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a b s t r a c t

Traditionally, the most popular arbitrage strategy is derived from the cost of carry model or by using the
econometrics approach. However, these approaches have difficulty in dealing with intra-day 1-min trad-
ing data and capturing inter-market arbitrage opportunity in the real world. In this research, we propose
computational intelligence approaches based on the extended classifier system (XCS). First, in order to
reduce the amount of data, the original data streams of intra-day 1-min trading data are filtered by
the conditions of variant price spread relation. XCS is then adopted for knowledge rule discovery. After
analyzing the property with domain-specific knowledge that the price of index futures will get close
to that of spot products at the time the futures mature, four important factors related to bias, price
spread, expiry date, and intraday trading timing are considered as the conditions of XCS to build the
inter-market arbitrage model. The inter-market spread of the Taiwan Stock Index Futures (TX) traded
at the Taiwan Futures Exchange (TAIFEX) and the Morgan Stanley Capital International (MSCI) Taiwan
Index Futures traded at the Singapore Exchange Limited (SGX) are chosen for an empirical study to verify
the accuracy and profitability of the model.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In futures and options markets, if market imperfection or mar-
ket inefficiency exists, the phenomenon of mispricing can easily
occur, creating a price difference between commodities or underly-
ing products (price spread), thereby often leading to the rise of
arbitrage opportunities. This phenomenon is more common
amongst emerging markets and markets experiencing thinner
trading volumes than in mature markets and markets with higher
transaction volumes (Wang & Hsu, 2006). Depending on different
exchange commodities and exchange markets, trading in the price
spread can generally be divided into two types (Moles & Terry,
1997): (1) inter-market (or inter-commodity) spread: two highly
related financial products that are traded within the same stock
exchange, e.g. arbitrage between stocks and index futures; or
two financial products offered in different exchanges covering
the same underlying commodity or similar commodities. (2)
Intra-market (or intra-commodity) spread: arbitrage between
products with the same underlying commodity but with different
expiry months, e.g. futures contracts for the same index which
mature on different months. In general, arbitrage opportunities
ll rights reserved.
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are rare and difficult to discover, because the calculations are too
complex, especially with inter-market arbitrage trading, where
expiry dates for different futures contracts, the immediate foreign
exchange calculation, and immediate calculation of fair price must
all be considered at the same time.

Regardless of the type of arbitrage, when evaluating an oppor-
tunity in arbitrage, establishing the fair price of the product and
then assessing the magnitude of the price spread are the most
important research issues worthy of attention. According to previ-
ous studies, the methodologies for detecting arbitrage opportuni-
ties can be classified into three categories: the cost of carry
model, econometric and behavioral finance, and computational
intelligence approach.

The cost of carry model is the most basic theorem when consid-
ering futures arbitrage. However, the actual prices in the index
futures markets are generally found to be lower than the theoret-
ical prices predicted by the cost of carry model (Cornell & French,
1983; Figlewski, 1984; Modest & Sundaresan, 1983). This makes
the model imperfect in explaining and forecasting price move-
ments in stocks and index futures (Klemkosky & Lee, 1991).

The econometric model considering the arbitrageur behavior
can yield a more accurate evaluation of the probability of profiting
through arbitrage in practice. Some researchers investigated the
inter-market spread trading based on econometrics, such as the
spread of West Texas Intermediate (WTI) and Brent Crude (Brent)
spread (Dunis, Laws, & Evans, 2006, 2008), the price spread
between the Singapore Exchange Limited (SGX), Morgan Stanley
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Capital International (MSCI), Taiwan Index and the Taiwan Futures
Exchange (TAIFEX), Taiwan Stock Index Futures (TX), the price
spread between the TAIFEX Taiwan Stock Exchange Electronic Sec-
tor Index (TE) and the Financial Sector Index (TF) Futures (Luo,
2002), and the FTSE 100 and the FTSE Mid 250 contract traded
on the London International Financial Futures and Options Ex-
change (LIFFE) (Butterworth & Holmes, 2002). However, most
econometric models use time series as a starting point, using only
the daily closing prices, and neglects other determining factors and
conditions (e.g. time to maturity). Hence, there are some limita-
tions in their capacity to evaluate the probability of arbitrage,
especially for intra-day trading data and it is difficult to apply these
models to develop a trading decision support system that is capa-
ble of high frequency data processing.

In processing high-frequency data for intra-day trading, compu-
tational intelligence is a new approach. The real-time updated
transaction data are typical data streams that can be processed
using temporal data mining skill. A statistical arbitrage trading sys-
tem for the S&P 500 Futures Index is proposed based on the flexible
least squares (FLS), showing that the FLS can be employed as a
building block of an algorithmic trading system (Montana, Trian-
tafyllopoulos, & Tsagaris, 2009).

More recently, many trading decision support systems have
been developed based on computational intelligence techniques.
There are two main approaches to developing trading decision
support system. One is the pricing-based model, which is a non-
parameter model for financial asset pricing; the other is the rule-
based model, which focuses on the profitable trading rule
discovery.

When constructing the pricing-based model, the fluctuation of
the financial asset price is forecast by approximating the functional
mapping between the financial asset price and its influencing fac-
tors. The market price in the next trading period is forecast using
historical financial time series data and relative factors such as
technique analysis indicators or economic indicators.

