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We extend théddomian’s decomposition methtmlwork for the general eigenvalue problems, in addition to
the existing applications of the method to boundary and initial value problems with nonlinearity. We develop
the Hamiltonian inverse iteratiomethod which will provide the ground state eigenvalue and the explicit form
eigenfunction within a few iterations. The method for finding the excited states is also proposed. We present a
space partition method for the case that the usual way of series expansion failed to converge.
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I. INTRODUCTION treatment of the anharmonic oscillator, and in Sec. VI, we try
. . ) . . to solve the nonlinear Gross-Pitaevskii equation that de-
_Adomian's method solves nonlinear differential equationsg, jneq the Bose-Einstein condensate by the new scheme. We
with decompositions. Neither linearization nor perturbauonﬁnd that the straightforward way of ADM failed to converge.

s applied to the nonlinegr part. The method ha}s be.e” Wide'.VVe introduce in Sec. VII the space partition method to over-
applied to various domains in science and engineering, but is,

. : . . ome the trouble of divergence encountered in the previous
less popular in physics. Actually, in Chap. 14 of Adomian's go ion - section Vil is devoted to concluding remarks.
comprehensive bookl], he treated many physical topics,
namely, the Navier-Stokes equations, onset of turbu- Il. HAMILTONIAN INVERSE ITERATION
lence, Burger’s equation, nonlinear transport, advection- i )
diffusion equation, Korteweg—de Vries equation, nonlinear Consider the general eigenvalue problem
Schrddinger equatio(NLSE), and classicaN-body dynam- Hu(x) = \u(x), (1)
ics, etc. It shows thatAdomian’s decomposition method
(ADM) is extremely versatile in nonlinear physical prob- Where
lems. For some other examples, Adomian and co-workers _
also formulated the solutions for Thomas-Fermi equaltidn H =L +V(UG9). 2
and the Ginzburg-Landau equati¢8]. Wazwaz employed L is usually a differential operator such as f2(d?/dx?)
ADM to give the soliton and periodic solutions of the Bouss-and V(u(x)) is the potential function, either dependent or
inesq equatiof4]. Abbaouiet al. discussed the convergence independent ofu(x). The former case is a linear problem
of the ADM [5]. Guellalet al. gave the ADM explicit solu-  while the latter case is nonlinear and is called a nonlinear
tion of the Lorenz systerf6]. Schrédinger equation. We describe the difficulty in the ADM

The ADM is generally applicable to nonlinear differential for eigenvalue problems first. Adomian wrote the solution as
equations for either initial value problems or boundary probthe sum of decompositions

lems. The basic theory is clearly described in Adomian’s .

book [1]. On the other hand, we are not able to find out . n

systematic treatment for the eigenvalue problems by ADM. u(x;e) = 2 €"Un(X). 3)

Since the eigenvalue problem is fundamentally important for o

the structure of a system, the pursuit of ADM for the eigen-Expand the potentidV(u(x; e)),

value problem is a worthwhile work. It is, nevertheless, not

straightforward. Also, the ADM gives an explicit form of

solutions that the numerical grids method cannot do. Thus

the ADM treatment of the eigenvalue problem is valuable to

computational physics. In this paper, we develop the methobere we introduce the parameteto collect the coefficients

for solving the eigenvalue problems by ADM. We will of same order in both sides to find out the decompositigns

briefly describe the ADM first, and then present our methodfor a generalV. The introducede is set equal to 1 at last.

for the eigenvalue problem. Some paradigmatic examples dfome examples oA, can be found in Refl1] and will not

both linear and nonlinear eigenvalue equations are given. be repeated here. L&t be the inverse operator &f Op-
The paper is organized as follows. In Sec. II, we introduceerating theL™* to Eq. (1), we have

the Hamiltomian inverse iteration scheme for the ADM of T ~1

eigenvalue problems. In Sec. I, we apply the method to the LoLu=alfu-Lov. ®)

problem of a particle in a box. In Sec. 1V, the method isThe solution of decomposition orders are obtained system-

applied to the simple harmonic oscillator. Section V is aatically [1]. That is,

V(u(x;e)) = > €'A; (4)
n=0
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Up(X) = Co + C1X, negligible through the HIl scheme. So the expectation value
of the eigenvalue is

