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中文摘要 

 

 

    蘋狄(Pyndiah)氏所發展的渦輪解碼演算法是乘積碼的基礎，此演算法適用於
任何以線性區塊碼構成的乘積碼。這個渦輪式解碼的乘積碼，現在通常被稱為渦

輪乘積碼 (TPC) 或是區塊渦輪碼 (BTC) ，有著與其他解碼法不同的優點如解
碼法簡單，快速收斂，高碼率 (code rate) ，以及非常低甚至沒有錯誤極限 (error 
floor)等。雖然其在瀑布區 (waterfall region)的表現不如傳統渦輪碼(turbo codes) 。 
 
    本計畫探討了結合區塊渦輪碼及正交分頻多工信號的可能性。我們將部分重
點放在涉及到主控了系統錯誤率表現之主要的接收機設計，亦即通道估測與解碼

演算法。我們檢測結合了重複估測及解碼近似的表現。至於傳送的波形設計上，

我們檢驗了交錯器 (interleaver) 的作用且提出一種新型的區塊渦輪碼，我們稱之
為平行串接乘積碼 (PCPC)。平行連鎖乘積碼有類似傳統渦輪碼的結構，然而是
用含資料部分的乘積碼所構成。我們也證明了，我們所採用的交錯器的確有助於

增加平行串接乘積碼之最小翰明距離。模擬的數值結果也告訴我們，與近似碼率

之對應的區塊渦輪碼相比，平行連鎖乘積碼的確有比較好的性能表現。 
 
關鍵詞：正交分頻多工，渦輪乘積碼，交錯器，通道估測。 



Abstract

A benchmark in the development of product code is the invention of the iterative

(turbo) decoding algorithm by Pyndiah. Pyndiah’s algorithm works for any product

code using linear block component codes. The turbo decoded product codes, now often

referred to as turbo product codes (TPC) or block turbo codes (BTC), have the distinct

merits of simple decoding, fast convergence, high code rate and very low (or no) error

floor although their performance at the waterfall region is not as impressive as that of

conventional turbo codes.

This report summarize our effort in the past year that explores the feasibility of

using BTC in conjunction with the orthogonal frequency division multiplexing (OFDM)

signals. We focus on the major receiver design concerns that dominate the error rate

performance of the system, namely, the channel estimation and decoding algorithm. We

examine the performance of a joint iterative channel estimation and decoding approach.

As for the transmitted waveform design, we check the impact of the interleaver and

present a new class of BTC that we refer to as parallel concatenated product codes

(PCPC). The PCPC has a structure similar to the conventional turbo code with the

component codes replaced by systematic product codes. Some of its algebraic properties

and related decoding issues are investigated. Numerical results indicate that it does

outperform its BTC counterpart with a comparable code rate.

Keyword : OFDM, TPC, interleaver, channel estimation.
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Chapter 1

Introduction

Since its invention in 1993, the turbo code [9] has revolutionized the field of error-

correcting codes. Over the years, we have come to realize that the extraordinary per-

formance offered by such a simple-looking encoding structure is brought about by the

efficient iterative decoding algorithm and the random-like interleaver. The iterative algo-

rithm provides a message-exchange mechanism that collects extrinsic information from

related samples to help enhancing the decision reliability. The interleaver makes sure

that the range of message exchange is as large as possible and that short cycles in the

associated bi-partie graph be eliminated or the number of these cycles be minimized.

The original turbo code uses two identical recursive systematic convolutional codes

as its component codes. The idea of using block codes as component codes was first

proposed by Pyndiah [2] who realized that a class of block codes called product codes

has inherent parallel concatenation feature with a simple block interleaver. Pyndiah

[2] then applied the concept of iterative (turbo) decoding to decode a product code.

To distinguish this approach from the classic turbo code, product codes using iterative

decoding scheme are referred to as block turbo codes (BTC) or turbo product codes

(TPC).

The report concentrates on the designs of some receiver baseband subsystems of an

orthogonal frequency division multiplexing (OFDM) system that employs a BTC. In
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particular, we consider the issues of channel estimation, tracking and BTC decoding.

Our approach follows the popular turbo paradigm, applying the turbo principle to BTC

decoding as well as channel estimation.

To employ turbo decoding, soft output must be generated by the constituent block

decoder. When the component codes are BCH or RS codes, to reduce decoding complex-

ity, instead of MAP algorithm, one might use the Chase decoder [7] in conjunction with

extended Euclid’s algorithm [5] to produce reliability estimates associated with hard-

decision decoded bits or symbols. Using this hybrid algorithm, iterative decoding of

product codes becomes possible although one can only expect suboptimal performance

and iterative decoding gain is more significant at high SNR region. On the other hand,

since the minimum distance of a typical BTC is usually much larger than that of a

classic turbo code, the associated error performance curve has a much lower error floor,

if it does exist.

Cyclic product codes were first introduced by Burton and Weldon in 1965 [1]. These

codes enjoy the implementation advantages of cyclic codes and, in addition, possess some

important structural properties:

1. Conditions are given which ensure that the product of two, three or arbitrarily

finite many cyclic codes is itself a cyclic code.

2. Cyclic product codes are shown to be capable of correcting of both bursts and

random errors.

3. The generator polynomial of the cyclic product code is derived and shown to be a

simple function of the generator polynomials of the constituent codes.

4. The minimum distance of the resulting code is the product of those of the con-

stituent codes.

In order to achieve efficient forced erasure decoders, Hirst et al. [3] re-order the Chase

algorithm’s repeated decodings such that the inherent computational redundancy is

2



greatly reduced without degrading performance. The result is a highly efficient Fast

Chase implementation.

Another key issue related to our investigation is that of channel estimation. We adopt

a model-based approach as it is more robust in time-varying fading channels and requires

less channel state information like the channel correlation matrix and the average signal-

to-noise ratio (SNR) per bit. A two-dimensional (2D) model-based channel estimation is

used in our receiver. The 2D model exploits the frequency and time domain correlation

so that better channel estimate is obtained. The channel estimation algorithm consists of

four steps. By dividing the time-frequency plane into sub-blocks, and with the received

samples at the pilot locations, the algorithm first estimates the coefficients associated

with a 2D surface model by employing least square (LS) fit on the pilots in each sub-

block. Once the model coefficients are known, the frequency responses at non-pilot

locations can then be computed.

To further enhance the performance of BTCs, we propose a new class of turbo-like

codes called parallel concatenated product codes. PCPC improves the minimum distance

property while retaining the merit of low decoding complexity of product codes. We

prove that using the Fibonacci interleaver does help increasing the minimum distance.

The regularity of the interleaver also reduces the implementation complexity and makes

parallel interleaving feasible. A decoding method based on modified Pyndiah algorithm

and a proper scheduling is suggested. Numerical examples indicate that the new PCPC

outperforms Pyndiah’s product code with comparable code rate.

In summary, this report investigates the feasibility and performance of a product

coded OFDM system with simple iterative joint channel estimation and decoding algo-

rithms. In chapter 2, we provide an elementary introduction to TPC, followed by a brief

discourse on the OFDM scheme in Chapter 3. The OFDM channel estimator and an it-

erative decoding algorithm used are presented in Chapter 4 where we also introduce the

helical interleaving scheme and explain its effectiveness. In Chapter 5, the class of of par-

3



allel concatenated product codes and related properties are presented. Related decoding

algorithm and its numerical performance examples are given. Finally, Chapter 6 draws

some concluding remarks and suggests a few research topics for further investigations.
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Chapter 2

Introduction to Turbo Product

Codes

This chapter provides some background material for the class of product codes, its

constituent codes and related decoding methods.

2.1 Product codes

The concept of product codes is very simple and relatively efficient for building

very long block codes by using two or more short block codes. Fig. 2.1 shows a typical

(two-dimensional) product coding scheme that arranges the information symbols in a

rectangular array and encodes each row and column individually by two linear block

codes C1 and C2. The resulting augmented rectangular array of Fig. 2.1 form a codeword

of the product code C1 ⊗ C2 with rows and columns being C1 and C2 codewords.

