
行政院國家科學委員會專題研究計畫 期中進度報告

具有動態資源管理之高效能叢集式資訊檢索系統設計(2/3)

計畫類別：個別型計畫

計畫編號：NSC93-2213-E-009-025-

執行期間：93年08月01日至94年07月31日

執行單位：國立交通大學資訊工程學系(所)

計畫主持人：單智君

共同主持人：鍾崇斌

計畫參與人員：鄭哲聖

報告類型：精簡報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 94年5月26日

中文摘要

為了服務網路上每秒成千上萬個的使用者需求，資訊檢索系統需要索引結構來加速資料的

搜尋。這個報告針對目前最熱門的索引結構─轉置檔案，提出一個查詢處理時間最佳化的

方法。在轉置檔案中，每一個字彙都有一個相對應的文件編號串列(稱為轉置串列)來指示
那一個文件包含這個字彙。壓縮轉置串列可以減少資訊檢索系統在查詢資料時所需的磁碟

讀取時間並大幅改善資訊檢索系統的查詢速度。我們觀察到透過指派合適的編號給文件可

以讓轉置串列在使用相同的壓縮方法下被壓縮的更好，並提升查詢處理的速度。在這個報

告中，我們提出一個新的演算法，稱為 Partition-based document identifier assignment
(PBDIA) algorithm，來為文件產生合適的編號。這個演算法可以有效率地指派連續的編號
給那些包含有經常被查詢的字彙之文件，使得經查被查詢的字彙之轉置串列可以被壓縮得

更好。實驗顯示我們所提的 PBDIA演算法可以有效縮短查詢處理時間，而對於長查詢(long
queries)與平行資訊檢索(parallel IR)更有明顯的好處。我們相信所提出的演算法可以應用
於高效能與低成本的資訊檢索系統設計。
關鍵字: 轉置索引, 轉置檔案壓縮, 查詢處理, 文件編號指派, d-gap技術

英文摘要

Compressing an inverted file can greatly improve query performance of an information retrieval
system (IRS) by reducing disk I/Os. We observe that a good document identifier assignment (DIA)
can make the document identifiers in the posting lists more clustered, and result in better
compression as well as shorter query processing time. In this paper, we tackle the NP-complete
problem of finding an optimal DIA to minimize the average query processing time in an IRS when
the probability distribution of query terms is given. We indicate that the greedy nearest neighbor
(Greedy-NN) algorithm can provide excellent performance for this problem. However, the
Greedy-NN algorithm is inappropriate if used in large-scale IRSes, due to its high complexity
O(N2×n), where N denotes the number of documents and n denotes the number of distinct terms. In
real-world IRSes, the distribution of query terms is skewed. Based on this fact, we propose a fast
O(N×n) heuristic, called partition-based document identifier assignment (PBDIA) algorithm,
which can efficiently assign consecutive document identifiers to those documents containing
frequently used query terms, and improve compression efficiency of the posting lists for those
terms. This can result in reduced query processing time. The experimental results show that the
PBDIA algorithm can yield a competitive performance versus the Greedy-NN for the DIA problem,
and that this optimization problem has significant advantages for both long queries and parallel
information retrieval (IR).
Keywords: inverted index, inverted file compression, query evaluation, document identifier
assignment, d-gap technique

報告內容： (Accepted by Information Processing & Management)

1. Introduction
Information retrieval systems (IRSes) that are wildly used in many applications, such as

search engines, digital libraries, genomic sequence analyses, etc. (Kobayashi & Takeda 2000;
Williams & Zobel 2002), are overwhelmed by the explosion of data. To efficiently search vast
amounts of data, an inverted file is used to evaluate queries for modern large-scale IRSes due to its
quick response time, high compression efficiency, scalability, and support for various search
techniques (Witten et al. 1999; Zobel et al. 1998). An inverted file contains, for each distinct term
in the collection, a list (called a posting list or synonymously an inverted list) of the identifiers of
the documents containing that term. A query consists of keyword terms. To retrieve information,
the query evaluation engine reads and decompresses the posting lists for the terms involved in the
query, and then merges (intersection, union, or difference) corresponding posting lists to obtain a
candidate set of relevant documents.

Compressing an inverted file can greatly increase query throughput (Zobel & Moffat 1995;
Williams & Zobel 1999). This is because the total time of transferring a compressed posting list
and subsequently decompressing it is potentially much less than that of transferring an
uncompressed posting list. The document identifiers in a posting list are usually stored in
ascending order. By using the popular d-gap compression approach (Witten et al. 1999; Moffat &
Zobel 1992), efficient compression of an inverted file can be achieved. In addition, we observe
that the d-gap compression approach can result in good compression if the document identifiers in
the posting lists are clustered.

The query processing time in a large-scale IRS is dominated by the time needed to read and
decompress the posting lists for the terms involved in the query (Moffat & Zobel 1996), and we
observe that the query processing time grows with the total encoded size of the corresponding
posting lists. This is because the disk transfer rate is near constant, and the decoding processes of
most encoding methods used in the d-gap compression approach are on a bit-by-bit basis. If we
can reduce the total encoded size of the corresponding posting lists without increasing
decompression times, a shorter query processing time can be obtained.

A document identifier assignment (DIA) can make the document identifiers in the posting lists
evenly distributed, or clustered. Clustered document identifiers generally can improve the
compression efficiency of the d-gap compression approach without increasing the complexity of
decoding process, hence reduce the query processing time. In this paper, we consider the problem
of finding an optimal DIA to minimize the average query processing time in an IRS when the
probability distribution of query terms is given. The DIA problem, that is known to be
NP-complete via a reduction to the rectilinear traveling salesman problem (TSP), is a
generalization of the problems solved by Olken & Rotem (1986), Shieh et al. (2003), and Gelbukh
et al. (2003). Their research results showed that this kind of optimization problem can be

effectively solved by the well-known TSP heuristic algorithms. The greedy nearest neighbor
(Greedy-NN) algorithm performs the best on average, but its high complexity discourages its use
in modern large-scale IRSes.

In this paper, we propose a fast heuristic, called partition-based document identifier
assignment (PBDIA) algorithm, to find a good DIA that can make the document identifiers in the
posting lists for frequently used query terms more clustered. This can greatly improve the
compression efficiency of the posting lists for frequently used query terms. Where the probability
distribution of query terms is skewed, as is the typical case in a real-world IRS, the experimental
results show that the PBDIA algorithm can yield a competitive performance versus the Greedy-NN
for the DIA problem. The experimental results also show that the DIA problem has significant
advantages for both long queries and parallel information retrieval (IR).