Fuzzy rule is commonly used for stock price prediction model
and can be implemented in a real-time trading system. Chang
and Liu (2008) proposed a Takagi–Sugeno–Kang (TSK)-type fuzzy
rule-based system for stock price prediction. Furthermore, this
model is improved by combining the wavelet transform (Chang &
Fan, 2008). Zarandi, Rezaee, Turksen, and Neshat (2009) proposed a
type-2 fuzzy rule-based expert system model for stock price anal-
ysis. Although these models can obtain more accurate prediction
results than the traditional regression model, they only consider
the investment trading, and they can hardly be applied for arbi-
trage trading.

Some arbitrage trading systems have been proposed based on
the target price forecasting. An index arbitrage model for the Irish
market index (ISEQ) and the FTSE 100 index is demonstrated using
recurrent neural network models combined with the Kalman filter
(Edelman, 2008). An option arbitrage trading system for American-
style call options on the British Pound versus the US dollar cur-
rency futures is proposed based on a novel pseudo self-evolving
cerebellar model arithmetic computer (PSECMAC) option-pricing
model (Teddy, Lai, & Quek, 2008). However, these research only
demonstrate the detection for daily arbitrage trading and do not
show capability when applied to practical intra-day arbitrage
trading.

When constructing the rule-based model, the trading rule is
commonly generated by identifying the charting patterns. A new
template grid, which is a matching technique based on pattern rec-
ognition, is proposed to detect bull flag technical trading rules
(Wang & Chan, 2007) and buy signals (Wang & Chan, 2009). Li
and Kuo (2008) combined the K-chart technical analysis, wavelet
transform, and self-organizing map network to construct a fore-
casting model and to generate buying and selling signals.
More recently, the hybrid models, which combine the price
forecasting model and rule discovery mechanism, have been pro-
posed in many literature. Tan, Quek, and Yow (2008) proposed a
novel rough set-based pseudo outer-product (RSPOP) fuzzy neural
network intelligent stock trading system. They combined the price
predictive model and technique indicator predictive model to ob-
tain the optimal trading rules. Ghandar, Michalewicz, Schmidt,
To, and Zurbrugg (2009) used an evolutionary process in trading
rules drawn from a fuzzy logic rule base. However, no literature
has focused on inter-market arbitrage trading.

In order to develop a profitable and easy to implement system
for arbitrage trading, we combine expert knowledge and statistical
analysis to determine the properly trading timing conditions.
Moreover, we then use these conditions to filter rapidly the trans-
action data stream and reduce the computational loading for high-
frequency data processing. Furthermore, the knowledge discovery
process is applied to generate the arbitrage trading rule using the
filtered data.

XCS is a knowledge discovery process that has already been ap-
plied in various related studies on financial investment, and it has
shown the capacity to process financial time series data. These
studies also indicate that the XCS model is more profitable com-
pared with the random or buy and hold model (Beltrametti, Fioren-
tini, Marengo, & Tamborini, 1997; Liao & Chen, 2001; Schulenburg
& Ross, 2002). Therefore, this study will utilize the classifier
system’s dynamic learning function to build a self-learning, self-
adaptive inter-market arbitrage model that can be applied within
a dynamic market. Using the SGX MSCI Taiwan Index Futures
and TAIFEX TX as the study object, we will assess the effect of
actual costs of trading, price spreads, different expiry dates, and
trading timing, and then design an inter-market arbitrage invest-
ment decision support system that can be put to practical use.

The rest of the paper is organized as follows: Section 2 illus-
trates the inter-market arbitrage strategy and method in this
study; Section 3 describes the proposed XCS model; Section 4
details the experiment design and the results; and lastly, conclu-
sions drawn from the study are discussed in Section 5.

2. Arbitrage strategy analysis

2.1. Inter-market arbitrage

When conducting futures index arbitrage, the common method
is to calculate the theoretical fair price based on the term to matu-
rity and the underlying commodity first and then compare it to the
actual market price to calculate the extent of mispricing. To assess
the price spread inter-market, the extent of mispricing must be
normalized as follows:

Mi
t ¼

Fi
t � FPi

t

FPi
t

ð1Þ

where Mi
t is the normalized mispricing at time t; Fi

t is the actual fu-
ture price, FPi

t is the theoretical fair price of the index futures, and i
is the individual futures contractor.

The mispricing differential between the two related products is
used as the inter-market price spread. Using the indices nominated
for study the SGX MSCI Taiwan Index Futures and the TAIFEX
Taiwan Stock Index Futures would be as follows:

SMt ¼ MT
t �MS

t ð2Þ

where SMt is the spread mispricing differential, and MT
t and MS

t rep-
resent the normalized mispricing in the TAIFEX Taiwan Stock Index
Futures and the SGX MSCI Taiwan Index Futures, respectively.

When SMt reaches a certain extent and becomes greater than
the cost of the arbitrage transaction (TC), that is jSMtj > TC, then
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proceeding with the arbitrage trading is worth considering. Using
Eq. (2) as an example, due to the special characteristic of the index
futures price converging towards the spot price as the expiry date
for the futures contract is approaching, where spread was found to
be underpriced (SMt < 0), an arbitrageur would take a long position
in the TAIFEX Taiwan Stock Index Futures contracts and simulta-
neously set up an opposing short position in the MSCI Taiwan In-
dex Futures contracts.

