159 25.1 74,205 83.5 74,081 7.2
7 74,517 42.3 78,722 137.2 74,108 51.9 74,081 83.1 74,081 7.5
8 79,530 29.5 74,342 96.0 74,081 22.0 74,081 79.5 74,205 6.9
9 76,202 39.7 74,284 139.4 74,139 19.9 74,081 62.2 74,081 7.5

10 74,468 48.3 78,459 362.5 74,133 26.0 74,085 62.4 74,206 6.9

AVG 76,162 48.2 75,733 126.9 74,150 33.2 74,136 63.5 74,119 7.2
DEV 1815 11 1984 89 60 12 67 17 62 0.2
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tion process. Then, the best solution in the chromosome population
is less likely to be improved. As a result, the ultimately obtained
solution tends to be inferior. This advocates the use of a prob-
lem-decomposition approach in solving a large-scale space search
problem, if a technically sound heuristic rule can be found.

Of the three algorithms in Approach 2 (Table 7), the NN-
GA-Tabu significantly outperforms the other two in terms of com-
putation time, and slightly better than the other two in terms of
solution quality. This indicates that the NN-GA-tabu is an effective
and efficient method to solve the comprehensive logistic network
design problem.

7. Concluding remarks

This paper examined a comprehensive design problem for a
spare part logistic system, which involves the following decisions:
logistic network design, part vendor selection, and transportation
modes selection. In prior studies, these decisions were only partially
addressed. A comprehensive inclusion of such design factors may
require formidable computational efforts.

Two approaches were proposed to solve the problem. In Approach
1, we simultaneously considered all design factors and proposed two
meta-heuristic algorithms (SGA-1 and TGA-1). In Approach 2, we
decomposed the design problems into two sub-problems. The first
sub-problem is to find a near-optimal logistic network. With the
obtained logistic network, we proposed three meta-heuristic
algorithms (SGA-2, TGA-2, and NN-GA-Tabu) to solve the second
sub-problem – selecting vendors and transportation modes.

Numerical experiments indicate that the NN-GA-Tabu outper-
forms the other four algorithms. The merits of the NN-GA-Tabu
lead to three implications. First, it advocates the use of a prob-
lem-decomposition paradigm in solving a comprehensive space
search problem, if a technically sound heuristic rule can be found.
Second, it advocates the development of an efficient (could be
rough) performance evaluator to speed up the justification of a
solution. Third, it advocates the use of GA-Tabu search mechanism
to find a near-optimum solution. Thus, the proposed NN-GA-Tabu
may also be a good solution architecture for solving a comprehen-
sive space search problem. Other applications of the NN-GA-Tabu
solution architecture are being considered in future research.
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