The remainder of this paper is organized as follows. Section 2 describes the inverted index
and explains why a DIA can affect the storage space required and change query performance.
Section 3 derives a cost model for the DIA problem, and presents how to use the well-known TSP
heuristic algorithms to solve this optimization problem. In Section 4, we propose a fast PBDIA
algorithm. We show the experimental results in Section 5. Finally, Section 6 presents our
conclusion.
2. General Framework

An inverted index consists of an index file and an inverted file. An index file is a set of
records, each containing a keyword term t and a pointer to the posting list for term t. An inverted
file contains, for each distinct term t in the collection, a posting list of the form

ILt =<id1, id2, …, idft>,
where idi is the identifier of the document that contains t, and frequency ft is the number of
documents in which t appears. The document identifiers are within the range 1...N, where N is the
number of documents in the indexed collection. In a large document collection, posting lists are
usually compressed, and decompression of posting lists is hence required during query processing.

Zipf (1949) observed that the set of frequently used terms is small. According to Zipf’s law,
95% of words in all documents fall in a vocabulary with no more than 8000 distinct terms. This
suggests that it is advisable to store the index records of frequently used terms in RAM to greatly
reduce index search time. Hence, the significant portion of query processing time is to read and
decompress the compressed posting list for each query term. This paper restricts attention to
inverted file side only and investigates the DIA problem to improve the efficiency of an inverted
file and the overall IR performance.

The d-gap compression approach (Witten et al. 1999; Moffat & Zobel 1992), the most
popular approach for inverted file compression, consists of two steps. It first sorts the document
identifiers of each posting list in increasing order, and then replaces each document identifier
(except the first one) with the distance between itself and its predecessor. For example, the posting
list <3, 8, 12, 15, 32> can be represented in d-gaps as <3, 5, 4, 3, 17>. And the second step is to

encode (compress) these d-gaps using an appropriate coding method. Many coding methods, such
as γ coding (Elias 1975), Golomb coding (Golomb 1966; Witten et al. 1999), skewed Golomb
coding (Teuhola 1978), and batched LLRUN coding (Fraenkel & Klein 1985), have been proposed
to compress posting lists through the estimates of d-gap probability distributions. The more
accurately the estimate, the greater the compression can be achieved.

doc. d1 doc. d2 doc. d3 doc. d4 doc. d5 doc.d6

(a) Example documents

DIA I: { d1 1, d2 2, d3 3, d4 4, d5 5, d6 6}
Posting list of term 1: <1, 4, 5, 6> d-gap list of term 1: <1, 3, 1, 1>
Posting list of term 2: <1, 2, 3, 4, 6> d-gap list of term 2: <1, 1, 1, 1, 2>
Posting list of term 3: <4, 6> d-gap list of term 3: <4, 2>
Posting list of term 4: <3, 4, 5> d-gap list of term 4: <3, 1, 1>

Total bits required to encode d-gaps with γ code = 26 bits
(b) DIA I result

DIA II: { d1 3, d2 5, d3 4, d4 1, d5 6, d6 2}

Posting list of term 1: <1, 2, 3, 6> d-gap list of term 1: <1, 1, 1, 3>
Posting list of term 2: <1, 2, 3, 4, 5> d-gap list of term 2: <1, 1, 1, 1, 1>
Posting list of term 3: <1, 2> d-gap list of term 3: <1, 1>
Posting list of term 4: <1, 4, 6> d-gap list of term 4: <1, 3, 2>

 Total bits required to encode d-gaps with γ code = 20 bits
(c) DIA II result

Figure 1. An example to show different DIAs result in different compression results

d-gap value
x

γ code

1 0
2 10 0
3 10 1
4 110 00

Table1. Some example codes for γ coding

term 1
term 2 term 2

term 2
term 4

term 1
term 2
term 3
term 4

term 1
term 4

term 1
term 2
term 3

One common characteristic of coding methods used in the d-gap compression approach is
that small d-gap values can be coded more economically than large ones. If we can shrink the
d-gap values, the compression ratio and query performance can be improved. Consider a document
collection of 6 documents shown in Figure 1(a). Each document contains one or more terms. For
example, the document d1 contains term 1 and term 2, document d2 contains term 2, etc. In
Figures1(b) and 1(c), the notation di j in DIAs I and II denotes that the document identifier j is
assigned to the document di. According to the documents in Figure 1(a) and the DIAs I and II, the
obtained posting lists and d-gap lists are shown in Figures 1(b) and 1(c). For DIA I, the d-gap
values have nine 1s, two 2s, two 3s and one 4; whereas for DIA II, the d-gap values have eleven 1s,
one 2 and two 3s. With γ coding in Table1, the compressed inverted file requires 26 bits for DIA I,
whereas it requires 20 bits for DIA II. If every term is queried with equal probability, the query
processing costs for DIA II will be much lower than that of DIA I. This is because DIA II can result
in better compression for the given coding method without increasing the complexity of decoding
process, hence improve query throughput by reducing both the retrieval and decompression times
of posting lists. This example shows that different DIAs can result in different compression results
and different query throughputs for a given coding method. In next section, we will introduce a
query cost function for the DIA problem, and then derive a method to find a good DIA to shorten
average query processing time when the probability distribution of query terms is given.
3. Document identifier assignment problem and its algorithm

The DIA problem is the problem of assigning document identifiers to a set of documents in an
inverted file-based IRS in order to minimize the average query processing time when the
probability distribution of query terms is given. In this section, we first formalize the problem, and
then show how to use the well-known greedy nearest neighbor (Greedy-NN) algorithm to solve
this problem.
3.1 Problem mathematical formulation

Let D={d1, d2, …,dN} be a collection of N documents to be indexed, and π :{ d1, d2, …,
dN } {1, 2, …, N} be a DIA that assigns a unique identifier within the range 1…N to each
document in D. Let ft be the total number of documents in which term t appears and dt(1), dt(2), …,
dt(ft) be documents containing term t, then the posting list of the term t can be represented as
ILt=<π(dt(1)), π(dt(2)),…, π(dt(ft))>. Without loss of generality, we assume that π(dt(1))<π(dt(2))<…<
π(dt(ft)). Assume a coding method C which requires C(x) bits to encode a d-gap x. The size of a
posting list ILt for term t can then be expressed as

))()(()1()(
1

−
=

−∑ itit

ft

i
ddC ππ (1)

where we let dt(0)=0 and π(dt(0))=0 to simplify the expression of Eq.(1). Assume that the probability
of a term t appearing in a query is pt. Let Xt be a random Boolean variable representing whether
term t appears in a query: Xt=1 if term t appears in a query and Xt=0 otherwise. The query
processing time TimeQP of posting list processing includes (1) retrieval time TimeR of posting list

ILt for each query term t, (2) decompression time TimeD of posting list ILt for each query term t,
and (3) document identifier comparison time TimeComp. Since the document identifier comparison
time is relatively small (about 10% of query processing time) and does not change with different
DIAs, the query processing time in this paper is defined only as