In general, the cost of carry model is most commonly applied to
calculate the theoretical fair price of the index futures using the
equation below:

FPi
t ¼ Ii

t � eðri�diÞðTi�tÞ ð3Þ

where Ii
t equates to the price of the underlying stock index at time t,

ri refer to the risk-free interest rate, di is the dividend yield rate, and
Ti is the futures contract expiration date.

To process high frequency inter-minute data in inter-market
arbitrage trading, we simplified Eq. (3) by replacing FPi

t with Ii
t

and then substituting this in Eqs. (1) and (2) to calculate Mi
t and

SMt. Although, the expiry date effect in Eq. (3) is neglected, it is still
considered as an important factor when designing XCS in this
study. The modified equations in the study are expressed as
follows:
Table 1
Condition classification for statistical arbitrage.

No. of condition eMT
t

eMS
t

eS eMt Trading position

TX MCSI

1 >0 >0 >0 Short Long
2 >0 >0 <0 Short Long
3 >0 <0 >0 Short Long
4 <0 <0 >0 Long Short
5 <0 <0 <0 Long Short
6 <0 >0 <0 Long Short
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eMi
t ¼

Fi
t � Ii

t

Ii
t

ð4Þ

eS eMt ¼ eMT
t � eMS

t ð5Þ
2.2. Determining arbitrage trading conditions

To increase the efficiency of processing high frequency data
from inter-minute trading, we search for the conditions that can
be applied to data filtering, based on the characteristics of histori-
cal daily trading data, and the magnitude of the probability of suc-
cessful arbitrage.

First, we use Eq. (4) to calculate respectively two futures prod-
ucts’ inter-market trading price spread between each futures prod-
uct’s price and spot price. We then substitute this into Eq. (5) to
calculate whether the absolute value obtained is greater than the
cost of transactions and then proceed with arbitrage trading.

Therefore, we can conduct classification based on the different
combinations of scenarios with price spreads correlation to calcu-
late the probability of success of arbitrage, using it to discover the
most frequent condition for successful arbitrage under various
correlated price spread combinations. The conditions are listed in
Table 1 and illustrated in Fig. 1.

The probability of successful arbitrage for each condition was
then calculated using the support value widely used for mining
association rules (Han & Kamber, 2006).

support ¼ probability of successful arbitrage

¼ total no: of times of profit�making
total no: of occurrence of the conditions

ð6Þ

Finally, the conditions with high support value would be used
for filtering arbitrage opportunities. Only the data that matches
the condition would be used for the XCS knowledge discovery
process.
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Earliest trading day for entry 
in the arbitrage trading interval Last trading day for exit settlement 

in the trading interval

nth period TX expiry datenth period MSCI expiry date

Trading intervalTrading interval

n+1 th period MSCI expiry date

time

Fig. 2. Trading interval for arbitrage.

Fig. 3. Stop-loss/profit cap according to the distribution.
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2.3. Trading interval and portfolio management

When constructing an inter-market arbitrage trading model,
we must first set an entry interval in arbitrage trading based
on the respective expiry dates for the product in each market.
The same time, this interval must be similar to the longest hold-
ing period for the futures, so as to avoid the effects caused by the
different portfolio management in practice due to any difference
in expiry dates, and to avoid the occurrence of closing out or
rolling over of position at expiry. We set the arbitrage trading
interval using the day after the MSCI Taiwan Index Futures con-
tract settlement date and the following month’s last trading day
of the TX contract as one period. The last exit trading day is the
TX contract settlement date. The trading interval is illustrated in
Fig. 2.

Furthermore, to calculate the final profit/loss from arbitrage
trading, establish the relationship between the corresponding
prices inter-market, and avoid the assumption of too much trading
risk via the establishment of stop-loss, profit-cap mechanisms,
when the profit from trading is greater than the profit-cap thresh-
old, profit-realization will be conducted. Conversely, if the loss ex-
ceeds the stop-loss threshold, immediate action will also be taken
to exit and minimize loss. In addition, if during the trading period,
neither the stop-loss nor the profit-cap trading is triggered, then on
the last trading day for the TX contract, exit trading will be exe-
cuted at the spot index price of the last order (at 13:30) and prof-
it/loss will be calculated.

This study assumes relevant trading parameters based on prac-
tical experiences, which are set out as follows:

� Price spread ratio (hedge ratio): TX contracts: MSCI Taiwan
Index Futures contracts = 3:4.
� Transactions costs: calculating retail transaction fees and tax,

the total cost of trading is approximately TWD5,800.
� Stop-loss and profit cap: this study utilizes the knowledge

acquisition training period, uses the loss-making (profit-mak-
ing) investment trading data as a statistical sample to calculate
the distribution of dollar value lost (profit), and sets the stop-
loss (profit-cap) value to cut loss (profit) at 30% (70%) of the
maximum loss (profit). This is illustrated in Fig. 3.
3. The XCS-based model for arbitrage

3.1. Extended classifier system

The classifier system is an adaptive rule-base system consisting
of enhanced learning mechanisms and the genetic algorithm,
which is capable of developing various combinations of rules with-
in the system to acquire optimal rules. Therefore, the classifier sys-
tem can categorize external states, accurately yield predictions,
and can also adapt to changes in external states, thereby generat-
ing different predictions under different states to reflect the appro-
priate solution applicable to the dynamic environment.