In summary, given two systematic linear block codes C1 and C2 with parameter

(n1, k1, δ1) and (n2, k2, δ2), the product code P = C1 ⊗ C2 is obtained ( see Fig.2.1 ) by

1. placing (k1 × k2) information bits in an array of k1 rows and k2 columns.

2. coding the k1 rows using code C2.

3. coding the n2 columns using code C1.
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The parameters of the product code P are thus given by n = n1 × n2, k = k1 × k2 and

δ = δ1 × δ2, and the code rate R is given by R = R1 ×R2, where Ri is the code rate of

code Ci.

The resulting code has a minimum distance equals to the product of the minimum

distances of the constituent codes. Therefore, one can build very long block codes

with large minimum Hamming distance by combining short codes with small minimum

Hamming distance. Note that each information symbol in the rectangular is encoded

by both C1 and C2 codes and is related to different sets of information symbols. Such

a encoding scheme is similar to that of classic turbo codes and, as a result, can be

iteratively (turbo) decoded. When a turbo-like decoder is used, the class of product

codes is referred to as block turbo code (BTC) or turbo product code (TPC).

In contrast to the classic convolutional turbo codes (CTC), BTC has the distinct

attractive feature that high rate and large minimum distance codes can be easily found.

There is no need of special interleaver design and it is not necessary to search for favor-

able puncture patterns. In case elementary linear codes such as Hamming or extended

Hamming codes are used as the constituent codes then the corresponding decoding com-

plexity is far less than that conventional CTC and the convergence rate is often faster.

Moreover, because of parallel independent encoding, the decoding procedure could be

carried out in parallel and high decoding throughput is readily realizable.

2.2 A brief review of BCH codes

Using binary BCH codes instead of Hamming codes gives us a more flexible range

of choices in code rate R, codeword length and minimum distance.

An (n, k, δ) binary BCH code has codeword length n, k information bits per code-

word, and minimum Hamming distance 2t+1 = δ, respectively. Its generator polynomial

g(x) of degree r = n − k is an irreducible factor of xn − 1, n = 2q − 1 for some q, with

t − 1 consecutive powers of a primitive element of GF(2q) as its zeros.
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Figure 2.1: A two-dimensional product code P = C1 ⊗ C2. (reprinted from [8])

2.2.1 Systematic encoder for BCH codes

Consider the the binary shift-register (SR) based BCH encoder shown in Fig. 2.2.

Let a k-symbol message block m = (m0,m1, . . . ,mk−1) be associated with the mes-

sage polynomial m(x) = m0 + m1x + · · · + mk−1x
k−1, and the n-symbol codeword

(c0, c1, . . . , cn−1) be associated with the codeword polynomial cm(x) = c0 + c1x + · · · +

cn−1x
n−1. Then a systematic encoding procedure can be described as follows.

1. Step 1. Multiply the message polynomial m(x) by xn−k.

2. Step 2. Divide the result of Step 1 by the generator polynomial g(x). Let p(x)

be the remainder. Polynomial division is performed through the use of a linear

feedback shift register (LFSR). It divides a(x) = a0 + a1x + · · · + an−1x
n−1 =

m0x
n−k + · · ·+ mk−1x

n−1 by g(x) = g0 + g1x + · · ·+ gr−1x
r−1 + xr and retains the

remainder p(x) = p0 + p1x + · · ·+ pr−1x
r−1. The symbols a0, a1, . . . , an−2, an−1 are

fed into the shift register one at a time in order of decreasing index. When the

last symbol (a0) has been fed into the rightmost SR cell, the SR cells will contain

the coefficients of the remainder polynomial.
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3. Step 3. Set c(x) = xn−km(x) − p(x). The code word output is thus given by

(cn−1, cn−2, . . . , c1, c0) = (mk−1,mk−2, · · · ,m0, pn−k−1, pc−k−2, · · · , p0).

Figure 2.2: Shift-register division of a(x) by g(x)

Fig. 2.3 shows a example of a (7,4,3) BCH code. The information bits is 1010 and

the output code word is 1010011.

2.2.2 Extended Euclidean algorithm

Let α1, α2, · · · , αδ−1 be the (δ − 1) roots of g(x), where α is a primitive nth root of

unity, and denote by r(x) the received polynomial associated with the received vector

R = (r0, r1, · · · , rn−1) = C + E, where E = (e0, e1, · · · , en−1) is the error vector whose

nonzero entries are at the ilth positions, l = 1, · · · , v, v ≤ t. We further define the

syndrome generating polynomial by S(x) =
∑

j Sjx
j, where Sj = r(αj) is the jth

syndrome, and the error locator polynomial by

Λ(x) =
v

∏

k=1

(1 − Xkx) = Λ0 + Λ1x + Λ2x
2 · · · + Λvx

v, (2.1)

where Xk = αik are error locations. Then one can show that

Λ(x)[1 + S(x)] ≡ Ω(x) ( modx2t+1) (2.2)

where Ω(x) is the error-evaluator polynomial of degree v−1. The above identity is called

the key equation for decoding BCH codes. Once we solve the key equation, finding Λ(x)

8



(a)


(b)


Figure 2.3: (a)Shift-register division of 1 + x + x4 + x6 by 1 + x + x3 (b)Shift-register

cell contents during division of 1 + x + x4 + x6 by 1 + x + x3

and Ω(x) that satisfy it, then the error locations can be found by solving Λ(x) (via the

so-called Chien Search) and the corresponding error magnitudes (for non-binary codes)

can be solved by using the so-called Forney’s algorithm which involves evaluating both

Λ(x) and Ω(x).

2.2.3 Decoding BCH codes

The Extended Euclidean algorithm is a simple (but not the most efficient) BCH/RS

decoding algorithm. It operates on two elements (â, b̂) from an Euclidean Domain E at

a time. Given the initial conditions r̂−1 = â, r̂0 = b̂, ŝ−1 = 1, ŝ0 = 0, t̂−1 = 0, t̂0 = 1, it

9



proceeds according to the following set of recursion relations.

r̂i = r̂i−2 − q̂ir̂i−1,

ŝi = ŝi−2 − q̂iŝi−1,

t̂i = t̂i−2 − q̂it̂i−1. (2.3)

where r̂i, ŝi, t̂i, q̂i are all elements of E. The algorithm terminates when the remainder

r̂n = 0. The remainder r̂n−1 is then the GCD of â and b̂. The recursion relations insure

that, at any given point in the algorithm, we have the relation

ŝiâ + t̂ib̂ = r̂i (2.4)

The reason why the Extended Euclidean Algorithm can be used to decoding BCH codes

can be readily answered by first noting that the key equation implies

Θ(x)x2t+1 + Λ(x)[1 + S(x)] = Ω(x) (2.5)

and if Ω′(x) is the GCD of the two polynomials x2t+1 and 1+S(x) then there exist Λ′(x)

and Θ′(x) such that

Θ′(x)x2t+1 + Λ′(x)[1 + S(x)] = Ω′(x) (2.6)

It can be proved that the error-evaluator polynomial Ω(x) and the error-locator poly-

nomial Λ(x) are proportional to Ω′(x) and Λ′(x), respectively. Hence one can apply

the Euclidean algorithm with the finite-degree polynomials over GF(2) as the Euclidean

Domain of concern to x2t+1 and 1 + S(x). The pair (tj, rj)
def
= (Λj(x), Ωj(x)) for some

proper j will then our solution. The particular solution that corresponds to the error

locator and magnitude polynomials is obtained when Ωj(x) has degree less than or equal

to that of Λj(x). The decoding steps is summarized in the following steps.

D1 Compute the syndromes Si, i = 1 ∼ 2t and form the syndrome polynomial S(x).

D2 Set the following initial conditions: r̂−1(x) = x2t+1, r̂0(x) = 1 + S(x), t̂−1(x) =

0, t̂0(x) = 1.
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D3 Using the extended algorithm, compute the successive remainders r̂i(x) and the

corresponding t̂i(x) until the following stopping condition is reached: deg[r̂i(x)] ≤ t.