))()((tDtR
t

tQP ILTimeILTimeXTime +×=∑ (2)

The average query processing time AvgTimeQP is the expected value of TimeQP. That is,

∑ +×=
t

tDtRtQP ILTimeILTimepAvgTime))()(((3)

Since the disk transfer rate is near constant and the decoding processes of most coding methods
used in d-gap compression approach are on a bit-by-bit basis, the retrieval and decompression
times of a posting list ILt for the term t appearing in a query grows with the size of the posting list
ILt. So

∑
=

−−×=+
tf

i
itittDtR ddCILTimeILTime

1
)1()())()((constant)()(ππ (4)

Substituting Eq.(4) into Eq.(3), we obtain

∑ ∑
=

−−××=
t

f

i
itittQP

t

ddCpAvgTime
1

)1()())()((constant ππ (5)

We thus define the objective function Cost(π) to reflect the average query processing time
AvgTimeQP :

∑ ∑
=

−−×=
t

f

i
ititt

t

ddCpCost
1

)1()())()(()(πππ (6)

The objective of this research is to find a DIA π : D {1,2,3…,N} such that)(πCost is minimal.
This optimization problem is called the DIA problem, and it is reduced to the simple DIA (SDIA)
problem if the value of pt for each term t is set to 1. The SDIA problem is the problem of finding a
DIA to minimize the size of inverted file, and it is known to be NP-complete via a reduction to the
rectilinear traveling salesman problem (Olken & Rotem 1986). Since the DIA problem is a
generalization of the SDIA problem, the DIA problem is also a NP-complete problem.
3.2 Solving DIA problem via the well-known Greedy-NN algorithm

Shieh et al. (2003) showed that the SDIA problem can be solved by using TSP heuristic
algorithms. Given a collection of N documents, a document similarity graph (DSG) can be
constructed. In a DSG, each vertex represents a document, and the weight on an edge between two
vertices represents the similarity of these two corresponding documents. The similarity Sim(di, dj)
between two documents di and dj is defined as:

()
∑

∩∈

=
)()(

1),(
ji dTdTt

ji ddSim (7)

where T(di) and T(dj) denote the set of terms appearing in di and dj, respectively, and ∩ denotes the
intersection operator. Hence, the similarity between two documents is the number of common

terms appearing in both documents. The DSG for the example documents in Figure 1(a) is shown
in Figure 2. A TSP heuristic algorithm can then be used to find a path of the DSG visiting each
vertex exactly once with maximal sum of similarities. If we follow the visiting order of vertices on
the path to assign document identifiers, the sum of d-gap values for an inverted file can be
decreased, and the size of inverted file compressed via the d-gap compression approach can be
reduced. Shieh et al. (2003) showed that the Greedy-NN algorithm (Figure 3) can provide excellent
performance for the SDIA problem.

Figure 2. DSG for the example documents in Figure 1(a).

Algorithm Greedy_nearest_neighbor
Input:

D={d1, d2, …, dN}: a collection of N documents to be indexed.
Output:

A TSP path: the visiting order of vertices is { }nvvv ,...,, 21
Method:

1. Construct the DSG(V, E), where V is a set of vertices (in which each vertex represents a
document) and E is a set of edges (in which each edge has a similarity value associated with
it);

2. Pick a vertex v∈ V as v1 such that the sum of similarity values associated with the adjacent
edges of v is maximal;

3. ;1: };{: 1 =−=′ ivVV
4. Find v in V ′ such that the similarity value of the edge (v,vi) is maximal: if more than one

such vertex exist, select one randomly;
5. };{: ;: ;1: ii vVVvvii −′=′=+=
6. If i<N then goto 3;
7. Output a TSP path with its visiting order of vertices being { }nvvv ,...,, 21

Figure 3. The Greedy-NN algorithm for the SDIA problem

Using the same approach, The DIA problem can be solved using the Greedy-NN algorithm

described in Figure 3, if the similarity Sim(di, dj) between two documents di and dj in a DSG is
redefined as:

()
∑

∩∈

=
)()(

),(
ji dTdTt

tji pddSim (8)

where the probability of a term t appearing in a query is known to be pt.
Although the Greedy-NN algorithm is very simple to implement, it is not very applicable to

1

d1 d2

d3 d4

d6d5

1

1

1

1

1

1

1

3

2

2
2

1
2 0

large-scale IRSes due to its high complexity. Given a collection of N documents and n distinct
terms, the number of comparisons for calculating Sim(di,dj) given fixed i and j is O(n), hence the
total number of comparisons to construct a DSG for the Greedy-NN algorithm is O(N2×n). An
algorithm with lower complexity yet still generates satisfactory results should be developed.
4. Partition-based document identifier assignment algorithm

Since the DIA problem is an NP-complete problem, the effort in search for an effective
low-complexity method is needed. Although the Greedy-NN algorithm can be used to solve the
DIA problem, its complexity is too high. In this section, we first present an optimal DIA algorithm
for a single query term, and then propose an efficient partition-based document identifier
assignment (PBDIA) algorithm for the DIA problem.
4.1 Generating an optimal DIA for a single query term

Consider a posting list ILt for term t with ft document identifiers in a collection of N
documents. Using the d-gap technique, we can obtain ft d-gap values: d-gap1, d-gap2,…, d-gapft.
Assume a coding method C which requires C(x) bits to encode a d-gap x. We want to know which
d-gap probability distribution can minimize the size of posting list ILt after compression using
method C. That is, we want to know which d-gap probability distribution can minimize

∑
=

tf

i
id-gapC

1

)((9)

subject to

kd-gapf
tf

i
it ≤≤∑

=1

 and (10)

kd-gapi ≤≤1 for all i, ki ≤≤1 (11)
where k is the largest document identifier in the posting list ILt. It is known that C(x) is
approximately proportional to log2(x) for many popular coding methods, such as γ coding, skewed
Golomb coding, and batched LLRUN coding. For these coding methods, we can use dynamic
programming technique (Bellman and Dreyfus 1962) and find that minimizing Eq.(11) should
meet two requirements: (1) maximize the number of d-gap values of 1; and (2) minimize the
largest document identifier, i.e., k, in the posting list ILt. If a DIA for term t can satisfy the above
two requirements, the best compression and the fastest query speed for the posting list ILt can be
achieved.