The original concept of the classifier system came from Holland
(1976), under the term Cognitive System (CS). Following, Holland
and Reitman (1977) jointly proposed the Learning Classifier Sys-
tems (LCS). Since then, subsequent research conducted by many
scholars gradually strengthened the overall operational efficiency
and stability of the system.

An improved version of the learning mechanism was proposed
by Wilson (1995, 1998). He adjusted the fitness of LCS, changing
the original use of expected return as a basis for calculating the
accuracy of the expected return. He also improved the algorithm
for learning. The improved model was named Extended Classifier
Systems (XCS).

In XCS, the so-called classifier is composed of many ‘‘IF condi-
tion/THEN action” rules to represent the corresponding external
state. This is represented by the following formula:

hclassifieri :¼ hconditioni=hactioni ð7Þ

For the sake of easy application, binary coding is typically used
for the condition and the action to represent various parameters of
the external state. It is also used as a code for the following set of
instructions:

hconditioni :¼ f0;1;1#;0;1; . . . :gL ð8Þ
hactioni :¼ f0;1; . . . ;n� 1g ð9Þ

Within these codes, L represents the length of the rules, # rep-
resents the unimportant characteristics which mean that 0 and 1
can both be matching states, and n represents the classified result-
ing numbers.
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The main structure and application process are represented in
Fig. 4. The algorithm of the XCS model is shown in Fig. 5.

As can be seen, XCS receives information on the external state
through detectors, coding it into chains of rules that can be pro-
cessed by the system. These chains of rules are called classifiers.
These classifiers are then compared to the classifiers identified in
the external state’s information system and population set [P],
and those that match the current imputed state are selected to cre-
ate a match set [M]. If no matching classifiers are found in the pop-
ulation set, then the cover mechanism is triggered to set up one
that contains the set of information as that point in time, and ac-
tion will be randomly generated thereafter. From the action of each
classifier in the match set, the weighted average of each action is
then calculated based on the fitness of the classifiers to construct
a prediction array [PA] for returns. Finally, the appropriate action
is determined through the random exploration or exploitation
method. This action is then used to set up an action set [A]. After
determining the appropriate action, the system delivers the action
to the effector to be sent for execution under the given conditions.
Depending on the level of correctness resulting from the execution,
the system will then provide internal reinforcement to the classifi-
ers, and the relevant weighting in terms of the strength of each
Fig. 4. The structure of XCS.

Initialize Population [P] (random generation) 

Load Parameters (parameters setting, i.e. crossover 

& mutation rate, transaction cost, learning 

iterations, Reward) 

For (All Samples in the training period) 

 Detectors Inputs (environment variables) 

 Convert Inputs into Bit String (encoding) 

 If (Inputs are in Population) 

  Generate Match Set [M]

 Else 

  Covering 

 For (Each Action in Match Set) 

  Compute System Prediction 

 Obtain Prediction Array [PA]

 Select Action 

Fig. 5. Algorithm of the XCS.
classifier within the action set is thus updated. Afterwards, the
evolutionary genetic algorithms mechanism is applied within the
action set, which will then eliminate the relatively weak rules.
Therefore, after a period of learning, the system can generate the
most appropriate action classifier that can adapt to the various
states created by various changes within a dynamic environment.
3.2. The proposed XCS-based arbitrage model

This study uses XCS to establish an inter-market arbitrage mod-
el. Fig. 6 represents the structure of the arbitrage trading system in
this study, which consists of three main components: data process-
ing, XCS, and portfolio management.

First, in order to deal with the huge volume of intra-day 1-min
transaction data, in the data pre-processing stage, the arbitrage
conditions are determined using the association rule mining ap-
proach described in Section 2.2. The price spread correlations, i.e.
the positive or negative sign of eMT

t ;
eMS

t and eS eMt , are applied to cal-
culate the most frequent item and then to filter out high-risk arbi-
trage opportunities so as to increase the efficiency of the model’s
high frequency data operation.

Second, with the remaining data, the XCS learning algorithm is
applied to conduct a purification of trading knowledge to find the
descriptive factor for the most suitable state for arbitrage trading.
XCS is a type of self-adjusting learning algorithm. Based on the dy-
namic factors of the state, it can search for conditions with the
highest fitness. Therefore, we have chosen some of the most com-
monly observed market trading data to be used as descriptive fac-
tors for setting up the conditions for arbitrage. These factors are
imputed into XCS and tied in with calculations of the return in va-
lue for arbitrage to facilitate learning of hidden knowledge and to
seek applicable knowledge and rules for arbitrage trading.