D4 Find the roots of t̂i(x) = Λ(x), thus determining the error locations.

D5 Determine the magnitude of the errors.

Example 1. Suppose that we have received the vector r̃ = (1011011). The received

polynomial is then given by r̃(x) = 1+x+x3 +x4 +x5. Obviously. Applying the Extend

Euclidean Algorithm with the initial condition r̂−1(x) = x3 and r̂0(x) = 1 + S(x) =

1 + α3x + α5x2. Following the above five steps, we obtain Λ(x) = α5 + αx, and find its

root at α−3 (see Fig. 2.4). Since it is a binary code we can just reverse the polarity of

the error position r̃3, changing it back to 0.

Figure 2.4: Example of single error correction using Extended Euclidean algorithm

2.2.4 Iterative decoding of product codes

As suggested by Pyndiah, a product code can be iteratively (turbo) decoded. There are

a variety of soft-decision decoding algorithms for block codes. The Chase algorithm and

its variations offer a good balance and tradeoff between complexity and performance.

List-decoding often consists of two stages: (i) finding candidate codewords based on the

received samples and (ii) generating soft output. As in a turbo decoder, the soft output
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is then passed to the ensuing decoding round as the extrinsic (a priori) information. We

describe the decoding algorithm for a linear block code as follows.

2.2.4.1 Selecting candidate codewords

Suppose an (n, k, δ) linear block code C is BPSK-modulated and transmitted over an

additive white Gaussian noise (AWGN) channels. Denote by X = (x1, · · · , xl, · · · , xn)

and R = (r1, · · · , rl, · · · , rn) the transmitted codeword and received vector, where xl ∈

{+1,−1}. Then R = X + E, where the noise vector is E = (e1, e2, · · · , en) in which

ei are i.i.d. zero-mean Gaussian random variables with variance σ2. Denote by A =

(a1, · · · , al, · · · , an) the a priori information of the codeword bits where

al = ln
Pr{cl = +1}
Pr{cl = −1} . (2.7)

Following the spirit of Chase-II list decoding algorithm [7], we suggest the following

three-step algorithm

A1. Use R and A, if available, to obtain the hard decision vector Y = (y1, y2, · · · , yn) as

well as their reliability (extrinsic information). Determine the p = bδ/2c positions

associated with the least reliable binary elements of Y, where the reliability of yj

is given by Λ(xj) and is related to the log-likelihood ratio (LLR)

Λ(xj) = ln
Pr{rj|xj = +1}
Pr{rj|xj = −1} + aj =

2

σ2
rj + aj (2.8)

A2. Bit-flipping the most unreliable p positions on Y to form the set of 2p test patterns

Tq (0 ≤ q ≤ 2p − 1).

A3. Form test sequence Zq where zq
l = yl ⊕ tql and decode Zq using an algebraic (or

hard) decoder and add the decoded codeword Cq to subset Ω. Decision D =

(d1, d2, · · · , dn) of a row (or column) of the product code is then obtained by

applying decision rule:

12



D ∈ Ω is a local maximum likelihood codeword if

|R−D|2 ≤ |R−Ci|2 ∀ Ci ∈ Ω. (2.9)

where

|R−Ci|2 =
n

∑

l=1

(rl − ci
l)

2

2σ2
− ci

l

2
al (2.10)

is the metric between R and Ci.

2.2.4.2 Soft output generation

The reliability of decision dj about the transmitted symbol xj, given the observation

R, is

Λ′(xj) = ln

(

Pr{xj = +1|R}
Pr{xj = −1|R}

)

(2.11)

Let S+1
j ⊂ C be the set of codewords whose jth coordinate ci

j is +1 and S−1
j ⊂ C be

the set of codewords with −1 in their jth coordinate. Then we have

Pr{xj = +1|R} =
∑

Ci∈S+1
j

Pr{X = Ci|R} (2.12)

Pr{xj = −1|R} =
∑

Ci∈S−1
j

Pr{X = Ci|R}, (2.13)

and (2.11) becomes

Λ′(xj) = ln





∑

Ci∈S
+1
j

p{X=Ci|R}

∑

Ci∈S
−1
j

p{X=Ci|R}



 (2.14)

≈ ln





∑

Ci∈S
+1
j

∩Ω

p{X=Ci|R}

∑

Ci∈S
−1
j

∩Ω

p{X=Ci|R}



 (2.15)

≈ ln





max
Ci∈S

+1
j

∩Ω

p{X=Ci|R}

max
Ci∈S

−1
j

∩Ω

p{X=Ci|R}



 (2.16)
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At high SNRs, (2.16) can be approximated by

Λ′′(xj) = |R−C−1(j)|2 − |R−C+1(j)|2 (2.17)

where C+1(j) ∈ S+1
j ∩ Ω and C−1(j) ∈ S−1

j ∩ Ω are the codewords with the minimum

metric and one of C+1(j) and C−1(j) is D. Substituting (2.10) into (2.17), we obtain

Λ′′(xj) =
2rj

σ2
+ aj +

n
∑

l=1,l 6=j

(

2rl

σ2
+ al

)

c
+1(j)
l pl (2.18)

where

pl =

{

0, if c
+1(j)
l = c

−1(j)
l

1, if c
+1(j)
l 6= c

−1(j)
l

. (2.19)

If there is a competing codeword, the soft output corresponding to dj is

Λ′′(xj) =
2rj

σ2
+ aj + wj (2.20)

and the extrinsic information is

wj =
n

∑

l=1,l 6=j

(

2

σ2
rl + al

)

c
+1(j)
l pl. (2.21)

= Λ′′(xj) −
2rj

σ2
− aj (2.22)

Before we demonstrate the extrinsic information of position without competing code-

word, we define a coordinate set

V = { j | ∃ Ci ∈ Ω s.t. ci
j 6= dj}. (2.23)

Thus the mean value w of the extrinsic information wj, j ∈ V can be computed by

w =
1

|V |
∑

j∈V

|wj|. (2.24)

The extrinsic information for a position without competing codeword can be

wj = β × w, j 6∈ V, (2.25)

where β is a constant varying with iterations and will be given in the next section.

With the extrinsic information derived above, the iterative decoding can apply the

information as the a priori information of the next APP decoding run.
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2.3 Turbo decoding of product code

Let us consider the decoding of the rows and columns of a product code P transmit-

ted over a Gaussian channel by QPSK signaling. On receiving matrix [R] corresponding

to a transmitted codeword [X], the first decoder performs the soft decoding of the rows

(or columns) of P using as input matrix [R]. Soft-input decoding is performed using the

Chase algorithm and extrinsic information [W (2)] is computed using (2.22) or (2.25),

where index 2 indicates that we are considering the extrinsic information for the second

decoding of P which was computed during the first decoding of P . The soft input for

the decoding of the columns (or rows) at the second decoding of P is given by

[R(2)] = [R] + α(2)[W(2)] (2.26)

where α(2) is a scaling factor which takes into account the fact the standard deviation

of samples in matrix [R] and in matrix [W] are different (see [9] and [10]). Besides, this

scaling factor α is also used to reduce the effect of the extrinsic information in the soft

decoder in the first decoding steps when the BER is relatively high. It takes a small

value in the first decoding steps and increases as the BER tends to zero. The decoding

procedure described above is then generalized by cascading elementary decoders illus-

trated in Fig. 2.5. Several rules of thumb for turbo decoding product codes obtained

Figure 2.5: Block diagram of elementary block turbo decoder. (reprinted from [8])
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through numerical experiments are [8]

1. Test sequences: The number of test patterns is 16 and are generated by the four

least reliable bits (p = 4).