According to the above observation, we propose the simple partition-based document
identifier assignment (SPBDIA) algorithm to generate optimal DIAs for a given query term t. The
SPBDIA algorithm consists of a partitioning procedure, an ordering procedure, and a document
identifier assignment procedure. The partitioning procedure divides the given documents into two
partitions in terms of query term t: one partition P(t) consists of documents containing query term
t ; the other partition P(t') is made up of the documents without t. Then, the ordering procedure sets
the order of partitions as P(t) followed by P(t'). Finally, the document identifier assignment
procedure generates an appropriate DIA for the ordered partitions according to query term t: the

documents in partition P(t) are assigned smaller consecutive document identifiers, while the
documents in partition P(t') assigned larger consecutive document identifiers. The SPBDIA
algorithm is illustrated in the following Example.
Example. There is a collection of 500 documents, among which 300 documents contain query
term t. After partitioning, P(t) has 300 documents and P(t') has 200 documents. Then, the ordering
procedure sets the order of partitions P(t) followed by P(t'). Finally, the document identifier
assignment procedure assigns the document identifiers 1~300 to the 300 documents in partition P(t)
and assigns the document identifiers 301~500 to the 200 documents in partition P(t'). ■
Documents in a partition can be arbitrarily assigned identifiers within the given range, hence the
number of possible DIAs for the above Example is 300!×200!. Each of the 300!×200! DIAs
satisfies the two requirements for minimizing Eq.(9), and hence gives both the best posting list
compression and fastest query speed for query term t. The SPBDIA algorithm is simple, and its
complexity is O(N).
4.2 Efficient partition-based document identifier assignment algorithm for DIA problem

In a real-world IRS, a few frequently used query terms constitute a large portion of all term
occurrences in queries (Jansen et al. 1998). Based on this fact, we assess that a DIA algorithm that
allows those frequently used query terms to have better posting list compression can result in
reduced average query processing time. Based on the SPBDIA algorithm, an efficient
partition-based document identifier assignment (PBDIA) algorithm for the DIA problem can be
developed.

Like the SPBDIA algorithm, the PBDIA algorithm also partitions the document set, orders
these partitions, and then assigns document identifiers. The partitioning and ordering procedures of
the PBDIA algorithm iterate n times given that there are n query terms. Then, the document
identifier assignment procedure is performed as the last step of the PBDIA algorithm. Terms that
are queried more frequently should take higher priority in document partitioning and partition
ordering.

The PBDIA algorithm is given in Figure 4. A doubly linked list is used to store the
partitions, and the two links of a partition maintain the ordering among these partitions. Given a
collection of N documents and n distinct query terms, the number of comparisons for assigning
documents to partitions in each iteration is O(N). Since the PBDIA algorithm iterates for n times,
the total number of comparisons for the PBDIA algorithm is O(N×n). Compared with the
Greedy-NN algorithm, this complexity of PBDIA algorithm is distinctively low. This advantage
brings the PBDIA algorithm a dark side, of course. Although the PBDIA algorithm targets on
improving the compression efficiency for the frequently used query terms, it unavoidably
decreases that for the other query terms. In reality, it is often the case that the popularities of the
assorted query terms are very unbalanced. And this imbalance nature makes the PBDIA algorithm
achieve very good query performance. In Section 5, we compare the search performance of the
Greedy-NN and PBDIA algorithms for real-life document collections.

Algorithm Partition_based_document_identifier_assignment

Input:
D={d1, d2, …, dN}: a collection of N documents to be indexed.
T={t1, t2, …, tn}: a set of n distinct terms appearing in D.
Prob={p1, p2, …, pn}: pi denotes the probability of the term ti ∈ T appearing in a query.

Output:
A document identifier assignment π :{ d1, d2, …, dN } {1, 2, …, N} for the DIA.

Method:
1. Create an empty doubly linked list PartList; // to store partition
2. Create an empty doubly linked list TempList; //to store partition pairs
3. Assign all documents in D to a new partition P, and add P to the PartList;
4. Sort the terms in T in descending order according to their probabilities. Let trank1, trank2, …, trankn

represent the sorted list.
5. for i:=1 to n do

5.1 while PartList is not empty do /*partitioning procedure*/
5.1.1 Get a partition P from the head of PartList, and then remove P from PartList;
5.1.2 // At least one of the partitions P(tranki) and P(tranki') should be nonempty

Let P(tranki) be the partition containing the documents that are included in P and do
contain the term tranki ; let P(tranki') be the partition containing the documents that are
included in P and do not contain the term tranki ;

5.1.3 Add the partition pair {P(tranki),P(tranki')} to the tail of TempList;
5.2 while TempList is not empty do /*ordering procedure*/

5.2.1 Get a partition pair {P(tranki),P(tranki')} from the tail of TempList, and then remove
{P(tranki),P(tranki')} from TempList;

5.2.2 if P(tranki) is empty then add P(tranki') to the front of PartList and go to step 5.2;
5.2.3 if P(tranki') is empty then add P(tranki) to the front of PartList and go to step 5.2;
5.2.4 if PartList is empty then

Add P(tranki') to the PartList; add P(tranki) to the front of PartList;
else //PartList is not empty

Get a partition P from the head of PartList, and get a document d∈ P ;
if the document d contain the term tranki then

Add P(tranki) to the front of PartList; add P(tranki') to the front of PartList;
else // the document d does not contain the term tranki

Add P(tranki') to the front of PartList; add P(tranki) to the front of PartList;
6. i:=1;
7. while PartList is not empty do /*document identifier assignment procedure*/

7.1 Get a partition P from the head of PartList, and then remove P from PartList;
7.2 while P is not empty do

7.2.1 Get a document d∈ P, and remove d from P;
7.2.2 Assign document identifier i to the document d, and then i:=i+1;

Figure 4. The PBDIA algorithm for the DIA problem
5. Experiments

This section describes our experiments for evaluating the different DIA algorithms.
Experiments were conducted on real-life document collections, and the average query processing

time and the storage requirement for each DIA algorithm were measured. We also investigated the
DIA problem in parallel IR.
5.1 Document collections and queries

Three document collections were used in the experiments. Their statistics are listed in
Table 2. In this table, N denotes the number of documents; n is the number of distinct terms; F is
the total number of terms in the collection; and f indicates the number of document identifiers that
appear in an inverted file. The collections FBIS (Foreign Broadcast Information Service) and LAT
(LA Times) are disk 5 of the TREC-6 collection that is used internationally as a test bed for
research in IR techniques (Voorhees and Harman 1997). The collection TREC includes the FBIS
and LAT.