Finally, in the portfolio management component, we take into
account some of the demands of trading in practice, such as
stop-loss, profit cap, and closing out of positions at expiry. Daily
settlement for profits in arbitrage trading is conducted and applied
to manage the arbitrage portfolio, eventually working out the
investment decision of buying, holding, or selling.
3.3. Knowledge encoding and discovery by XCS

In XCS, the so-called classifier is made up of many ‘IF condition/
THEN action’ rules to represent the corresponding external state.
Usually, for the sake of easy application, binary coding is used for
the condition and action to represent various parameters of the
external state.
statistical

real timereal-time
transaction
data stream

arbitrage

training period

testing period

statistical
arbitrage
analysis

XCS rule 
discovering

historical
transaction

data

arbitrage
conditions

trading rules

trading risk 
analysis

profit-cap/stop-loss threshold

data stream
filter

trading rules
detecting

portfolio
controlling

Fig. 6. XCS-based arbitrage model.



Table 2
Composition of the classifier.

Conditions Action

Bit 1–4 Bit 5–8 Bit 9–12 Bit 13–14 Bit 15

Price spread between TX and MSCI eMT
t

� �
Price spread ratio of TX ðeS eMtÞ The term to expiry date for TX (Ti � t) Intra-day trading timing Profitable (true/false)

Examples
0 < X 6 3/16 ? 0 0 < Y 6 2/16 ? 0 Z = 1 ? 0 9:00 6 T < 10:00 ? 0 True (profit) ? 0
3/16 < X 6 6/16 ? 1 2/16 < Y 6 6/16 ? 1 Z = 2 ? 0 10:00 6 T < 11:00 ? 1 False (loss) ? 1
. . . . . . . . . 11:00 6 T < 12:00 ? 2
15/16 < X ? 15 30/16 < Y ? 15 Z = 16 ? 15 12:00 6 T < 13:30 ? 3
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Based on Eqs. (4) and (5) described in Section 2.1, we use the
price spread and the price spread ratio as the conditions descrip-
tive factors of the classifier system. Further, the time of trading is
also an important factor that will influence the arbitrage profitabil-
ity. The expiry date are considered as the conditions descriptive
factors of the classifier system. The performance of arbitrage activ-
ities is different within the same trading day and a certain time in
the day tends to be favored (Taylor, 2007). To take into account in-
ter-day activities, we also add in intra-day transaction times as a
state descriptive factor.

These conditions and action of the classifier must go through a
process of discretization before binary coding can be conducted.
Therefore, we use a linear function to conduct discretization. Table
2 shows the composition of the classifier in this study.

Moreover, in the process of knowledge discovery, there are
some parameters for the XCS operation that need to be defined.
In this study, the pay-off function used in XCS follows the hierar-
chical structured proposed by Wilson (1998). The three levels set
are maximum profit (loss), stop-loss (profit cap), and minimum
profit (loss). When XCS is in operation, the evolution of classifier
rules are also generated by the genetic algorithm used for setting
the relevant parameters according to the best value set as pro-
posed by Wilson (1998).

3.4. Evaluation method

This study follows the prediction of the XCS arbitrage model,
using intra-day 1-min trading data to conduct testing. Based on
trading time and trading data, predictions are made on whether
inter-market arbitrage trading can be conducted. We measure
the accuracy of prediction and profitability respectively and use
them as indicators to evaluate the model. They are defined as
follows:

1. Accuracy:

Table 3
Experiment design.
Accuracy ¼ no: of times of actual profit generation

no: of transactions
ð10Þ
Testing
model

No. of
dataset

Time-
frame

Training
period

Year of
testing
2. Profitability:
(1) XCS DS 1 4 years 2001–2003 2004
(2) Random DS 2 5 years 2001–2004 2005

DS 3 6 years 2001–2005 2006

Table 4
Arbitrage conditions determination.
Trading profit=loss ¼ ðsale priceÞ � ðpurchase priceÞ
� ðtransactions costsÞ ð11Þ

Profitability ¼ Average profit=loss per trade

¼
P

Trade profit=lossP
number of transactions

ð12Þ
No. of condition eMT
t

eMS
t

eS eMt
Support

1 >0 >0 >0 150/295 (0.51)
2 >0 >0 <0 60/270 (0.22)
3 >0 <0 >0 95/157 (0.61)
4 <0 <0 >0 60/237 (0.25)
5 <0 <0 <0 81/203 (0.51)
6 <0 >0 <0 112/197 (0.57)
4. Empirical result

4.1. Data and experiment design

This study obtains the empirical trading data from the TAIFEX
Taiwan Index Futures (spot month), the Taiwan Weighted Index,
the MSCI Taiwan Index Futures (spot month), the MSCI Taiwan In-
dex, and the corresponding underlying index’s intra-day 1-min
data. The foreign exchange rate of TWD/USD is the daily close
price. All the transaction data are provided by the APEX Interna-
tional Financial Engineering. Empirical analysis is undertaken on
data obtained within the intervals and selected from January 1,
2001 to December 30, 2006. Due to the fact that this study uses
price spreads as the benchmark, when executing strategies, the
timing used is mainly the intersection between the spot market’s
and the futures market’s opening times. The intra-day trading per-
iod for the sample data collection is between 9:00 in the morning
and 13:30 in the afternoon.

The main aim of designing the experiments is to look closely at
the XCS model’s applicability in arbitrage and compare it against a
random trading strategy. That is, when the XCS arbitrage model
determines at a certain point in time whether or not to give predic-
tion to an arbitrage opportunity, the random model would also
generate a random trading signal (which corresponds to an action
generated from the XCS model). It would also execute arbitrage
trading according to the random trading signal generated, holding
the positions till expiry without any allowance for any stop-loss or
profit-cap mechanism.