2. Weighting factor α: To reduce the dependency of α on the product code, the mean

absolute value of the extrinsic information |w| derived using (2.24) is normalized

to one. The evolution of α with the decoding number is

α(m) = [0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0]. (2.27)

3. Reliability factor β: To operate under optimal conditions, the reliability factor

should be determined as a function of the BER. For practical considerations, we

have fixed the evolution of β with the decoding step to the following values

β(m) = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0]. (2.28)

In the first decoding step β is set to 20% of the mean of the normalized extrinsic informa-

tion computed using (2.24) and is gradually increased to 100%. Note that experimental

results indicate no significant performance degradation if values of β is modified by

±10%.
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Chapter 3

Orthogonal Frequency Division

Multiplexing Modulation

OFDM is the effective transmission technology to combat frequency-selective fading.

By inserting a guard interval larger than expected maximum multipath delay to a reg-

ular OFDM symbol, such that the inter-symbol interference (ISI) caused by multipath

propagation can be eliminated in the receiving end by discarding the guard interval part.

An one-tap compensation in the frequency domain is all one needs to demodulate the

transmitted data. Of course, OFDM also has some shortcomings such as its sensitive to

frequency offset and phase distortion.

3.1 OFDM Basics

3.1.1 Transmitter and receiver

A frequency domain OFDM signal is shown as in Fig. 3.1. Each subcarrier can be

modulated by signals from different constellations such as BPSK, QPSK, 16-QAM etc.

Denoted by N , T , fk = k
T

and Xk the number of subcarriers, the carrier frequency, the

symbol duration and the modulated symbol at the kth subcarrier, where 0 ≤ k < N .
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We express an OFDM symbol within the interval [0.T ] as

s(t) =















N
2
−1

∑

k=−N
2

Xkφk(t) , 0 6 t 6 T

0 , otherwise

(3.1)

=





N
2
−1

∑

k=−N
2

Xkφk(t)



 uT (t), (3.2)

where φk(t) = 1√
T
ej2πfkt is the kth subcarrier and

u(t) =

{

1 , 0 6 t 6 T

0 , otherwise
(3.3)

is a time domain windowing function. Each OFDM symbol contains subcarriers that are

nonzero over a T -second interval. Hence, the spectrum of a single symbol is a convolution

of a group of Dirac pulses located at the subcarrier frequencies with the spectrum of a

square pulse of duration T seconds, sinc(πfT ), which is equal to zero for all frequencies

f that are an integer multiple of 1/T .

B


N carriers

f


Figure 3.1: An OFDM signal with N subcarriers and bandwidth B Hz. (reprinted from

[11])

Data transmitted over a multi-carrier channel can be arranged as a rectangular array
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shown in Fig. 3.2, which reminds us of a TPC codeword. For every symbol time, one

column of the modulated symbols {Xk} are sent.

Figure 3.2: A two-dimensional view of a multi-carrier signal; the inter-carrier separation

f0 = any integer multiple of 1
T
. (reprinted from [11])

A schematic structure of OFDM modulator and demodulator are plotted in Fig. 3.3.

Denoted by r(t) = s(t) + n(t) the received signal where n(t) is the complex additive

white Gaussian random process. Projecting r(t) into the jth subcarrier subspace

Yj = 〈r(t), phij(t)〉 =

∫ T

0

r(t)φ∗
j(t)dt. (3.4)

and ignoring n(t) for the moment, we then recover the frequency domain data

Yj =

∫ T

0

s(t)φ∗
j(t)dt =

1

T

N
2
−1

∑

k=−N
2

Xk

∫ T

0

ej2π
k−j

T
tdt = Xj. (3.5)

3.1.2 Implementation of OFDM system

Multiplexing N orthogonal subcarriers into an OFDM symbol can be realized by

taking N -point inverse discrete Fourier transform (IDFT) on a set of N modulation
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(a)


(b)


Figure 3.3: Structure of OFDM : (a)Modulator (b)Demodulator (reprinted from [11])

signals and making parallel-to-serial (P/S) and digital-to-analogous (D/A) conversions.

Demultiplexing in the receiving end can be analogously realized by discrete (fast) Fourier

transform (DFT) after sampling the received baseband waveform with a rate Rs =

1/Td = N/T . Using the fast algorithms of the transform pair, the required complex is

of order N
2
· log2 N .

Using the discrete-time signal model r[k] = s[k] + n[k] and neglecting the noise
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process, n[n] = 0, we have

s[n] = s(t)|t=nTd
=















1√
N

N
2
−1

∑

k=−N
2

Xke
j2π k

N
n 0 6 n 6 N − 1

0 otherwise

= IFFT {Xk} (3.6)

Yj = FFT {s[n]} =
1√
N

N−1
∑

n=0

s[n]e−j2π
j

N
n =

N
2
−1

∑

k=−N
2

Xkδ[k − j] = Xj (3.7)

3.2 Guard time and cyclic extension

Guard interval is introduced, as mentioned before, to eliminate ISI and oftentimes

its duration is about two to four times the root-mean-squared channel delay spread.

Inserting a silent (virtual subcarriers) guard time between two OFDM symbols results

in inter-carrier interference (ICI), induces crosstalks amongst different subcarriers, and

destroys the subcarrier orthogonality. The effect is illustrated in Fig. 3.4. In this

example, delayed version of subcarrier 2 causes ICI when the OFDM receiver tries to

demodulate subcarrier 1, because there is no integer number of cycles difference between

subcarriers 1 and 2. To avoid ICI, OFDM symbols are cyclically extended as shown in

Fig. 3.5. Although an OFDM receiver only receives the sum of all these component

signals, the figure gives separate component signals to illustrate the ISI effect. Suppose

the multipath delay is smaller than a guard interval, there are no phase transitions

during the DFT (or FFT) interval. Hence, an OFDM receiver “sees” the sum of pure

sine waves with different phase offsets. That is to say, the summation does not destroy

the orthogonality amongst subcarriers, it only introduces a different phase shift into each

subcarrier.

Let Ng be the guard interval length and denote the extended OFDM symbol ( a

regular OFDM symbol with its cyclic extension ) by s̃[n]. (3.2) will become

s̃[n] =















1√
N

N
2
−1

∑

k=−N
2

Xke
j2π k

N
(n−Ng) 0 6 n 6 N + Ng − 1

0 otherwise

(3.8)
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Figure 3.4: Effect of multipath with zero signal in the guard time; the delayed subcarrier

2 causes ICI on subcarrier 1 and vice versa. (reprinted from [11])

The receiver removes CP from r̃[n] before performing FFT demodulation.

3.3 Windowing

In the previous sections, we have described the basic OFDM system building blocks.

Since, as shown in Fig. 3.5.(a), each OFDM signal consists of a number of unfiltered

subcarriers and there are discontinuities from symbol to symbol, the out-of-band spec-

trum decreases rather slowly, following the sinc(·) envelop. Fig. 3.6 plots the spectra for

16, 64, and 256 subcarriers. We notice that as the number of subcarriers increases, the

corresponding out-of-band power decreases. This is because the sidelobe spacing of each

subcarrier has become smaller accordingly. Basic digital filter design theory tells us that

windowing is an effective means to reduce both the sidelobe hight and the out-of-band

power. It also results in smoother PSD. A popular window is the raised cosine window
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(a) 

(b) 

Figure 3.5: (a)The dotted curve is a delayed replica of the solid curve. (b)Cyclic prefix

(CP): A copy of the last part of OFDM signal is attached to the front of itself, a copy

of the first part of OFDM signal is attached to the back of itself. (reprinted from [11])

defined by

wT (t) =



































{0.5 + 0.5 cos(π + tπ/(βTs)) 0 6 t 6 βTs

1.0 βTs 6 t 6 Ts

0.5 + 0.5 cos((t − Ts)π/(βTs)) Ts 6 t 6 (1 + β)Ts

(3.9)

The symbol interval Ts is shorter than the total symbol duration because we allow

adjacent symbols to be partially overlapped in the roll-off region. The time structure of

the OFDM signal now looks like that given in Fig. 3.7 and can be expressed as

s(t) =
1√
T

wT (t)

N
2
−1

∑

k=−N
2

Xke
j2πfk(t−Tprefix) 0 6 t 6 (1 + β)Ts (3.10)

In summary, OFDM symbols are generated as follows:

O1 Nc input (modulation) values are padded with zeros to form an N input sample

vector and IFFT is performed on this vector.
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Figure 3.6: Power spectral density (PSD) without windowing for 16, 64, and 256 sub-

carriers. (reprinted from [11])

O2 The last Tprefix samples of the IFFT output are inserted at the start of the OFDM

symbol, and the first Tpostfix samples are appended at the end.