Table 2. Statistics of document collections
 Collection
 FBIS LAT TREC
of documents N 130,471 131,896 262,367
of terms F 72,922,893 72,087,460 145,010,353
of distinct terms n 214,310 168,251 317,393
of document identifier count f 28,628,698 32,483,656 61,112,354
Total size (Mbytes) 470 475 945

We followed the method (Moffat & Zobel 1996) to evaluate performance with random

queries. For each document collection, 300 documents were randomly selected to generate a query
set. A query was generated by selecting words from the word list of a specific document. To form
the word list of a document, words in the document were folded to lower case, and stop words
such as “the” and “this” were eliminated. The number of terms per query ranged from 1 to 65. For
each query, there existed at least one document in the document collection that is relevant to the
query. We also made the generated query set for each document collection have the following
characteristics: (1) Query repetition frequencies followed a Zipf distribution; (2) The terms per
query distribution followed the shifted negative binomial distribution. This made the distribution
of generated queries closely resemble the distribution of real queries (Xie & O’Hallaron 2002;
Wolfram 1992).
5.2 Experimental results

In Section 5.2.1, we first present the actual times taken by the Greedy-NN and the PBDIA
algorithms. In Section 5.2.2, we then present the query performance of different DIA algorithms.
In Section 5.2.3, we present the compression performance of different DIA algorithms. Finally, we
study the DIA problem in parallel IR in Section 5.2.4.

The inverted files of the three test collections were constructed according to the DIAs
generated by different DIA algorithms. We tested four different DIA algorithms: “Random”,

“Default”, “Greedy-NN”, and “PBDIA”. The Random algorithm means that the document in a
collection is randomly assigned document identifier. The Default algorithm means that the
document in a collection is assigned document identifier in chronological order. The Greedy-NN
and PBDIA algorithms were described in Section 3.2 and Section 4.2, respectively. For each DIA
algorithm, we also tested five coding methods: γ coding (Elias 1975), Golomb coding (Golomb
1966; Witten et al. 1999), skewed Golomb coding (Teuhola 1978), batched LLRUN coding
(Fraenkel & Klein 1985), and unique-order interpolative coding method (Cheng et al. 2004). For
the following experiments, the parameter b for each posting list in Golomb coding was calculated
using Witten’s approximation (Witten et al. 1999), and the parameter g for unique-order
interpolative coding was set to 4 (Cheng et al. 2004).

All experiments were run on an Intel P4 2.4GHz PC with 512MB DDR memory running
Linux operating system 2.4.12. The hard disk was 40GB, and the data transfer rate was 25MB/sec.
Intervening processes and disk activities were minimized during experimentation.
5.2.1 Time taken by Greedy-NN and PBDIA algorithms
 In Table 3, the performance in terms of completion time is shown. The times reported are the
actual times taken by the algorithms to generate a DIA for the given document collection that has
been inverted. Please note that the times presented in Table 3 consider neither the time spent in
preliminary inversion of the document collection, nor the time needed to rebuild an inverted file
with a new DIA.

Table 3 shows that the PBDIA algorithm is much faster than the Greedy-NN algorithm.
This fact makes the PBDIA algorithm viable for use in large-scale IRSes. Such a fast DIA
algorithm can be very useful for situations such as:
1. Dynamically changing probability distribution of query terms, and
2. Dynamically changing document collection.

Table 3. Time consumed by the Greedy-NN and the PBDIA algorithms

Collection DIA algorithm
FBIS LAT TREC

Greedy-NN 23 hrs 59 mins 24 hrs 37 mins 198 hrs 2 mins
PBDIA 9 secs 10 secs 18 secs

5.2.2 Query performance of different DIA algorithms

In Table 4, the average query processing time (AvgTimeQP) and the speedup relative to the
Default algorithm (SP) were measured according to Eq.(3). In Table 5, the average number of bits
required to retrieve and decode an identifier during query processing (AvgBPIQP) and the
improvement over the Default algorithm (Imp) were measured according to Eq.(6). For each
document collection, the generated query set was divided into three subsets: the short query set,
the medium-length query set, and the long query set. The number of terms per query for the short,

medium-length, and long query sets range from 1 to 8, 9 to 20, and 21 to 65, respectively.
All decoding mechanisms were optimized, including:

1. Replaced subroutines with macros.
2. Replaced calls to the log function with fast bit shifts.
3. Careful choice for compiler optimization flags.
4. Implementation used 32-bit integers, as that is the internal register size of the Intel P4 CPU.
Furthermore, the Huffman code of batched LLRUN coding was implemented with canonical
prefix codes that can be decoded via a fast table look-up (Turpin 1998). With these optimizations,
decoding of a document identifier only required tens of ns.

The experimental results are shown in Tables 4 and 5. Key findings are:
1. Table 4 shows that the query performance of the Default algorithm can be 10% faster than the

Random algorithm. This indicates that the Default algorithm already captures some clustering
nature, thus can serve as a rigid baseline in comparison with other fine-tuned algorithms.

2. Comparing Tables 4 and 5, one should observe that AvgTimeQP is proportional to AvgBPIQP.
This verifies Eq. (4) in Section 3.1, and explains why a good DIA can result in better
compression and reduced query processing time.

3. From Table 5, one should observe that both the Greedy-NN and PBDIA algorithms can result in
better compression of posting lists for all tested coding methods except Golomb coding. This
indicates that the Greedy-NN and PBDIA algorithms can improve the cache efficiency if a
posting list cache is implemented.

4. Table 4 shows that both the Greedy-NN and PBDIA algorithms can reduce average query
processing time for all tested coding methods except Golomb coding. And the query speedup
differences between the Greedy-NN and PBDIA algorithms were only 3% on average.
Considering the algorithm complexity, the PBDIA algorithm is a good choice for the DIA
problem.

5. From Table 4, one should observe that Golomb coding cannot benefit much from the
Greedy-NN and PBDIA algorithms in terms of query performance. This is because Golomb
coding assumes that the d-gap values in a posting list following a Bernoulli model (Witten et al.
1999), hence both the compression result and the query processing time of Golomb coding are
independent of d-gap distribution.

6. From Table 4, one should observe that the query speedup obtained by the PBDIA algorithm
becomes higher as the query length increases. This is because that, as the number of query
terms increases, more frequently used query terms are likely to be included, resulting in more
advantage due to the PBDIA algorithm.

7. Table 4 shows that both γ coding and unique-order interpolative coding are recommended for
real-world IRSes due to their fast query throughputs. In addition, compared with the other
tested coding methods, these two coding methods benefit more from the PBDIA algorithm. We
conclude that the PBDIA algorithm is viable for use in real-world IRSes.