Uera(0 = AL LA ©®) M= (1= O+ ks (12

wherec, andc, are the integration constants generated by,ance the error is
the double integration df ™%, They can be determined either
by symmetric property or by the boundary condition. For the K=~ A= €= Ny (13
eigenvalue problems, the valueis unknown, the scheme
does not work mainly due to the accumulation of unknown
into higher orders during the iterations. Thus the ADM to the hereC... is th lizati tant. A .
eigenvalue problems is not straightforward. wherei., 1S the hormalization constant. ASSumaes very
The inverse iteration is a powerful procedure to computesma”’ then
the eigenfunctions and eigenvalues of a linear sydtém 1 M
The basic idea of our Hamiltonian inverse iteration follows Ci1= Lot erm Ap| 1+ '5(1 - )
that for linear system. Consider an initial trial solutidty of " el
Eq. (1), ¥, in principle will be a linear combination of the (14)
eigenfunctiong ¢,.}:

Iterate one more time, the component ¢% becomes
Cis1(1—€)/\,, and the component of,.1 iS Cyrq €/ N i1,

n+l

Thus the expectation of the eigenvalue will be

. N A
Wo= 2, Cocbn- (7) N1 = (1 —e—" ))\n +— €Ny - (15)
n=0 An+1 Ane1
Repeatedly applying the inverse Hamiltonian operatoPgo  The error now will be
leads to N N
o & 1= A1~ Nn = '5)\_”(7\n+1 -\ = ( . )5k-
H—l k\If - c n . 8 n+1 n+1
H1%0= Z ey © (16)

Without loss of generality, we assume the eigenspectrum if means that when we iterate one more time, the error will
{0<Ng<A;<\,<---}. For sufficiently large value df, the ~ be smaller by a factor af,/\n.;. To reach theNth decimal
remaining of iterations will be dominated by the ground statéP/ace accuracy in eigenvalue, the number of iterations can be
eigenfunction only. estimated to b&N/log(\:1/\p).

Symbolically, given an initiaV,, and denoting the ap-

d . . . IIl. EXAMPLE OF THE PARTICLE IN A BOX
proximate eigenvalue of thigh iteration by\,, we have, for

the next iterationVy, 4, We start to explore the method with the simple problem of
a particle in a box. Its eigenstates are analytically known.
Ly L SN
H W, = —W,,,, (9) The potentiaV(x) is
% (
v
where theW’s are renormalized at the end of each iteration. ®, X<- 5

Convergence of the inverse iteration toward an eigenstate

can be estimated by tHeayleigh Quotient$RQ), which are V(X) :< 0, - KU f, 17)
given by 2 2
a
A= f ‘I}kH‘I’k+1dX. (10) o, E <X.
\
\.S, 2
k 1d
. H=--—, (18)
lim \Irk: ¢)01 and H¢0 = )\OUO. (11) 2dX2
k—oo
We call this procedure thélamiltonian inverse iterations and the boundary conditions at the box ends are
(HI1). If we project out the obtained ground staigfrom the _om
initial trial function W, the HIl will lead to the next higher Yy x=+-]=0. (19)

eigenstate. The excited states can thus be found by Hll, too.

Next, we will estimate the number of iteration steps to  Using the notationL,=d?/dx* and H™=-2L33, by the
reach a gi\/en accuracy in the eigenva|ue_ Consider we ardll method, the relationship between consecutive iterations
solving thenth eigenstate for a system. Aftértimes HIl IS
iteration procedures, we may denote the result as a factor of
(1-¢) in the component ofp, and a factor ofe in the next
higher statep,,.1. The components in other higher states areAssuming the decomposition forms are