O3 The OFDM symbol obtained in [O2] is multiplied by a raised cosine window wT .
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Figure 3.7: An extended OFDM symbol with cyclic extension and windowing. Ts is the

symbol, T the FFT interval, TG the guard time, Tprefix the preguard interval, Tpostfix

the postguard interval, and β is the rolloff factor. (reprinted from [11])
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Chapter 4

A Product Code Based OFDM

System

This chapter considers a product code based OFDM system and the related chan-

nel estimation issue; the influence of imperfect channel estimation is considered. A

model-based approach [12] for channel estimation that exploits the correlation in both

frequency- and time-domain is used. The coefficients of model-based channel estimator

are obtained by least-squared (LS) fitting.

To further improve the receiver performance, an iterative procedure is introduce for

joint channel estimation and data detection. The tentative bit (symbol) decisions from

the channel decoder output are used as pilots to re-estimate the channel response and

the new channel estimates are used by the decoder to update its decoding decisions.

To begin with, we provide a short review of the model-based channel estimate.

4.1 Model-based multicarrier channel estimation

4.1.1 A mathematical model

Consider an OFDM system transmitting N̄ OFDM symbols which is composed of

M̄ parallel channels. Denoted by Xm̄,n̄ the symbol of the m̄th sub-channel at the n̄th

OFDM symbol, where 0 ≤ m̄ < M̄, 0 ≤ n̄ < N̄ . The correspondent received samples
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after FFT demodulator is

Ym̄n̄ = Hm̄n̄Xm̄n̄ + Nm̄n̄, (4.1)

where Nm̄n̄ = NI,m̄n̄ + iNQ,m̄n̄ is a zero-mean complex Gaussian random variable with in-

dependent in-phase and quadrature phase components and identical variance var(NI) =

var(NQ) = N0/2T , σ2
n

2
.

The channel response (CR) can in general be modelled as an LTI system

h(t) =

Lp
∑

j=1

hj(t)δ(t − τj(t)), (4.2)

where hj(t) and τj(t) remain constant during an extended symbol interval Ts without

ICI. Hence,

Hm̄n̄ =

Lp
∑

j=1

hj[n̄] exp

(

j2πm̄
τj[n̄]

T

)

(4.3)

represents the channel frequency response at the m̄th subcarrier during the n̄th symbol

interval.

Eq.(4.1) implies that, if the channel response, Hm̄n̄, is known, a maximum likelihood

(ML) detector would make its decision based on the statistic X̂m̄n̄ = Ym̄n̄/Hm̄n̄. When

the channel response is unknown, the receiver has to estimate the channel response Ĥm̄n̄.

Conventional approach calls for the use of a pilot structure like that given in Fig. 4.1

to assist channel estimation. Initial channel estimate based on pilots located at (m̄, n̄)

is obtained by an LS approach [4]

Ĥm̄n̄,LS =
Ym̄n̄

Xm̄n̄

= Hm̄n̄ +
Nm̄n̄

Xm̄n̄

= Hm̄n̄ + Vm̄n̄ (4.4)

where Vm̄n̄ is the error term due to the presence of Gaussian noise whose conditional

variance is given by E[|Vm̄n̄|2|Xm̄n̄] = 2σ2
n/|Xm̄n̄|2.

4.1.2 Regression model based approach

The discrete channel response (CR) Hm̄n̄ can be viewed as a samples version of

the 2-D continuous complex baseband fading process H(f, t); two typical examples of
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Data symbolPilot  symbol

time
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Figure 4.1: A typical pilot symbol distribution in the time-frequency plane of an OFDM

signal. (reprinted from [12])

local Hm̄n̄, obtained by computer simulation, are shown in Fig. 4.2. We first select

an operating block in the time-frequency plane in which N̄0 × M̄0 pilot symbols are

uniformly inserted at every rf sub-channel and every rt symbol; see Fig.4.1. Then the

receiver models the true sampled fading process Hm̄n̄ in this region by a quadrature

surface

F (m̄, n̄) = am̄2 + bm̄n̄ + cn̄2 + dm̄ + en̄ + f

= Hm̄n̄ + g(m̄, n̄) (4.5)

where g(m̄, n̄) represents the modeling error. For Rician or Rayleigh fading channels,

Hm̄n̄ is a complex Gaussian process, hence g(m̄, n̄) is also complex Gaussian-distributed.

The frequency-domain model of the received samples (4.1) implies that the ML estimates

of the coefficients (a, b, c, d, e, f) , cH are chosen such that

∑

(m̄,n̄)∈P
|Ym̄n̄ − F̂ (m̄, n̄)Xm̄n̄|2 =

∑

(m̄,n̄)∈P
|Xm̄n̄|2|Ĥm̄n̄,LS − F̂ (m̄, n̄)|2 (4.6)

is minimized, where F̂ (m̄, n̄) is the estimated quadrature surface. The set P in (4.6)
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Figure 4.2: Two typical OFDM channel responses. They are plotted in the same fig-

ure for the convenience of comparison. The vertical coordinate does not represent the

absolute magnitude of each CR surface. (reprinted from [12])

contains the pilot locations in the operating block (region)

P =

{

(m̄, n̄)

∣

∣

∣

∣

∣

m̄ = 0, rf , 2rf , · · · , (M̄0 − 1)rf

n̄ = 0, rt, 2rt, · · · , (N̄0 − 1)rt

}

. (4.7)

Rewriting (4.5) as F (m̄, n̄) = cHq, where qT
m̄n̄ , (m̄2, m̄n̄, n̄2, m̄, n̄, 1), we restate the

problem of finding the ML solution of (4.6) as solving

min
ĉ

∑

(m̄,n̄)∈P
|Ym̄n̄ − ĉHqm̄n̄Xm̄n̄|2 (4.8)

4.1.3 Channel estimation procedure

The model-based approach described above leads to the following 2-step channel esti-

mation procedure.

E1 Taking the derivative of (4.8) with respect to ĉ and invoking the definitions

Q ,
∑

(m̄,n̄)∈P
qm̄n̄q

T
m̄n̄|Xm̄n̄|2, P , Q−1 (4.9)
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b̂ ,
∑

(m̄,n̄)∈P
qm̄n̄Xm̄n̄Y ∗

m̄n̄

=
∑

(m̄,n̄)∈P
qm̄n̄|Xm̄n̄|2Ĥ∗

m̄n̄,LS (4.10)

where X∗
m̄n̄ is the complex conjugate of Xm̄n̄, we obtain the solution

ĉ = Pb̂ =
∑

(m̄,n̄)∈P
(Pqm̄n̄|Xm̄n̄|2)Ĥ∗

m̄n̄,LS (4.11)

E2 The CR estimate, Ĥm̄n̄, for the position (m̄, n̄) is

Ĥm̄n̄ = F̂ (m̄, n̄) = qT
m̄n̄ĉ

∗

= qT
m̄n̄

∑

(k,l)∈P
(Pqkl|Xkl|2)Ĥkl,LS (4.12)

The above algorithm can be modified to estimate the channel response of either a single-

carrier system or any sub-channel of a multicarrier system. This 1-D scheme models the

fading process by a single-variable regression function, e.g., F (n̄) = an̄2 + bn̄ + c. The

corresponding parameters are given by cH , (a, b, c), qT
n̄ , (n̄2, n̄, 1) and P = {n̄|n̄ =

0, rt, . . . , (N̄0 − 1) rt}, respectively.

4.2 Joint channel estimation and TPC decoding

The invention (or re-invention) of the turbo principle by Berrou et al. [10] has

far-reaching impacts on many fronts of science and engineering. In particular, we have

seen the proliferation of the iterative joint estimation and detection method in designing

various communication receivers. The block diagram shown in Fig. 4.3(b) is but one

such application example.