Table 4. Query performance of different DIA algorithms (AvgTimeQP is the average query
processing time, and SP is the speedup relative to the Default algorithm)
(a) short queries

Coding Methods

γ coding

Golomb coding
Skewed

Golomb coding
Batched

LLRUN coding
Unique-order

Interpolative coding

Collection

DIA
algorithm

AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP

Random 2989 0.93 2858 0.98 3894 0.96 3748 0.97 2746 0.95
Default 2789 1.00 2802 1.00 3754 1.00 3636 1.00 2614 1.00

Greedy-NN 2431 1.15 2790 1.00 3348 1.12 3275 1.11 2315 1.13

FBIS

PBDIA 2529 1.10 2808 1.00 3427 1.10 3320 1.10 2333 1.12
Random 2829 0.96 2704 0.99 3737 0.98 3654 0.97 2564 0.97
Default 2724 1.00 2688 1.00 3645 1.00 3542 1.00 2476 1.00

Greedy-NN 2268 1.20 2653 1.01 3137 1.16 3143 1.13 2085 1.19

LAT

PBDIA 2379 1.15 2644 1.02 3234 1.13 3231 1.10 2150 1.15
Random 5822 0.90 5573 0.97 7556 0.93 7217 0.94 5448 0.91
Default 5244 1.00 5380 1.00 7026 1.00 6781 1.00 4942 1.00

Greedy-NN 4431 1.18 5353 1.01 6139 1.14 6032 1.12 4256 1.16

TREC

PBDIA 4606 1.14 5292 1.02 6254 1.12 6171 1.10 4313 1.15

(b) medium-length queries
Coding Methods

γ coding

Golomb coding

Skewed
Golomb coding

Batched
LLRUN coding

Unique-order
Interpolative coding

Collection
DIA

algorithm AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP

Random 9388 0.93 8972 0.98 12222 0.97 11749 0.97 8613 0.95
Default 8758 1.00 8795 1.00 11795 1.00 11402 1.00 8201 1.00

Greedy-NN 7563 1.16 8746 1.01 10426 1.13 10225 1.12 7205 1.14

FBIS

PBDIA 7838 1.12 8798 1.00 10650 1.11 10387 1.10 7223 1.14
Random 8997 0.97 8605 1.00 11842 0.98 11562 0.97 8192 0.97
Default 8684 1.00 8564 1.00 11580 1.00 11229 1.00 7932 1.00

Greedy-NN 7126 1.22 8407 1.02 9851 1.18 9852 1.14 6607 1.20

LAT

PBDIA 7434 1.17 8359 1.02 10098 1.15 9982 1.12 6755 1.17
Random 18475 0.92 17689 0.97 23936 0.94 22724 0.95 17273 0.93
Default 16935 1.00 17153 1.00 22594 1.00 21666 1.00 16004 1.00

Greedy-NN 14069 1.20 16942 1.01 19493 1.16 19058 1.14 13598 1.18

TREC

PBDIA 14611 1.16 16713 1.03 19809 1.14 19280 1.12 13722 1.17

(c) long queries
Coding Methods

γ coding

Golomb coding

Skewed
Golomb coding

Batched
LLRUN coding

Unique-order
Interpolative coding

Collection

DIA
algorithm

AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP AvgTimeQP
(us)

SP

Random 20210 0.92 19399 0.98 26526 0.95 26049 0.96 18423 0.94
Default 18594 1.00 18939 1.00 25316 1.00 24984 1.00 17269 1.00

Greedy-NN 15882 1.17 18971 1.00 22131 1.14 21957 1.14 14979 1.15

FBIS

PBDIA 15871 1.17 18953 1.00 21972 1.15 22143 1.13 14377 1.20
Random 18029 0.96 17116 1.00 23591 0.98 22646 0.97 16477 0.97
Default 17392 1.00 17035 1.00 23011 1.00 22033 1.00 15964 1.00

Greedy-NN 13875 1.25 16624 1.02 19173 1.20 18984 1.16 13046 1.22

LAT

PBDIA 13996 1.24 16298 1.05 19023 1.21 19212 1.15 12817 1.25
Random 37881 0.93 36023 0.98 49012 0.95 46584 0.96 35266 0.94
Default 35096 1.00 35231 1.00 46547 1.00 44588 1.00 33008 1.00

Greedy-NN 28372 1.24 34469 1.02 39489 1.18 38592 1.16 27523 1.20

TREC

PBDIA 29152 1.20 33809 1.04 39766 1.17 39089 1.14 27401 1.20

Table 5. AvgBPIQP of different DIA algorithms (AvgBPIQP is the average number of bits required to
retrieve and decode an identifier during query processing, and Imp is the improvement over the
Default algorithm)
(a) short queries

Coding Methods

γ coding

Golomb coding
Skewed

Golomb coding
Batched

LLRUN coding
Unique-order

Interpolative coding

Collection
DIA

algorithm
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
Random 3.56 -10.6 3.21 0.3 3.31 -7.1 3.25 -5.5 3.15 -7.9
Default 3.22 --- 3.22 --- 3.09 --- 3.08 --- 2.92 ---

Greedy-NN 2.78 13.7 3.24 -0.6 2.73 11.7 2.69 12.7 2.63 9.9

FBIS

PBDIA 2.95 8.4 3.23 -0.3 2.84 8.1 2.76 10.4 2.69 7.9
Random 3.32 -6.8 2.98 0.0 3.05 -4.8 3.00 -3.8 2.87 -4.7
Default 3.11 --- 2.98 --- 2.91 --- 2.89 --- 2.74 ---

Greedy-NN 2.56 17.7 3.00 -0.7 2.48 14.8 2.47 14.5 2.35 14.2

LAT

PBDIA 2.73 12.2 2.97 0.3 2.59 11.0 2.59 10.4 2.42 11.7
Random 3.75 -13.3 3.38 0.3 3.46 -9.5 3.40 -8.2 3.34 -10.6
Default 3.31 --- 3.39 --- 3.16 --- 3.14 --- 3.02 ---

Greedy-NN 2.78 16.0 3.41 -0.6 2.72 13.9 2.69 14.3 2.65 12.3

TREC

PBDIA 2.94 11.2 3.37 0.6 2.81 11.1 2.81 10.5 2.70 10.6

(b) medium-length queries
Coding Methods

γ coding

Golomb coding

Skewed
Golomb coding

Batched
LLRUN coding

Unique-order
Interpolative coding

Collection
DIA

algorithm
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
Random 3.57 -10.9 3.21 0.3 3.31 -6.8 3.25 -5.5 3.15 -7.9
Default 3.22 --- 3.22 --- 3.10 --- 3.08 --- 2.92 ---

Greedy-NN 2.75 14.6 3.24 -0.6 2.70 12.9 2.66 13.6 2.61 10.6

FBIS

PBDIA 2.92 9.3 3.24 -0.6 2.81 9.4 2.75 10.7 2.66 8.9
Random 3.37 -6.3 3.03 0.3 3.11 -4.4 3.06 -3.7 2.94 -4.6
Default 3.17 --- 3.04 --- 2.98 --- 2.95 --- 2.81 ---

Greedy-NN 2.58 18.6 3.06 -0.7 2.50 16.1 2.48 15.9 2.39 14.9

LAT

PBDIA 2.73 13.9 3.02 0.7 2.59 13.1 2.60 11.9 2.44 13.1
Random 3.83 -12.0 3.42 0.3 3.53 -8.3 3.47 -7.1 3.40 -9.0
Default 3.42 --- 3.43 --- 3.26 --- 3.24 --- 3.12 ---

