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—~ ~ Abstract

With the advent of semiconductor technology, the System-on-a-chip (SoC) becomes a mainstream
and focus of technologies on coming 21% century. The integration of Computing, Communication and
Consumer Electronics will be speeded up through SoC, which causes the unavoidable trend of new era
for technology and enterprises. Especially, the application of 3C integration is very important to the

progress of human being society.

People all over the world have come to expect fast, reliable, and easily accessible wireless
communications and now they are demanding faster ways to access data with applications as diverse as
e-mail, file transfer protocol, Internet browsers, and even real-time video teleconferencing. Wireless
service providers who want to remain competitive must keep pace with this demand. In this integrated
project, we are targeting on the study of beyond 3G wireless networks. Particularly, we are focusing on

SoC technologies for OFDM-based SDR baseband processing.

To design fast, area-efficient and low power multipliers is important because multiplication is a key
operation in many processors such as CPU, DSP and FFT/IFFT processors for the wireless

communications.

In previous research, we presented an automatic layout-driven multiplier generator. The cell-based
delay model, rather than the XOR-based model, is used for timing estimation and the wire delay is also
considered in the synthesis process. The timing optimization, by considering the shape of the circuit, is
conducted in the placement process. Final adder is produced together with the column compression tree
for getting the simpler structure. By integrating synthesis, placement and resynthesis processes in the
multiplier generation flow, the multipliers generated by our layout-driven multiplier generator outperform

other previous works as shown in our experimental results.

In this project, we present an automatic error-controlled hardware-configurable multiplier generator.
The determination of the hardware of a multiplier is based on the error constraint given by users. With
allowing some rounding errors, a significant reduction in area and delay can be achieved. By considering
signal arrival profile, we also proposed several techniques for timing driven routing and placement to
optimize the timing. By integrating synthesis, placement and resynthesis processes in the multiplier

generation flow, the multipliers generated by our multiplier generator outperform other schemes used for



comparison as shown in our experimental results.

FFT and IFFT are important components of Orthogonal Frequency Division Multiplexing (OFDM)
systems in many communication applications such as HDTV, xDSL modem, and wide band mobile
terminals. With the increasing complexity in modern Very Large Scale Integrated circuit (VLSI) design
and the conception of system-on-chip (SOC), designers have to complete a complicated system design in
a short time. Therefore, it is a key issue to reduce design time of FFT processors through design

automation.

Much research is still undertakento  improve its performance. Furthermore, subject to the effect of
finite wordlength in hardware, a trade-off between precision and hardware resource has to be made.
Accordingly, it is a key issue to maximize the precision at the minimal cost of hardware complexity. This
thesis presents a solution to automate the design flow for pipelined FFT processors that are characterized
by the regularity in each stage. We can adjust the wordlength in each stage to obtain the optimization of
the area or the power for specified pipelined FFT processors by using the constraints of point of FFT,
signal-to-quantization-noise ratio (SQNR), and speed of processors. To decrease the design time, our
flow is capable of generating automatically a timing accuracy model which can be simulated. This feature
provides designers a flexible simulation environment.

Finally, we will focus on the integration issues to achieve smart IP reuse for this layout-driven data
path synthesizer. Therefore, we will study the performance modeling and power modeling for our
generated multipliers and FFT/IFFT processors. We will investigate the associated issues in
integrating our synthesizer into the commercial CAD environment. The related simulation models in
Verilog will also be provided.

RE 42377 multiplier, quantization error, bipartite matching
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3. Truncated Multiplication:
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4. Timing Model:
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7. Resynthesis:

v

¥ 5 o synthesis enpF iz > Bt E R L A Brren 0 (8- Hantd > AP MR
weight i 4 > RE PR B E 1 > FALH I T LA HPEAK > 2 B LA U L A
it e 2 AHAROIERFE > RATFIFETRRN T R

NS

'FE:IF% "! /:L
% = — B minimax e#c 5 R AL

'\

i S AT 0 il AUEE B RATY B R E 3 4TS Ap e weight shi SURT 11 %
e, F1 LA e RTETF # 2 Azancycle #3k function 4535, A P4 A B2 F A 450



critical path % ,2_ {5 € 4= iz i% path JRH s 7 5y 0 A (2 3 4o B] 6 #7777 1 & 45 1) arrive time 4p 37
shedge, k A% 3, %] 5 arrive time 4piT chk 3 8 € F 0 3 3 4o % B B edge arrive time £ R i+ FR4%
A

W4, 7 - € % critical path,i%firi&;;’ﬁ W7

Y- > 284 critical path p &2 £ 2,715 % - B> 2 mZ R FROFH 27U F 8 P

critical path

critical path

improved edge

123 4567891011 567891011

candidates of potential edges
critical path

net port

55
e 0 o0 o
e 0 o0 o

a
b
d
9 p
56 7891011

— potential edges

pe

QOO0 0 000
Reorder
g the critical §
Partition

path

—

Apply biptartite matching

port

= =3
c©rwg
- > o og

0 0 o o

o



8.  Speedup for the Final Adder:
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11. Word Length Generation Flow
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15. Word Length Optimization
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18. Power Estimation for Intellectual Properties
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