PV =H W =-2L ¥, (20)
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_ . _ " (k+2)(k+ 1) 1
Folx) z)ao’“x - and ¥ goal’"x - @ k=" 5 G2t S8k k>2. (27)
then the HIl leads to the following coefficient relations: In terms of the power oK,
30=C; (an unknown integration constant X a,0=C,; (anunknown integration constant
a;1=C, (an unknown integration constant x%: a,,=C, (anunknown integration constant

2. _
X7 @12= "800

a =2
KT kk-1)

We can assign the unknown constants by the parity of the X< ag = ;(al k-4 = 289 k-2) - (28
wave function in this case. For the ground stale=0. we ©okk-1) " '

arbitrarily use the starting trial functioo(x)=1-(2x/m)’.  To find the integration constan@, andC,, we regroup the
The v, derived from Eq.(l5) is used as the new trial func- wave function\lfl into three parts

tion. We iterate tk=7, the eigenvalue obtained is accurate

to 15 decimal places. And the obtained coefficients give us V=¥, +C¥s+C¥,, (29
an explicit form of the ground state eigenfunction. For the,nere

first excited state, symmetry requir€=0. We useWy(x)

Ao k-2- (22

=x[1-(2x/7)?], the iterations tck=16 provides the eigen- v, = > X", Wy= > X", W= > X",
value accurate to 10 decimal places, and iterations=ta4 n=0 n=0 n=0
leads to 15 decimal places accuracy. (30)
IV. EXAMPLE OF THE SIMPLE HARMONIC Then we have the following relationships for the three series:
OSCILLATOR 0
X" a,0=0,
The next example is the classic case of the simple har-
monic oscillator. Again, the eigenstates are analytically xta,,;=0,
known. The potentiaV/(x) now is ’
1, X2 A, = = & Q
V() =2x, (23 HGa2T 551 %00
with the boundary condition -2
X3: Ay 3= 9,1,
(X — o) —0. (24) T 3xX2 7
By the HIlI method, the relation of iteration is
1 1,
qfo = - _Lqu}l + =X ’\Ijl. (25)
2 2 K. __ 1 :
X% 8gk= k(k—_l)(aa,k—A —239k-2) ; (31)
Assume the decomposition forms
and
Vi) = a X", with i=0,1 (26)
n=0 X0 ago=1,
and the coefficient relations from HIl are 1
X ag,=0,
__2x1
Q0= > aj 2, N a5,=0,
3X?2 x3: ag3=0,
dp1=~ 2 1,3
- 4x3 1 1
2= 1,47 591,00 K. _ .
2 2 Xtag= ————agk-4,; 32
Bk k(k_ 1) 'B.k—4 ( )
and
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x% a,,=0,
xtha, =1, _ (k+2)(k+1)
k=" #al,mz + Eal,k—Z T U4 k-4
x* a,,=0,
' +v6dy -5, When k= 6.
X% a,3=0, In terms of the power oX,
X% a;,=C; (an unknown integration constant
1 xt: a;;=C, (anunknown integration constant
k. _ 1,1= L2
X a, = ————a,k4a- 33 :
v,k k(k+ 1) v,k-4 ( )
We choose the boundary,(L)=0 at L=6.0. For the N a12:_—a00
“o2x127”

ground state, we seIfO:e‘><2 and expand it to the power of
200 inx for iteration, atk=12 the eigenvalue is accurate to

10 decimal places; and &=15 the accuracy is up to 15 3 -2

decimal places. For the first excited state, we chodge X 3= o0 S8
2 . . .
=xe*, at k=15 the eigenvalue is accurate to 10 decimal
places, and at=33 the accuracy is up to 13 decimal places.
Xty e= 473(31,0_ 289,

V. EXAMPLE OF THE ANHARMONIC OSCILLATOR

We consider in the following the anharmonic oscillator ;. 1
that was recently treated by the imaginary time propagation X7 Ays= o, (81,1~ 28,9,

5X4
method[8]. It provides the calibrations of our method. The

potential form is
1 2 6
V(x) = EX + 1)4X4 +v6X7, (34)

k. = + + -
and the boundary condition is the same as the simple har- AT k- (Buica* vaBaicot veRuico ™ 2oic2)-
monic oscillator. By the HIl method, the relationship be- (36)
tween iterations is
1 1 We again regroup the power series ifitg, V5, andV,,. The
Vo= =L W, + (_Xz + o+ ste)q,l; (35)  integration constant&, and C, can be found by Eq(29).
2 2 For ground state witl,=0.02, andvg=0.01[8], we choose