To further test the effects of different characteristics of the data
collected from different calendar years in trading and different
time intervals in the XCS model, three types of training and testing
datasets are designed, each undergoing empirical simulation using
the XCS model and the random model to conduct a total of six
types of testing. The experiment design and the relevant variants
collation are shown is Table 3.
4.2. Arbitrage conditions for data stream filter

To reduce the data size, processing and filtering of 1 min high
frequency data are one of the key processes for arbitrage in this



Fig. 7. Simulated trading situation of the XCS-based arbitrage model.
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study. Meanwhile, the correlation between price spread and suc-
cessful arbitrage provides a benchmark for the situational descrip-
tion classification in our model’s assessment of arbitrage success.
Following the method described in Section 2.2 and substituting
the daily trading data collected between January 1, 1998 and
December 30, 2006 into the model, the resulting conditions and
their support values are listed in Table 4.

From the table, it can be seen that Conditions 3 and 6 yield bet-
ter arbitrage opportunities. Therefore, this study utilizes these two
rules as data filtering conditions. Only intra-day 1-min data that fit
these two conditions will be entered into XCS for knowledge
discovery.
Table 5
Knowledge rules generated by XCS-based arbitrage model.

Rules Training Testing

No. Condition Cor. rate (%) Occ. times Cor. rate (%) Occ. times

Top five rules of correctness rate in training
87 10000110101 100 41 N.A. 0

100 00000010111 100 36 78 9
130 00000000010 100 34 0 13

98 00000010100 100 25 N.A. 0
178 10000010001 100 21 100 3

Top five rules of correctness rate in testing
200 00000010010 100 1 100 28
216 10000000001 100 13 100 25
196 00000010000 75 4 100 25
201 10000010011 65 17 100 19
153 10000111110 100 3 100 17

Top five rules occurred in training
46 10000000011 61 62 100 1
48 00000000110 77 47 100 6
87 10000110101 100 41 N.A. 0
27 00000000011 95 40 30 10
28 10000101111 97 38 N.A. 0

Top five rules occurred in testing
200 00000010010 100 1 100 28
216 10000000001 100 13 100 25
196 00000010000 75 4 100 25
201 10000010011 65 17 100 19
153 10000111110 100 3 100 17
4.3. Knowledge rules analysis

In this study, we performed a preliminary experiment to illus-
trate the knowledge discovery ability of the XCS model. simulta-
neously, we simulated the arbitrage trading with intra-day 1-min
data to illustrate the trading system.

In the preliminary experiment, we set the arbitrage condition
for filtering the data stream as Condition 3 and the dataset for
experiment as DS 3. The XCS-based arbitrage model was trained
and tested according to the intra-day 1-min trading data for six
years. During model training, only 26,471 pieces of 1-min trading
data distributed in 395 trading days from year 2001 to year 2005
could fit the condition and pass the data stream filter. After XCS
training, 227 trading rules were generated from 26,471 pieces of
1-min trading data, which were then used for testing.

During testing, only 1108 pieces of 1-min trading data in the
year 2006 could fit the condition and pass the data stream filter.
Among these, only 359 pieces of data were matched with 57 rules,
which were generated by XCS. We then executed the arbitrage
transaction. We captured the trading situation of one trading day
in the testing period to illustrate the capability of the XCS model.

Fig. 7 is the simulated trading situation on January 2, 2006.
Small pieces of the streaming data during the whole trading day
were filtered out as the arbitrage interval. Among the 271 pieces
of intra-day 1-min trading data from 9:00 AM to 13:30 PM, only
46 pieces of data could fit Condition 3, and they were viewed as
the arbitrage opportunities. Seventeen pieces of 1-min trading data
among the arbitrage opportunities were matched with the XCS
rules, and the arbitrage transaction was then executed. In Fig. 7,
we can observe that the arbitrage opportunities were distributed
during the period from market opening at 9:00 AM to 10:27 AM.
The arbitrage transactions were concentrated between 9:17 AM
and 9:52 AM, lasting about 5 min. The arbitrage opportunities
did not occur every time. Only a few arbitrage opportunities
matched the XCS rules and were suitable to execute arbitrage
transaction.
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In order to understand the meaning of the knowledge rule gen-
erated by XCS, the top five rules selected by the correctness rate
and occurrence times in training and testing are listed in Table 5.

In Table 5, we can observe that the knowledge rules with high
correctness rate in training seldom occurred during testing; simi-
larly, the knowledge rules with high correctness rate in testing sel-
dom occurred during training. The highest correctness rate of the
knowledge rules both in training and testing were 100%. However,
the correctness rate of the knowledge rules that occurred most fre-
quently during training was less than 100%. Moreover, the knowl-
edge rules with the highest correctness rate were consistent with
the rules that occurred most frequently during testing.

Based on the above analysis, we conclude that for a certain
knowledge rule generated by XCS, the correctness rate in training
is inconsistent during testing. We also find that the rule with the
highest correctness rate in training does not work during testing,
while the rule with the highest correctness rate in testing does
not work as well as that during training. However, the rules that
occurred most frequently and have the highest correctness rate
are consistent during testing. Applying these rules in trading can
help gain profit.
4.4. Model comparison

From the two conditions derived in the previous section, Condi-
tions 3 and 6 are used as the filtering conditions. The XCS model
Table 6
Model comparison of accuracy.