Depending on the operating scenario and environment, an OFDM channel might

has more sensitive frequency selectivity or time selectivity. In a static and small area

application like indoor wireless communications, the frequency responses at adjacent

subcarriers are not highly correlated and the coherent bandwidth is only a few subcarrier
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Figure 4.3: (a)A conventional OFDM system structure. (b)An OFDM system with

iterative receiver structure.

spacings while the coherent time is likely to be of the order of many symbol durations.

On the other hand, for cellular-like applications, we have to expect much smaller coherent

times. we shall consider both cases subsequently. Take (32, 26, 4)2 TPC as an example,

pilots are inserted as that given in Fig. 4.4 and the size of a modelling block is (1 × n̄)

(1-D channel estimation), namely, the pilot set P is separated into Pi (i = 0 ∼ 31),

where

P0 =

{

(m̄, n̄)

∣

∣

∣

∣

∣

m̄ = 0

n̄ = 0, 4, 8, 13, 17, 21

}

P1 =

{

(m̄, n̄)

∣

∣

∣

∣

∣

m̄ = 1

n̄ = 0, 4, 8, 13, 17, 21

}

...

P31 =

{

(m̄, n̄)

∣

∣

∣

∣

∣

m̄ = 31

n̄ = 0, 4, 8, 13, 17, 21

}

(4.13)

The CR estimates Ĥm̄n̄ obtained by (4.4) and (4.12) are used to give soft input for the

TPC decoder. After a few decoding iterations, the TPC decoder outputs hard decisions

which are then fed back to the channel estimator to carry out another channel estimation.
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Figure 4.4: A typical pilot arrangement in the time-frequency plane.

In a new channel estimation round, the channel estimation algorithm uses both original

pilots and pseudo-pilots (the decisions of the TPC decoder).

4.3 Double helical interleaver

Double helical interleaver can be inserted between the channel encoder and the

OFDM modulator, permuting TPC codewords by a before OFDM modulation, to reduce

the influence of long deep fade and decorrelate the channel effects on each row and column

of a TPC codeword. The receiver permutes the received samples with the reverse double

helical mapping and then forwards the permuted samples to the TPC decoder.

4.3.1 Structure of double helical interleaver

The double helical interleaver (DHI) can be viewed as a 2D interleaver that permutes

an 2D array. For convenience, we number the entries of an nm̄ × nn̄ 2D array via rows

and columns such that the position in the ith row of the jth column (i, j) is indexed by

j + i × nn̄. Then a DHI permute the ith entry into the jth entry by the following two
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steps:

j′ = i(nn̄ + 1) (mod nn̄nm̄), i = {0, 1, 2, . . . , nn̄nm̄ − 1}, (4.14)

j = j′(nm̄ + 1) (mod nn̄nm̄), j ′ = {0, 1, 2, . . . , nn̄nm̄ − 1}, (4.15)

Fig. 4.5(a) and (b) give an example of the above two DHI processing steps. Fig. 4.5(a)

shows the first round of DHI process using (4.14). Entries 0 to 63 are read into the

diagonal row, the nearest lower diagonal-parallel (LDP) row consists of entries 64 to

126, and the next symbol is read into upper right corner of farthest upper diagonal-

parallel (UDP) row, followed by the row just below the previous LDP row and then

one below the previous UDP row. The process continues, alternating between lower

and upper diagonal-parallel rows, until the last entry has been filled. The second DHI

step follows an order which is “complementary” to the first step. As illustrated in Fig.

4.5(b), it starts at the diagonal row, wrapped around to the nearest UDP row then to

the farthest LDP row, followed by the row just above the previous UDP row, ... etc.

The process continues, alternating between UDP and LDP rows, until all entries in the

array are filled.

4.4 Simulation results

When the double helical interleaver is used in the TPC coded OFDM system of Fig.

4.3(b) as the channel interleaver, we have the system shown in Fig. 4.6. As mentioned

above, the OFDM outputs are deinterleaved before TPC decoding commences and the

decoded hard decisions are sent back to the channel estimator via the double helical

interleaver for iterative channel estimation.

Numerical examples presented in this section assume that the TPC used is composed

of two extended (32, 26, 4) BCH codes which is the same as the extended Hamming code

and the code rate is 0.5625. We use the parameter p = 4 and Proakis C five paths

channel model [14] with power profile {0.227, 0.460, 0.688, 0.460, 0.227} at delays equals
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Figure 4.5: Double helical interleaving of (64, 57, 4) × (64, 57, 4) TPC

to {0, T, 2T, 3T, 4T}. Jakes’ model [13] is used to generate independent fading processes

associated with each path.

The effectiveness of helical interleaving on the BER performance is demonstrated in

Fig. 4.7, assuming fmT = 0.0001, where fm is the maximum doppler shift and T is

the sample period. The dashed-curves represent the performance of the system without

channel interleaver and the solid curves represent that of the system with the double

helical interleaver. The inclusion of a helical interleaver gives a 3 dB performance gain

at BER=10−5. The slope of the performance curve is sharper because the interleaver

de-correlates the time and frequency correlations of the slow fading process; see Fig. 4.8.

Fig. 4.8 plots the time-frequency channel response without (a) and with (b) the DHI.

It is clear that the channel response associated with different BCH codewords and code

bits are less correlated after interleaving.

In general, a higher modelling order provides more accurate channel description

at the cost of larger noise-induced variance as more parameters are involved in the

estimation process. At high SNRs the perturbation caused by noise is negligible hence
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Figure 4.6: A block diagram of a double helical interleaved OFDM system with iterative

joint channel estimation and TPC decoding.

higher-order estimates are preferred if complexity is not of high concern. When SNR is

low, however, one would rather use a lower-order estimate as the received vector(s) is

corrupted. The choice of the channel model order also depends on the channel dynamic

and the modelling block size. For slow fading channels or small modelling blocks, a

lower-order estimate is a better choice while for other scenarios, one might consider

higher-order estimates. Hence, for a particular channel condition (SNR and coherent

time/bandwidth) and modelling block size, there always exists an optimal modelling

order.

Fig. 4.9 plots the system performance in a fast-fading channel (fmT = 0.001). The

system performance for this channel is better than that in the same channel with smaller

Doppler-time product fmT = 0.0001. When perfect channel estimation is available, it

gives more than 5 dB improvement at BER=10−5 without DHI and more than 4 dB

improvement at BER=10−5 with DHI. For such a fast-fading channel, the first-order

model is clearly not sufficient to characterize the channel response. A higher-order

model is needed and the simulation results indicate that a 3rd-order model yields the

best performance.

At high SNRs, modelling error dominates the performance of the channel estimator

[15] and the performance curves shown in Fig. 4.9 suggest that the BER performance

is bounded at approximately 2 × 10−5 and 5 × 10−5 for the 3rd-order and 4th-order
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Figure 4.7: Performance of DHI-permuted system in a fading channel with fmT =

0.0001.

channel estimators when there is no channel interleaving. With the DHI in place, both

the performance and the corresponding bounds are improved–from 5× 10−5 to 3× 10−6

for the 4th-order channel estimator.

Pilot planning influences the performance of a system using pilot-assisted synchro-

nization and channel estimation. The proposed system uses polynomials to model the

true CR. Such a model tends to become less reliable when extrapolating beyond the

pilot distribution boundary. For a given time-frequency block (or a time or frequency

interval) within which pilots are inserted, the estimated CR tends to be less reliable in

places close to the block or interval boundary. One way to remedy such a shortcoming

is to place pilots in the modelling block boundary. The following equations, (4.16) and

(4.17), define two pilot patterns Pa(i) and Pb(i). The former pattern has pilots on its
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Figure 4.8: (a) Time-frequency channel response with fmT = 0.0001; (b) Channel re-

sponse with DHI permutation.

modelling block edges but not the latter.

