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偏微分方程在非直角座標區域之四階緊緻差分法(2/3) 
期中報告書 

 
中文摘要： 

在本年度之執行計畫中，我們提出了一種解變係數橢圓方程在圓

盤上的快速疊代法。我們基本上運用了過去幾年本人在國科會計畫所

發展出來的離散網格法去數值離散偏微分方程，所導致的線性方程是

正定的，因此可以有效率的去解它。我們比較不同的 preconditioner，
並發現多重網格法來當 preconditioner 是最適當的，其所需之疊代次

數並不因矩陣變大而增多。我們並將所發展的方法，運用到解變係數

的 Ginzburg-Landau 方程上面。 
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Abstract

We present an efficient iterative method for solving the variable
coefficient diffusion equation on a unit disk. The equation is written
in polar coordinates and is discretized by the standard centered differ-
ence approximation under the grid arrangement by shifting half radial
mesh away from the origin so that the coordinate singularity can be
handled naturally without pole conditions. The resultant matrix is
symmetric positive definite so the preconditioned conjugate gradient
(PCG) method can be applied. Different preconditioners have been
tested for comparison, in particular, a fast direct solver derived from
the equation and the semi-coarsening multigrid are shown to be almost
scalable with the problem size and outperform other preconditioners
significantly. The present elliptic solver has been applied to study
the vortex dynamics of the Ginzburg-Landau equation with a variable
diffusion coefficient.
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1 Introduction

The variable coefficient elliptic equation arises in many physical applications.
The heat transfer in heterogeneous material where the thermal conductivity
depends on the position is one of the classical examples. Another example
comes from the Ginzburg-Landau of superconductivity. When a supercon-
ductor contains impurities, it is quite natural to consider the inhomogeneous
coherence length in the Ginzburg-Landau equation. Thus, a nonlinear vari-
able elliptic-type equation must be solved where the variable coefficient rep-
resents the coherence length for superconducting electrons in a material [5].
Motivated by the above problems, in this paper, we consider the following
variable coefficient diffusion equation written in polar coordinates on a 2D
unit disk Ω = {(r, θ)|0 < r < 1, 0 ≤ θ < 2π} as
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r

[
∂

∂r

(
βr

∂u

∂r

)
+

∂

∂θ

(
β

r

∂u

∂θ

)]
= f(r, θ) in Ω, (1)

u(1, θ) = g(θ), on ∂Ω, (2)

where the diffusion coefficient β(r, θ) > 0 is inhomogeneous in the disk.
When we solve the equation (1) numerically, the first issue called the co-

ordinate singularity arises. This is because the equation is not valid at r = 0
when it is written in polar coordinates. In [12], the first author discretized
the Poisson equation (a special case of β(r, θ) = 1 in Eq. (1)) by using the
standard centered difference scheme under a polar grid by shifting a half ra-
dial mesh away from the origin. It was found that the method handles the
coordinate singularity without special treatment and the resultant matrix
equation is simpler than the traditional method described in [18]. Further-
more, the desired accuracy has been preserved. Mohseni and Colonius [14]
have used similar grid arrangements to handle the coordinate singularities in
finite difference and pseudo-spectral methods and have applied them to the
Bessel’s equation and compressible Navier-Stokes equations.

Another standard technique to solve the Poisson equation on a disk is
as follows. We first write the solution as a truncated Fourier series in the θ
direction and obtain a set of Fourier mode equations. Then those ordinary
differential equations of Fourier coefficients are solved by either finite differ-
ence or spectral methods. Once again, in order to have the desired regularity
and accuracy, most of the numerical methods including the finite difference
method [10], or spectral method [7, 9, 17] need to impose appropriate con-
ditions on the solution at the coordinate singularity. The accuracy of the
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numerical methods depends greatly on the choice of pole conditions. Un-
til recently, different numerical methods without pole conditions have been
proposed as well [6, 8, 13].

The numerical solution of the variable coefficient diffusion equation (1)
is another different story. Since now the elliptic equation has a variable
diffusion coefficient, we are unable to write the solution as Fourier series
expansion. Thus, the Fast Fourier Transform (FFT) cannot be called directly.
Furthermore, the equation (1) is not a separable type, the resultant linear
system after the discretization cannot be solved directly by the fast direct
solvers such as those provided in public software package - FISHPACK [3].
The goal of this paper is to develop an efficient iterative method for solving
the variable coefficient diffusion equation (1).

The rest of this paper is as follows. In Section 2, we introduce the finite
difference discretization to the equation (1) and discuss two efficient precon-
ditioners for the resultant linear system. The numerical results include the
accuracy check and the detailed performance comparison for different pre-
conditioners are also shown in Section 2. We then apply the present elliptic
solver to study the vortex dynamics of the Ginzburg-Landau equation with
a variable diffusion coefficient in Section 3. Some conclusion are given in
Section 4.