Model Dataset Accuracy (%)

Min. Max. Ave. Std.

Condition 3
XCS DS 1 59.28 77.45 69.58 6.79

DS 2 48.23 53.73 52.13 1.65
DS 3 74.86 83.25 79.29 3.16

Rand. DS 1 47.15 49.68 48.53 0.86
DS 2 47.22 49.21 48.55 0.6
DS 3 45.48 50.63 48.67 1.58

Condition 6
XCS DS 1 65.78 68.41 66.45 1.05

DS 2 27.65 34.61 31.87 2.12
DS 3 66.05 75.87 70.55 3.13

Rand. DS 1 47.02 49.19 48.37 0.73
DS 2 47.83 49.63 48.68 0.59
DS 3 48.41 49.42 48.80 0.39

Table 7
Model comparison of profitability.

Model Dataset Profitability (per trading)

Min. Max. Ave. Std.

Condition 3
XCS DS 1 2674 15805 8538 4462

DS 2 89 1782 889 496
DS 3 10187 13752 12025 1217

Rand. DS 1 �1241 2281 �38 1048
DS 2 �288 422 147 272
DS 3 �3498 11904 1740 4912

Condition 6
XCS DS 1 8538 10259 9462 639

DS 2 �7794 �4814 �5906 577
DS 3 4785 16059 10140 3369

Rand. DS 1 �1525 1756 �137 1013
DS 2 �842 424 �235 360
DS 3 �581 845 �17 430
then undergoes a processes of learning and verification, testing
the accuracy and profitability of the model. As the XCS model uses
the genetic algorithm (GA) for selection of the fittest situational
factor and has a random mutation characteristic, repeated experi-
ments on the same dataset will yield results that are inconsistent
with the expectations. Repeated experiments yielding inconsistent
results can also occur in the random trading model. For this reason,
the experiment on the same dataset should be repeated for 10 tri-
als, and the average and standard deviation of these 10 sets of
experiment results should be calculated. The results of the experi-
ment under the two conditions are collated in Tables 6 and 7.

From Table 6, it can be observed that in terms of accuracy,
through the inter-market arbitrage model’s constructed random
model, there is close accuracy in all the simulated trading scenar-
ios. However, the accuracy of the XCS model compared with all the
simulated trading scenarios is distinct. For the XCS model, apart
from the average accuracy of Condition 6 not exceeding 50% during
the testing period in 2006 (DS 2) and having the lowest value of
31.87% amongst all the experiments, its other situational accuracy
levels all exceed 50% and are superior to the random model (which
averaged around 48% in accuracy across all situations). Amongst
the experiments, Condition 3 generated the maximum average
accuracy of 79.29% during the testing period in 2006 (DS 3).

From Table 7, in terms of profitability, regardless of condition
and dataset selection, all tests of the XCS model – with the excep-
tion of Condition 6 in the 2006 (DS 2) testing period which results
in a negative return and underperformed the random model – has
shown far greater profitability than the random model.
5. Conclusion

In inter-market arbitrage, if two futures products have different
expiry dates, then a closing out of position will be forced upon the
underlying commodity that first reaches expiry, exposing other
components that are yet to expire due to risks. This will in turn
lead to the failure of the arbitrage strategy. These risks are difficult
to quantify using traditional financial engineering. Therefore, this
study addressed this issue by proposing a dynamic learning,
adjustable XCS inter-market arbitrage trading model to reduce
risks associated with inter-market arbitrage. In addition, this study
also proposed a solution for handling large volumes of intra-day
1-min trading data. By using association rules to filter high
frequency data, inter-market arbitrage opportunities can be imme-
diately identified through searching the intra-day 1 min trading
data.

This study used nearly six years’ of intra-day 1-min trading data
to conduct this empirical research, measuring the XCS model’s
accuracy and profitability and comparing it with the testing results
generated by random trading strategies. Results from this research
show that – compared to the random model – by using factors such
as price spread ratio, expiry date, and intra-day trading time to
build the XCS inter-market arbitrage model, it yields sufficient
accuracy and profitability and can effectively lower the risks asso-
ciated with inter-market arbitrage.
References

Beltrametti, L., Fiorentini, R., Marengo, L., & Tamborini, R. (1997). A learning-to-
forecast experiment on the foreign exchange market with a classifier system.
Journal of Economic Dynamics & Control, 21(8–9), 1543–1575.

Butterworth, D., & Holmes, P. (2002). Inter-market spread trading: Evidence from
UK index futures markets. Applied Financial Economics, 12(11), 783.

Chang, P., & Fan, C. (2008). A hybrid system integrating a wavelet and TSK fuzzy
rules for stock price forecasting. IEEE Transactions on Systems Man and
Cybernetics, Part C – Applications and Reviews, 38(6), 802–815.

Chang, P., & Liu, C. (2008). A TSK type fuzzy rule based system for stock price
prediction. Expert Systems with Applications, 34(1), 135–144.



3792 Y.-C. Hsu et al. / Expert Systems with Applications 38 (2011) 3784–3792
Cornell, B., & French, K. R. (1983). The pricing of stock index futures. Journal of
Futures Markets, 3(1), 1–14.