Pa(i) =

{

(m̄, n̄)

∣

∣

∣

∣

∣

m̄ = i

n̄ = 0, 4, 8, 13, 17, 21

}

. i = 0, 1, . . . , 31 (4.16)

Pb(i) =

{

(m̄, n̄)

∣

∣

∣

∣

∣

m̄ = i

n̄ = 2, 5, 9, 13, 16, 19

}

. i = 0, 1, . . . , 31 (4.17)

Fig. 4.11 compares the BER performance of the above two pilot patterns. The former

pilot pattern results in 0.5 and 4 dB gains at BER=10−4 when 3rd-order and 4th-

order models are used. To validate our claim that pilot pattern does affect the system

performance and to examine the relation between model order and channel dynamic,

we plots CRs of the two pilot patterns of the 3rd-order channel estimate (i.e., the one

using a degree-3 polynomial channel model) and the true CR (marked by solid stars) in

Fig. 4.12. Fig. 4.13 is similar to Fig. 4.12 except that 4th-order model is used. The

square and cross markers on both figures represent CR estimates using two different

pilot patterns. It can be seen that high modelling order tends to incur larger estimation

errors at positions close to the edge. Using a pilot pattern with pilots in the boundary

positions does help reducing the estimation error.

Finally, in Fig. 4.14 we plot the BER performance when the receiver employs joint

iterative channel estimation and TPC decoding. A 3rd-order channel estimator is used
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Figure 4.9: Time-frequency response of the Proakis C five-path fading channel with

fmT = 0.001.

and both two- and four-iteration detection are considered. The performance gain with

respect to the no-iteration receiver is about 1.0 dB at BER = 10−4 when two-iteration

is used and is increased by another 0.3 dB with a four-iteration receiver. As expected,

iterative channel estimation does enhances the system performance, bringing about per-

formance closer to that of the ideal receiver with perfect channel estimate.
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Chapter 5

Parallel Concatenated Product

Codes

We extend the concept of Pyndiah’s block turbo codes and propose a new class of

codes based on product codes called parallel concatenated product codes whose structure

is similar to that of turbo codes [9], replacing the constituent convolutional codes in a

turbo code by product codes. This new class of codes provides more flexible choices of

code rates and component codes. When simple systematic product codes are used as

component codes, the corresponding decoding complexity remains relatively low and the

achievable performance outperforms that of a turbo product code with comparable rate

at high SNR.

The interleaver we use is the Fibonacci interleaver. Besides its simplicity in imple-

mentation, we prove that such an interleaver guarantees that the resulting PCPC has

a minimum distance larger than that of its constituent product codes if a proper code

length is selected.

5.1 Encoder

The structure of parallel concatenated product codes (PCPC) is shown in Fig. 5.1

in which “TPC encoder” is the encoder of a product code given in Fig. 1. A codeword
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Figure 5.1: The structure of the PCPC encoder.

consists of the product codeword of the upper branch and the parity part of the lower

branch output. The only interleaver considered here is the Fibonacci interleaver.

5.2 Decoder

The decoder consists of four a posteriori probability (APP) component decoders,

each is responsible for decoding a component block code. Fig. 5.2 depicts the structure

of a component decoder which is similar to that presented in [8]. Denote by [R] the

receiving matrix and by [Wt(m)] the output extrinsic information matrix of the tth APP

decoder at the end of the mth APP decoding round. The a priori information matrix

given at input of the tth APP decoder is

Wsum(m) =
∑

l 6=t

Wl(m). (5.1)

The message passing operations among these four APP decoders is shown in Fig.

5.3, where I and P are extrinsic information corresponding to information bits and

parity check bits, respectively. A complete iteration follows the APP decoding schedule:

APP0 → APP1 → APP2 → APP3. Each APP decoder also sends related extrinsic

information to the other two decoders that do not sit next to it in the schedule. Decoding

of a component TPC usually converges after 8 APP decoding rounds but a PCPC may

takes an average of 16 APP decoding rounds to converge.
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Figure 5.2: Block diagram of elementary APP decoder APPt‘.

Similar to [8], the choice of the weighting factor α and reliability factor β is very

critical in determining the performance. The sets of α and β we used for different

decoding rounds are given by

α(m) = [0.0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0]. (5.2)

β(m) = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0]. (5.3)

and

α(m) = [0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,

0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 1.0]. (5.4)

β(m) = [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9, 1.0]. (5.5)

5.3 Fibonacci interleaver

The position of each bit in the (k1 × k2) information array is represented by (̄i, j̄),

where 0 ≤ ī < k1 and 0 ≤ j̄ < k2. Using the definition |W |Z = W (mod) Z, the

Fibonacci interleaver is characterized by the permutation rule

(̄i, j̄) → (|̄i + j̄|k1
, ||̄i + j̄|k1

+ j̄|k2
). (5.6)
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Figure 5.3: An flow chart showing the message-passing of various component APP

decoders and related decoding schedule.

For a product code with extended Hamming codes as component codes, a minimum-

weight codeword has nonzero entries at the same locations of some four nonzero-weight

rows and columns within the information array, i.e., the parity part of the product

codeword has weight 0. The basic requirement of the interleaver used in a PCPC is to

make sure the interleaved information array will not contain such a 4× 4 all-1 subarray.

The Fibonacci interleaver does possess such a desired property. In particular, one can

show that

Lemma 1. A PCPC using (n1, k1, 4)× (n2, k2, 4) product codes as constituent codes has

a minimum Hamming distance greater than 16 if k1 or k2 is not a multiple of 4.

Proof. Since each component block code of a constituent product code has minimum

distance 4, we use a 4 × 4 matrix called minimum-weight error event array to represent

the nonzero positions of a minimum weight product codeword. As it is possible that all

entries of this matrix lie within the information array of a product codeword, we want

the interleaver to guarantee that the permuted information array will not produce an

all-zero parity part.

Without loss of generosity, let the nonzero positions be at (j̄, j̄ + g1, j̄ + g2, j̄ + g3)
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for four columns and (̄i, ī + h1, ī + h2, ī + h3) for four rows, where 0 < h1 < h2 < h3 < k1

and 0 < g1 < g2 < g3 < k2. We have the error-position array [γw,z]4×4 denoted by















(̄i, j̄) · · · · · · (̄i, j̄ + g3)
...

. . .
...

...
. . .

...

(̄i + h3, j̄) · · · · · · (̄i + h3, j̄ + g3)















(5.7)

where 1 ≤ w, z ≤ 4, γw,z = (̄i + uw, j̄ + vz), u = (u1, u2, u3, u4) = (0, h1, h2, h3) and

v = (v1, v2, v3, v4) = (0, g1, g2, g3).

After Fibonacci interleaving, the positions will be permuted to

γ̃w,z = (|̄i + uw + j̄ + vz|k1
, ||̄i + uw + j̄ + vz|k1

+ j̄ + vz|k2
).

which can be decomposed as

γ̃w,z = (|̄i + j̄|k1
, ||̄i + j̄|k1

+ j̄|k2
)

⊕

k1×k2

(|uw + vz|k1
, ||uw + vz|k1

+ vz|k2
),

= γ̇w,z

⊕

k1×k2

γ̈w,z.

where
⊕

k1×k2
represents the operation that takes module k1 and k2 on the first and the

second entries, respectively. Because all entries of the array [γ̇w,z]4×4 are all the same,

[γ̃w,z]4×4 does not form a matrix with all entries forming a 4 by 4 position array only if

[γ̈w,z]4×4 does not. Therefore, we only need to consider an error-position array

[γ̈w,z]4×4 = [|uw + vz|k1
, ||uw + vz|k1

+ vz|k2
]4×4 ,

= [γ̂w,z, γ̌w,z]4×4 .

where γ̂w,z and γ̌w,z represents the rows and columns of this position array, respectively.

As we know, the array [γ̈w,z]4×4 will form a 4×4 position array without generating parity

bits only if there are four different kinds of values in rows or columns. Therefore, we
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firstly consider an array of the form

[γ̂w,z]4×4 =












|0|k1
|g1|k1

|g2|k1
|g3|k1

|h1|k1
|h1 + g1|k1

|h1 + g2|k1
|h1 + g3|k1

|h2|k1
|h2 + g1|k1

|h2 + g2|k1
|h2 + g3|k1

|h3|k1
|h3 + g1|k1

|h3 + g2|k1
|h3 + g3|k1













.