2 Finite difference discretization

We use the same grid points in the radial direction as in [14, 12] by defining

ri = (i− 1/2) ∆r ri−1/2 = ri −∆r/2, ri+1/2 = ri + ∆r/2 (3)

and in the azimuthal direction

θj = j ∆θ θj−1/2 = θj −∆θ/2, θj+1/2 = θj + ∆θ/2 (4)

where ∆r = 2/(2M + 1) and ∆θ = 2π/N . By the choice of the radial mesh
width, the boundary values are defined on the grid points. Let the discrete
values be denoted by uij ≈ u(ri, θj), fij ≈ f(ri, θj), and gj = g(θj). Using
the centered difference method to discretize Eq. (1), we have

− 1
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∆θ
)/∆θ] = fi,j. (5)
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Among the above representations, the numerical boundary values are given
by uM+1,j = gj, and ui0 = ui,N , ui1 = ui,N+1 since u is 2π periodic in θ. At
i = 1, we immediately observe from (3) that r1/2 = 0, so the coefficient of u0j

is zero. This implies that the scheme does not need any extrapolation for the
inner numerical boundary value u0j so that there is no pole condition needed.
It is also easy to check that the matrix of linear equations (5) is symmetric
and positive definite so the preconditioned conjugate gradient methods can
be applied.

For the Neumann problem, we still use the same grid described in (3) but
with different choice of ∆r = 1/M . With the choice of this mesh width, the
discrete values of u are defined midway between boundary so that the first
derivative can be centered on the grid points.

2.1 Fast direct solver as a preconditioner

In this subsection, we derive a preconditioner which can be applied to the
conjugate gradient method to solve the linear system (5). Our intention is
to construct a preconditioner P such that the inversion of the matrix P can
be done by available fast direct solvers such as FFT. One natural choice is to
average the variable coefficient in the equation (1) so that a separable PDE
is formed. More precisely, the preconditioner can be constructed from the
equation
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where the coefficient

β̄(r) =
1

2π

∫ 2π

0
β(r, θ) dθ. (7)

Since the new diffusion coefficient β̄ is a function of r, the above PDE is
separable. Thus, the inversion of the preconditioner can be efficiently done
by fast direct solvers such as FFT or block cyclic reduction algorithm [1].

2.2 Semi-coarsening multigrid as a preconditioner

Multigrid method is known to be an efficient solver for the linear system
arising from discretized elliptic equations. Its main idea consists of ap-
plying simple relaxation on the fine grid (which damps the high-frequency
errors quickly) and correcting the solution on the coarser grid (which the
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low-frequency errors can be represented accurately). Recently, Schaffer [16]
developed an efficient semi-coarsening multigrid method for symmetric and
nonsymmetric elliptic PDEs with highly discontinuous and anisotropic coeffi-
cients in two- and three-dimensional Cartesian domains. Based on Schaffer’s
work, Baldwin et. al. [2] applied the semi-coarsening multigrid algorithm to
the linear systems arising from radiation-hydrodynamics problems and made
a detailed comparison with other iterative solvers. For the problems (the
diffusion equation with variable coefficients) considered there, the authors
showed that the multigrid algorithms scale almost perfectly. In other words,
the iteration count of V-cycle is almost independent of problem size. In their
work, the multigrid algorithm is not only used alone as an efficient solver but
also used as a preconditioner in the PCG method.

In this paper, we apply a similar multigrid V-cycle as in [2] to our resultant
linear system (5) on the polar grid. The present method uses a combination
of semi-coarsening in the θ direction with red/black line relaxation in the r
direction. That is, we only do multigrid and coarsen the grid in the θ direction
and keep the resolution in the r direction fixed. This is a quite natural choice
since if we coarsen the radial grid instead, then the coarser grid would not
coincide with the fine grid based on our radial grid arrangement (3). One
should also note that the red/black line relaxation updates the solution by
solving tridiagonal linear systems at all red lines (even index j lines) first and
then follows a similar update for the black lines (odd index j lines). Since
there is no dependence between lines of the same color, those tridiagonal
solvers can be performed in parallel. The restriction (fine to coarse) and
prolongation (coarse to fine) operators are the conventional full weighting and
linear interpolation, respectively. In this work, we use the above multigrid
as a preconditioner in the PCG method. That is, in the preconditioning
step, we apply a single V(1,1)-cycle (one red/black line pre-relaxation and
one black/red line post-relaxation) to solve the residual equation.