Greedy-NN 2.82 17.5 3.45 -0.6 2.76 15.3 2.74 15.4 2.71 13.1

TREC

PBDIA 2.99 12.6 3.41 0.6 2.85 12.6 2.86 11.7 2.75 11.9

(c) long queries
Coding Methods

γ coding

Golomb coding

Skewed
Golomb coding

Batched
LLRUN coding

Unique-order
Interpolative coding

Collection
DIA

algorithm
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
AvgBPIQP Imp

(%)
Random 3.31 -12.2 3.02 0.3 3.09 -8.4 3.03 -6.7 2.90 -9.0
Default 2.95 --- 3.03 --- 2.85 --- 2.84 --- 2.66 ---

Greedy-NN 2.50 15.3 3.06 -1.0 2.47 13.3 2.43 14.4 2.37 10.9

FBIS

PBDIA 2.57 12.9 3.05 -0.7 2.47 13.3 2.48 12.7 2.34 12.0
Random 3.58 -6.2 3.21 0.3 3.28 -4.1 3.23 -3.5 3.13 -4.3
Default 3.37 --- 3.22 --- 3.15 --- 3.12 --- 3.00 ---

Greedy-NN 2.66 21.1 3.24 -0.6 2.58 18.1 2.55 18.2 2.50 16.7

LAT

PBDIA 2.73 19.0 3.19 0.9 2.58 18.1 2.63 15.7 2.48 17.3
Random 3.85 -10.6 3.43 0.3 3.54 -7.3 3.47 -6.1 3.41 -7.9
Default 3.48 --- 3.44 --- 3.30 --- 3.27 --- 3.16 ---

Greedy-NN 2.78 20.1 3.46 -0.6 2.73 17.3 2.70 17.4 2.69 14.9

TREC

PBDIA 2.92 16.1 3.41 0.9 2.79 15.5 2.81 14.1 2.71 14.2

5.2.3 Compression performance of different DIA algorithms
The compression results are shown in Table 6, and the metric used is the average number of

bits per identifier BPI, defined as follows:

f
BPI

 identfiersdocument ofnumber
file inverted compressed theof size The= .

To reduce average query processing time, both the Greedy-NN and PBDIA algorithms target
on improving the compression efficiency for the frequently used query terms. However, this is at
the cost of sacrificing the compression efficiency for the less frequently used query terms. We need
to know how much space overhead is needed to trade for this speed advantage. Results in Table 6
show that the Greedy-NN and PBDIA algorithms can speed up query processing with very little or
no storage overhead.

Table 6. Compression performance of different DIA algorithms (BPI is the average bits per
identifier of the inverted file for the test collection, and Imp is the improvement over the Default
algorithm)

Coding Methods

γ coding

Golomb
coding

Skewed
Golomb
coding

Batched
LLRUN
coding

Unique-order
Interpolative

coding

Collection

DIA
algorithm

BPI Imp
(%)

BPI Imp
(%)

BPI Imp
 (%)

BPI Imp
(%)

BPI Imp
(%)

Random 7.06 -19.7 5.28 0.0 5.75 -10.6 5.38 -8.5 5.36 -10.3

Default 5.90 --- 5.28 --- 5.20 --- 4.96 --- 4.86 ---

Greedy-NN 5.86 0.7 5.28 0.0 5.33 -2.5 4.88 1.6 4.85 0.2

FBIS

PBDIA 6.17 -4.6 5.28 0.0 5.42 -4.2 5.06 -2.0 4.95 -1.9

Random 7.12 -6.6 5.33 0.0 5.73 -3.2 5.43 -2.8 5.42 -3.8

Default 6.68 --- 5.33 --- 5.55 --- 5.28 --- 5.22 ---

Greedy-NN 6.06 9.3 5.32 0.2 5.26 5.2 5.00 5.3 4.91 5.9

LAT

PBDIA 6.35 4.9 5.32 0.2 5.33 4.0 5.12 3.0 5.01 4.0

Random 7.39 -16.7 5.50 -0.4 5.92 -9.2 5.59 -7.5 5.59 -9.6

Default 6.33 --- 5.48 --- 5.42 --- 5.20 --- 5.10 ---

Greedy-NN 6.08 3.95 5.49 -0.2 5.39 0.6 5.03 3.3 4.99 2.2

TREC

PBDIA 6.36 -0.5 5.49 -0.2 5.45 -0.6 5.18 0.4 5.08 0.4

5.2.4 DIA in parallel IR

This subsection investigates the DIA problem in an IRS that runs on a cluster of
workstations. Assuming k workstations, the inverted file is generally partitioned into k disjoint
sub-files, each for one workstation. When processing a query, all workstations have to consult only
their own sub-files in parallel, and the query processing time is shortened. Ma et al. (2002)

indicated that near-ideal speedup on query processing can be obtained if an inverted file is
partitioned using the interleaving partitioning scheme. For such a partitioning, DIA plays a crucial
role in load balancing. The PDBIA algorithm can be applied to the inverted file to enhance the
clustering property of posting lists for frequently used query terms, and can aid the interleaving
partitioning scheme to yield better load balancing.

Table 7 shows the performance of parallel query processing using interleaving partitioning
scheme with either the Default algorithm or the PBDIA algorithm. The metric is the speedup
relative to sequential query processing with Default algorithm. Experiments were conducted on the
TREC collection. The sub-file on each workstation was compressed using the unique-order
interpolative coding method. The parallel query processing time was defined as max[T1,T2,…,Tk],
where Ti (1≤i≤k) was the time needed to retrieve and decompress the (partial) posting lists for the
query terms on the ith workstation. Note that Ti did not include the document identifier comparison
time (the reason being the same as described in Section 3.1). The experimental results show that
the interleaving partitioning scheme can yield near-ideal speedups, as reported in Ma et al. (2002).
In addition, using the PBDIA algorithm to enhance the clustering property of posting lists for
frequently used query terms, the interleaving partitioning scheme yields super-linear speedups.
Hence the DIA problem should deserve much attention in parallel IR.

Table 7. Speedup of parallel query processing

The number of workstations Method
1* 2 4 6 8 10

Default algorithm + Interleaving partitioning 1.00 1.90 3.75 5.61 7.44 9.35
PBDIA algorithm + Interleaving partitioning 1.17 2.23 4.41 6.57 8.70 10.93

*: Without interleaving partitioning
6. Conclusion

In this paper, we study the DIA-based query optimization techniques for an IRS in which
the inverted file is used to evaluate queries. We first define a cost model for query evaluation.
Based on this model, we propose an efficient heuristic, called partition-based document identifier
assignment (PBDIA) algorithm, for generating a good DIA to reduce average query processing
time. The PBDIA algorithm can efficiently assign consecutive document identifiers to the
documents containing frequently used query terms. This makes the d-gaps of posting lists for
frequently used query terms very small, and results in better compression for popular coding
methods without increasing the complexity of decoding processes. This can result in reduced
query processing time. Experimental results show that the PBDIA algorithm can reduce the
average query processing time by up to 20%. We also point out that the DIA problem has vital
effects on the performance of long queries and parallel IR. Compared with the well-known
Greedy-NN algorithm, the PBDIA algorithm is much faster and yields very competitive
performance for the DIA problem. This fact should make the PBDIA algorithm viable for use in

modern large-scale inverted file-based IRSes.