If these 16 positions are permuted to the same four rows 0, g1, g2, g3, then h1, h2, h3

should be moved to g1, g2, g3. If h1 is moved to g2 or g3, either h2 or h3 should be

mapped to g1, which is obviously a contradiction. Therefore, we have h1 = g1. If h2 is

mapped to g3 then h3 should be mapped to g2, which is not possible, therefore, h2 = g2

and h3 = g3 and the resulting array becomes

[γ̂w,z]4×4 =












|0|k1
|g1|k1

|g2|k1
|g3|k1

|g1|k1
|2g1|k1

|g1 + g2|k1
|g1 + g3|k1

|g2|k1
|g2 + g1|k1

|2g2|k1
|g2 + g3|k1

|g3|k1
|g3 + g1|k1

|g3 + g2|k1
|2g3|k1













.

If γ̂w,w 6= 0 for w = 2, 3, 4, then there are three entries γ̂w,z = 0, w 6= z, 0 < w, z ≤ 4,

which again is a contradiction. Therefore, at least one of γ̂w,w is 0 for w = 2, 3, 4. We

now proceed to discuss these three cases.

1. |2g1|k1
= 0 : g1 = k1

2
implies g1 + g2 6= 0, g1 + g3 6= 0. Thus g2 + g3 must be equal

to 0 but then we have k1 > g3 > g2 > g1 = k1

2
, a contradiction.

2. |g2|k1
= 0 : g2 = k1

2
implies g2 + g3 6= 0, g1 + g2 6= 0 and g1 + g3 = 0. Therefore

v = (0, g1,
k1

2
, k1 − g1) and [γ̂w,z]4×4 becomes













0 g1
k1

2
k1 − g1

g1 2g1 g1 + k1

2
0

k1

2
g1 + k1

2
0 k1

2
− g1

k1 − g1 0 k1

2
− g1 −2g1













. (5.8)

Because there should be four entries equal to “ k1

2
”, 2g1 and −2g1 are equal to “k1

2
”

and g1 = k1

4
, hence v = (0, k1

4
, k1

2
, 3k1

4
).
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3. |2g3|k1
= 0 : g3 = k1

2
implies g1 + g3 6= 0, g2 + g3 6= 0, which forces g1 + g2 to be

equal to 0 but then we have the contradictory result, 0 < g1 < g2 < g3 = k1

2
.

Next let us consider the sixteen values of the columns error position array [γ̌w,z]4×4 =

[||vw + vz|k1
+ vz|k2

]4×4. By substituting v = (0, k1

4
, k1

2
, 3k1

4
) into the array, we have













0 |k1

2
|k2

|k1|k2
|3k1

2
|k2

|k1

4
|k2

|3k1

4
|k2

|5k1

4
|k2

|3k1

4
|k2

|k1

2
|k2

|k1|k2
|k1

2
|k2

|k1|k2

|3k1

4
|k2

|k1

4
|k2

|3k1

4
|k2

|5k1

4
|k2













. (5.9)

There are four “| 3k1

4
|k2

”, three “|k1|k2
”, three ”|k1

2
|k2

”, two “|1k1

4
|k2

”, two “|5k1

4
|k2

”, one

“|6k1

4
|k2

” and one “0” in these entries. Because only four kinds of values are allowed in

these entries and | 1k1

4
|k2

, |5k1

4
|k2

and |6k1

4
|k2

can not be “0”, the remaining situations are

1. |k1|k2
= 0 : k1 = l × k2, l ∈ Z. 0, | lk2

4
|k2

, | lk2

2
|k2

, |3lk2

4
|k2

should be different and it

implies l is odd.

2. |k1

2
|k2

= 0 : k1 = 2l × k2, l ∈ Z. This implies |k1

4
|k2

= |3k1

4
|k2

and contradicts.

However, either k1 or k2 is not a multiple of 4 and there is no 4 × 4 array resulting in

the PCPC codeword weight of 16.

Employing an analogous argument we can also prove

Lemma 2. A PCPC using (n1, k1, 4) × (n2, k2, 4) product codes as constituent codes

cannot have a minimum Hamming distance equals to 17, 18 or 19.

Lemmas 1 and 2 implies

Theorem 1. A PCPC using (n1, k1, 4) × (n2, k2, 4) product codes as constituent codes

has a minimum Hamming distance on less than 20 if k1 or k2 is not a multiple of 4.
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5.4 Simulation results

We give computer-simulated performance of two PCPCs. The first PCPC is based

on (32, 26, 4) extended Hamming codes and is denoted by (32, 26, 4)4. The second one is

build on the product code using the (64, 57, 4) and (16, 11, 4) extended Hamming code as

component code, hence it is denoted by (64, 57, 4)2 × (16, 11, 4)2. These two codes have

code rates, 262/[2(322) − 262] = .493, (57 × 11)/[2(64 × 16) − (57 × 11)] = .441, which

are comparable to that of the (16, 11, 4)2 product code which is based on the (16, 11, 4)

extended Hamming code.

For fair comparison, we define a decoding round as one-pass decoding of a product

code APPi → APPi+1. Thus, a decoding iteration of PCPC needs two consecutive

decoding rounds. The performance curves shown in Fig. 5.4 include those obtained by

2 and 4 decoding iterations of the (32, 26, 4)4 PCPC and that by 4 decoding rounds of

the (16, 11, 4)2 product code. The performance of the (32, 26, 4)4 PCPC with 4 decoding

iterations is superior to that with 2 decoding iterations by 0.5 dB at BER=10−5. The

(32, 26, 4)4 PCPC with 4 decoding iterations also outperforms the (16, 11, 4)2 TPC with

4 decoding iterations by 0.5 dB at the BER=10−5. The performance gain improves if

we are interested in lower BER performance. For (16, 11, 4)2 TPC, performance im-

provement becomes negligible when the number of decoding iterations is greater than

4. The PCPCs, however, require longer convergence times. We also find that with the

same decoding iterations, the (64, 57, 4)2×(16, 11, 4)2 PCPC outperforms the (32, 26, 4)4

PCPC by 0.2 dB.
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Figure 5.4: Bit error rate performance of two PCPCs and a TPC.
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Chapter 6

Conclusion

We study the architecture and performance of product-coded OFDM systems over

frequency selective fading channels. Joint channel estimation and TPC decoding al-

gorithms are proposed to enhance the receiver performance. Model-based approach is

used for channel estimation and the issues of pilot distribution and modelling order

are addressed. We find that it is important to place pilots on the edge of each mod-

elling block and the modelling order should match both the channel dynamic (coherent

time/bandwidth) and the modelling block size.

To further decorrelate the frequency- and time-selective fading effect, the inclusion

of an additional interleaver–the double helical interleaver–has proved to be very fruitful,

bringing about performance gain of 3-5 dB.

We also propose a new product code based system–the PCPC systems–one that

replace the recursive systematic convolutional codes in a turbo encoder by systematic

product codes. Such a code offers rate flexibility and code extension capability. With

proper selections on the code parameters and interleaver, the PCPC system can offer an

outstanding performance with moderate decoding complexity.

The PCPC code is suitable for ARQ system as well though we do not have time

to look into the associated design and performance. Although we have used an inner

loop/outer loop decoding schedule, an optimal schedule remains unknown and further
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studies are called for. The basic minimum distance low bound of a PCPC using the

Fibonacci interleaver is established but the exact minimum distance has not been found

and whether the Fibonacci interleaver is the best choice remains unanswered.

Moreover, we believe that the structure of the interleaver and the product code con-

figurations have a very close relationship. Current product code has a configuration

similar to a block interleaver, which does not match the channel’s time-frequency re-

sponse. A near optimal design should try to match the above system design parameters

(interleaver structure, code and OFDM arrangements) with the channel response.
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