2.3 Numerical results

In this subsection, we perform several numerical tests for the presented
method. Table 1 shows the maximum errors of the method for three dif-
ferent test examples as

1. u = er(cos θ+sin θ), β = r2 sin2 θ + r cos θ + 1.1

2. u = sin(r cos θ) sin(r sin θ), β = er(cos θ+sin θ)
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3. u = r5 cos3 θ sin2 θ/3 + r3 cos2 θ sin θ + r cos θ + 1,
β = 0.1(r2 cos θ sin θ + 1).

The right-hand side functions are obtained by substituting the solutions into
the equation (1).

In all our tests, we use M grid points in the radial direction and N = 2M
points in the azimuthal direction. The rate of convergence is computed by

the formula log2(
EM/2

EM
), where EM is the relative maximum error with radial

resolution M . All the results are obtained by solving the linear system (5)
using PCG with the fast direct solver (6) as the preconditioner. The initial
guess of the iteration is set to be uij = 1 everywhere, and the tolerance of
residual is 10−8. One can see from Table 1 that indeed our scheme preserves
clean second-order accuracy.

Table 2 shows the number of iterations and the CPU time in seconds
needed for solving the solution of Example 1 by PCG method with different
preconditioners. Those preconditioners include block Jacobi (BJ), symmetric
successive over relaxation (SSOR), incomplete Cholesky factorization (IC),
the fast direct solver (FDS), and the semi-coarsening multigrid (SMG). One
can see that the fast direct solver and the semi-coarsening multigrid are
almost scalable with the mesh size and outperform other preconditioners
significantly. The performance for other examples show the same conclusion
so we omit here. The SMG preconditioner performs even better than FDS
in terms of the iteration count and CPU time.

M 16 32 64 128
Ex.1
error 1.160E-03 2.828E-04 6.961E-05 1.726E-05
rate - 2.04 2.02 2.01
Ex.2
error 2.941E-03 7.043E-04 1.720E-04 4.247E-05
rate - 2.07 2.03 2.02
Ex.3
error 1.089E-03 2.742E-04 6.818E-05 1.697E-05
rate - 1.99 2.01 2.01

Table 1: The maximum errors of three different solutions u with different
diffusion coefficients β for Eq. (1).
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M BJ SSOR IC FDS SMG
16 70 (0.23) 39 (0.22) 28 (0.09) 28 (0.11) 5 (0.15)
32 133 (0.58) 60 (0.48) 53 (0.24) 33 (0.28) 5 (0.23)
64 240 (4.61) 93 (3.19) 103 (2.12) 36 (0.85) 5 (0.41)
128 478 (43.39) 147 (25.35) 195 (20.21) 36 (3.40) 5 (1.54)

Table 2: The performance comparison for using different preconditioners.
The first number represents the number of iterations while the number in
parenthesis represents the CPU time in seconds.

3 Simulation of Ginzburg-Landau equation with

a variable diffusion coefficient

In this section, we apply the present iterative elliptic solver to study the
stable solutions of the following Ginzburg-Landau equation (GLE) with a
variable diffusion coefficient in a unit disk Ω = {r2 = x2 + y2 < 1}

∂u

∂t
=

1

a(x)
∇ · (a(x)∇u) +

1

ε2
(1− |u|2) u in Ω, (8)

u(x, 0) = u0(x) in Ω, (9)

∂u

∂r
= 0 on ∂Ω. (10)

This 2D model approximates the three-dimensional Ginzburg-Landau equa-
tion with constant coherence length in a very thin variable superconducting
film where the positive coefficient a(x) characterizes the variable thickness
[5]. The solution u is a complex-valued function representing the order pa-
rameter and the parameter ε is a small positive number. Note that, we
use the Cartesian shorthand ∇ · (a(x)∇u) to represent the variable diffusion
operator described as (1) in polar coordinates.

In this simulation, we want to study the steady equilibrium solutions of
GLE (8). In particular, we will focus on seeking the stable solutions with
vortices. The vortices are the topological defects which are zeros of the
complex scalar field u with nonzero integer winding numbers. Readers who
are interested in the theory of Ginzberg-Landau vortices can refer to the
book [4].

Throughout this section, we use the backward difference in time to dis-
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cretize the Ginzburg-Landau equation (8)

un+1 − un

∆t
=

1

a(x)
∇ · (a(x)∇un+1) +

1

ε2
(1− |un|2) un+1 in Ω,(11)

∂un+1

∂r
= 0 on ∂Ω. (12)

Thus, at each time step, a variable diffusion coefficient elliptic equation with
Neumann boundary on a disk arises and can be solved by the efficient iterative
solver described in the previous section. In the following tests, we choose the
initial condition as

u0(r, θ) = tanh
(

r

ε

)
ei m θ, (13)

which is an approximate vortex solution with winding number m. As men-
tioned before, we like to investigate the dynamics of this vortex solution and
its final equilibrium.