Acknowledgements
This work was supported by National Science Council, ROC: NSC93-2213-E-009-025.

Reference
Bellman, R.E. & Dreyfus, S.E. (1962). Applied Dynamic Programming. Princeton, NJ: Princeton

University Press.
Cheng, C.S., Shann, J.J.J., and Chung, C.P. (2004). A unique-order interpolative code for fast

querying and space-efficient indexing in information retrieval systems. In P. K. Srimani et
al. (Eds.), Proceedings of ITCC 2004 International Conference on Information
Technology: Coding and Communications Volume 2, (pp. 229-235), Las Vegas, Nevada,
Apr. Los Alamitos, CA: IEEE Computer Society Press.

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, IT-21(2), 194-203.

Fraenkel, A.S. & Klein, S.T. (1985). Novel compression of sparse bit-string－preliminary report.
In A. Apostolico & Z. Galil (Eds.), Combinatorial Algorithms on Words: Vol. 12, NATO
ASI Serials F. (pp. 169-183). Berlin: Springer-Verlag.

Gelbukh, A., Han, S.Y., and Sidorov, G. (2003). Compression of boolean inverted files by
document ordering. In Proceedings of 2003 IEEE International Conference on Natural
Language Processing and Knowledge Engineering (IEEE NLPKE-2003), (pp. 244-249),
Beijing, China, Oct. Los Alamitos, CA: IEEE Computer Society Press.

Golomb, S.W. (1966). Run Length Encoding. IEEE Transactions on Information Theory, IT-12(3),
399-401.

Janson, B.J., Spink, A., Bateman, J., and Saracevic, T. (1998). Real life information retrieval: a
study of user queries on the Web. SIGIR Forum, 32(1), 5-17.

Kobayashi, M. & Takeda, K. (2000). Information retrieval on the web. ACM Computing Surveys,
32(2), 144-173.

Ma, Y.C., Chen, T.F., and Chung, C.P. (2002). Posting file partitioning and parallel information
retrieval. Journal of Systems and Software, 63(2), 113-127.

Moffat, A. & Zobel, J. (1992). Parameterised compression for sparse bitmaps. In N. Belkin, P.
Ingwersen, and A.M. Pejtersen (Eds.), Proceedings of 15th annual international
ACM-SIGIR Conference on Research and Development in Information Retrieval, (pp.
274-285), Copenhagen, Jun. New York: ACM Press.

Moffat, A., Zobel, J., and Klein, S.T. (1995). Improved inverted file processing for large text
databases. In R. Sacks-Davis and J. Zobel (Eds.), Proceedings of 6th Australasian
Database Conference, (pp. 162-171), Adelaide, Australia, Jan.

Moffat, A. & Zobel, J. (1996). Self-indexing inverted files for fast text retrieval. ACM

Transactions on Information Systems, 14(4), 349-379.
Olken, F. & Rotem, D. (1986). Rearranging data to maximize the efficiency of compression. In

Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of database
systems, (pp. 78-90), Cambridge, Massachusetts, United States, Mar. New York: ACM
Press.

Shieh, W.Y., Chen, T.F., Shann, J.J., and Chung, C.P. (2003). Inverted file compression through
document identifier reassignment. Information Processing and Management, 39(1),
117-131.

Teuhola, J. (1978). A Compression method for clustered bit-vectors. Information Processing
Letters, 7(6), 308-311.

Turpin, A. (1998.) Efficient prefix coding. (Ph.D. thesis). Melbourne: University of Melbourne.
Voorhees, E. & Harman, D. (1997). Overview of the sixth text retrieval conference (TREC-6). In

E.M. Voorhees and D.K. Harman (Eds.), Proceedings of the Sixth Text REtrieval
Conference (TREC-6), (pp. 1-24). Gaithersburg, MD: NIST.

Williams, H.E. & Zobel, J. (1999). Compressing integers for fast file access. The Computer
Journal, 42(3), 193-201.

Williams, H.E. & Zobel, J. (2002). Indexing and retrieval for genomic databases. IEEE
Transactions on Knowledge and Data Engineering, 14(1), 63-78.

Witten, I.H., Moffat, A., and Bell, T.C. (1999). Managing Gigabytes: Compressing and Indexing
on Documents and Images, Second Edition. San Francisco, CA: Morgan Kaufmann
Publishers.

Wolfram, D. (1992). Applying informetric characteristics of databases to ir system file design, part
i: informetric models. Information Processing and Management, 28(1), 121-133.

Xie, Y. & O’Hallaron, D. (2002). Locality in search engine queries and its implications for caching.
In P. Kermani, F. Bauer, and P. Morreale (Eds.), Proceedings of the 21th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM'02), (pp.
1238-1247), New York, Jun.

Zipf G. (1949). Human Behavior and the Principle of Least Effort. New York: Addison-Wesley.
Zobel, J. & Moffat, A. (1995). Adding compression to a full-text retrieval system. Software

Practice and Experience, 25(8), 891-903.
Zobel, J., Moffat, A., and Ramamohanarao, K. (1998). Inverted files versus signature files for text

indexing. ACM Transactions on Database Systems, 23(4), 453-490.

計畫成果自評

 本計畫規劃了一系列的研究，探討如何以最小的資源成本建置符合需求的叢集式資訊
檢索系統，並透過動態的資源管理機制，讓系統在面對各種不同的外界環境時，能夠動態

地調整系統的資源配置，將系統的資源發揮最大的效能，期以最小的資源成本提供使用者

一個高效能和高服務品質的資訊檢索環境。在本年度的研究中，為了能夠有效增進系統效

能與儲存空間利用率，我們發展了一個新的文件編號演算法。實驗顯示我們所提的演算法

可以有效縮短查詢處理時間，而對於長查詢(long queries)與平行資訊檢索(parallel IR)更有
明顯的好處。此一研究成果已經投稿到國際期刊 Information Processing & Management並
獲得接受。未來在此研究基礎上，本計畫將持續探討叢集式資訊檢索系統的負載、快取與

資料管理方法，期能以最小的成本滿足給定的執行效能需求。並發展一資訊檢索雛型系

統，實作並驗證所提各項技術之可行性。我們相信所提出的演算法可以應用於高效能與低

成本的資訊檢索系統設計。