Dunis, C. L., Laws, J., & Evans, B. (2006). Trading futures spreads: An application
of correlation and threshold filters. Applied Financial Economics, 16(12),
903.

Dunis, C. L., Laws, J., & Evans, B. (2008). Trading futures spread portfolios:
Applications of higher order and recurrent networks. The European Journal of
Finance, 14(6), 503.

Edelman, D. (2008). Using Kalman-filtered radial basis function networks for
index arbitrage in the financial markets. In Natural computing in computational
finance; 1st European workshop on evolutionary computation in finance and
economics, Valencia, Spain. Studies in computational intelligence (Vol. 100, pp.
187–195).

Figlewski, S. (1984). Explaining the early discounts on stock index futures: The case
for disequilibrium. Financial Analysts Journal, 40(4), 43–47.

Ghandar, A., Michalewicz, Z., Schmidt, M., To, T., & Zurbrugg, R. (2009).
Computational intelligence for evolving trading rules. IEEE Transactions on
Evolutionary Computation, 13(1), 71–86.

Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques (2nd ed.). Morgan
Kaufmann.

Holland, J. H. (1976). Adaptation. In R. Rosen & F. M. Snell (Eds.). Progress in
theoretical biology (vol. 4). New York: Plenum.

Holland, J. H., & Reitman, J. S. (1977). Cognitive systems based on adaptive
algorithms. SIGART Bulletin(63), 49.

Klemkosky, R. C., & Lee, J. H. (1991). The intraday ex post and ex ante profitability of
index arbitrage. Journal of Futures Markets, 11(3), 291–311.

Li, S., & Kuo, S. (2008). Knowledge discovery in financial investment for forecasting
and trading strategy through wavelet-based SOM networks. Expert Systems with
Applications, 34(2), 935–951.

Liao, P. Y., & Chen, J. S. (2001). Dynamic trading strategy learning model
using learning classifier systems. In Proceedings of the 2001 congress on
evolutionary computation, IEEE congress on evolutionary computation; congress
on evolutionary computation (CEC 2001), Seoul, South Korea (Vols. 1 and 2, pp.
783–789).

Luo, W. C. (2002). Spread arbitrage between stock index futures in Taiwan: A
cointegration approach. Working paper. University of Southampton.
Modest, D. M., & Sundaresan, M. (1983). The relationship between spot and futures
prices in stock index futures markets – Some preliminary evidence. Journal of
Futures Markets, 3(1), 15–41.

Moles, P., & Terry, N. (1997). The handbook of international financial terms. Oxford
University Press.

Montana, G., Triantafyllopoulos, K., & Tsagaris, T. (2009). Flexible least squares for
temporal data mining and statistical arbitrage. Expert Systems with Applications,
36(2), 2819–2830.

Schulenburg, S., & Ross, P. (2002). Explorations in LCS models of stock trading. In
Advances in learning classifier systems; 4th international workshop on learning
classifier systems, San francisco, California. Lecture notes in artificial intelligence
(Vol. 2321, pp. 151–180).

Tan, A., Quek, C., & Yow, K. C. (2008). Maximizing winning trades using a novel
RSPOP fuzzy neural network intelligent stock trading system. Applied
Intelligence, 29(2), 116–128.

Taylor, N. (2007). A new econometric model of index arbitrage. European Financial
Management, 13(1), 159–183.

Teddy, S.D., Lai, E.M.-K., & Quek, C. (2008). A cerebellar associative memory
approach to option pricing and arbitrage trading. In Neurocomputing; 13th
International Conference on neural informational processing, Hong Kong, Peoples
Republic China (Vol. 71(16–18), pp. 3303–3315).

Wang, J., & Hsu, H. (2006). Degree of market imperfection and the pricing of stock
index futures. Applied Financial Economics, 16(3), 245.

Wang, J., & Chan, S. (2007). Stock market trading rule discovery using pattern
recognition and technical analysis. Expert Systems with Applications, 33(2),
304–315.

Wang, J., & Chan, S. (2009). Trading rule discovery in the US stock market: An
empirical study. Expert Systems with Applications, 36(3), 5450–5455.

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation,
3(2), 149–175.

Wilson, S. W. (1998). Generalization in the XCS classifier system. In J. R. Koza et al.
(Eds.), Genetic programming 1998: Proceedings of the third annual conference
(pp. 665–674). Morgan Kaufmann.

Zarandi, M. H. F., Rezaee, B., Turksen, I. B., & Neshat, E. (2009). A type-2 fuzzy rule-
based expert system model for stock price analysis. Expert Systems with
Applications, 36(1), 139–154.


	An inter-market arbitrage trading system based on extended classifier systems
	Introduction
	Arbitrage strategy analysis
	Inter-market arbitrage
	Determining arbitrage trading conditions
	Trading interval and portfolio management

	The XCS-based model for arbitrage
	Extended classifier system
	The proposed XCS-based arbitrage model
	Knowledge encoding and discovery by XCS
	Evaluation method

	Empirical result
	Data and experiment design
	Arbitrage conditions for data stream filter
	Knowledge rules analysis
	Model comparison

	Conclusion
	References