In all runs, we use 64 × 128 grid points in the radial and azimuthal
directions, and the time step ∆t = 1/320. The parameter ε = 0.1 and the
winding number of initial vortex is m = 3. Figure 1 shows the contour plots
of the magnitude |u| for the constant diffusion case a(x) = 1 at different
times. One can observe that the initial vortex with winding number m = 3
at the center splits into three vortices with winding number one and then
migrate to the boundary gradually. At a later time, the three vortices are
completely absorbed by the boundary and the solution becomes a constant
state |u| = 1 eventually. This vortex dynamics is not new and has been
confirmed, for instance, theoretically [11] and numerically [15]. One should
also note that this final equilibrium state is nothing but the global minimizer
of the Ginzburg-Landau free energy

E(u) =
∫

Ω

{
1

2
|∇u|2 +

1

4ε2
(1− |u|2)2

}
a(x) dx, (14)

where the term |∇u|2 in polar coordinates has the form

|∇u|2 =

∣∣∣∣∣
∂u

∂r

∣∣∣∣∣
2

+
1

r2

∣∣∣∣∣
∂u

∂θ

∣∣∣∣∣
2

. (15)

Figure 2 shows that the Ginzburg-Landau energy is decreasing in time and
becomes zero finally.
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Figure 1: The contour plots of |u| at different times for the constant diffusion
a(x) = 1 case.
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Figure 2: The time evolution of Ginzburg-Landau energy for the constant
diffusion case.

For the variable diffusion coefficient case, the vortex dynamics and stabil-
ity are completely different from the constant diffusion case. Figure 3 shows
the different time contour plots of the magnitude |u| for the case of variable
diffusion a(r, θ) = (r2 cos θ sin θ + 1) er. The initial condition is still as in
(13) with winding number m = 3. Unlike the constant diffusion case, the
central vortex now splits into five vortices in which one vortex stays at the
center and four of them migrate to the boundary. Later, those surrounding
four vortices are completely absorbed by the boundary while the vortex at
the center remains. Figure 4 shows that the free energy is decreasing in time
and becomes a nonzero constant eventually. Therefore, by choosing the vari-
able coefficient appropriately, we are able to stabilize the Ginzburg-Landau
vortex which is exactly the same phenomena predicted by the theory [5]. In
physics, this is called the pinning effect when a vortex is trapped by some
defect of the conductor.

It is very interesting to mention that during the transition the winding
number of the central vortex becomes m = −1 while the winding number of
the surrounding four vortices are all m = 1. To see this, we plot the vector
fields of real and imaginary parts for u/|u| at T = 0.5 in Figure 5-(a). The
final plots for the real and imaginary parts of u/|u| near the vortex center
(along the circle r = 5 ∆r/2) are shown in Figure 5-(b). The graphs of real
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Figure 3: The contour plots of |u| at different times for the variable diffusion
a(r, θ) = (r2 cos θ sin θ + 1) er.

and imaginary parts are exactly the functions − cos θ and sin θ, respectively.
Since we have

u

|u| = − cos θ + i sin θ = ei [(−1) θ+π], (16)

one can immediately conclude that the winding number of the stable vortex
is indeed m = −1.

4 Conclusions

In this paper, we present a fast iterative method for solving the variable
coefficient diffusion equation on a unit disk. The equation is written in
polar coordinates and is discretized by the standard centered difference ap-
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Figure 4: The time evolution of Ginzburg-Landau energy for the variable
diffusion case.
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Figure 5: (a) The vector fields of real and imaginary parts of u/|u| at T = 0.5
for the variable diffusion case. (b) The graphs of the real and imaginary parts
for u/|u| along the circle near the vortex center at T = 1. The real part is
denoted by the solid line and the imaginary part is denoted by the dash line.
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proximation under the grid arrangement by shifting half mesh away from
the origin so that the coordinate singularity can be easily handled without
pole conditions. The resultant matrix is symmetric positive definite so the
preconditioned conjugate gradient (PCG) method can be applied. Different
preconditioners have been tested for comparison, in particular, a fast direct
solver derived by the equation and semi-coarsening multigrid are shown to
be scalable preconditioners with the problem size. The present elliptic solver
has been applied to study the vortex dynamics of the Ginzburg-Landau equa-
tion with a variable diffusion coefficient. Meanwhile, the present numerical
scheme can be extended straightforwardly to the similar equation in spherical
coordinates and three-dimensional problems.
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