) ) ) . . — X2 ;
as in the previous power series expansion, the coefficiento=€ - and expand to the power &fup to 200. Iterations

relations are to k=12 and set cutoff dt =4.5, the eigenvalue is accurate to
nine decimal places. For the first excited state, take
890= ~ a2 =xe*"2 and expand to the power &fup to 200. Iterations to
k=20 gives the eigenvalue accurate up to eight decimal
3X2 places.

= a 3,
o1 5 A3

VI. EXAMPLE OF NLSE, THE GROSS-PITAEVSKII

4XxX3 1 EQUATION
80.2% 7 T, Aat SA0 o _ _
In the recent Bose-Einstein condensation experiments of

dilute alkali atomic gase§9], the condensate is well de-

59X 4 1 scribed by the mean-field approximation, that is, the Gross-

B3=~ T AT DA Pitaevskii equatiofGPB. Furthermore, if the trap potential
is cigar shaped, the GPE is effectively one dimensiph@l.
6X5 1 Following the pseudospectral methptil], we have devel-

Ay 4=~ > a6t §a1,2+ V44 0, oped an efficient and accurate numerical scheme for solving
the GPE. Our pseudospectral method has been calibrated
with published calculationfl2] and provides a way to jus-

805= 7 X 6a1,7+ 131,3+ vaa 1, tify our new ADM of eigenvalue problems.

2 2 Consider the eigenvalue problem of the GPE,
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1d? ) A,=gp¥, =D A, X 45
— S +V(X) + V]2 | ¥ = ¥, 37 yTOPE T 4 AyiX (45)
(-2 v+ g = @
with the order parameter normalized to the number of conThen the relationships become
densed atoms X% a,0=0,
j_hw%sz. (38) & a,,=0,
By the HII, the iteration relationships are X% 8y 2= A0~ a0
v —(— }d—2+v(x)+ | W |2>\If (39 2
07\ 2d¥ A=l )51 X3 a5 = Ix 2 Pa1” 200,
We expand|¥,>=p==;pix, and the nonlinearity into de-
compositions

gp¥, = E AX . (40) 5 .
' X @y = (Aa,k—Z —ak2*t _aa,k—4>; (46)

The coefficient relationships are k(k=1) 2
_ o 2x1 and
Q0= Ao— 2 a2, x0: ago= 1,
3x2 x! ag,=0,
a1=A -~ 2 1 3,
X2: alB’Z = Aﬁvo,
2
X% ag3= ———(Aga),
(k+2)(k+1) 1 B3T3x 2P
aok=Ac~ fal,mz + Eal,k—Z- (41)
In terms of the power of,
0. — ; ; 1
X a0=C; (anunknown integration constant K- a5 = m(ZAﬁ,k—z*‘ agu-a); (47)
x: a;,=C, (an unknown integration constant and
0. -
X a12= Ao~ 39,0, X" 8,0=0,
1. —
2 Xt a, =1,
X3 3= ——(A -
1,3 3><2( 1~ 89,1), ,
X7 a,=A,,
2
3 a,3=———=(A,1),
y 2 ( 1 ) X X 8a= 35y
X0 A= | Ao~ Qg2 t A1 k-4]- 4
Lk k= 1)\ Y2 Ao k-2 5A1k-4 (42)
We again regroup it inté,, V5, and ¥, to find the integra-
tion constantsC,; and C,, by Eq. (29). The three nonlinear 1
terms are expanded as X< a,k= m(ZA%H +a,q). (48)
Aa=0pV o= % AgiX, (43) For the trap with parametegs=0.017 84 and=100, by
using the trial functiore™"2, and cutoff atL=2.38. We ob-
and tain A=1.1684 for iterations up t&k=16. However, if we
B B ; extend the cutofL to larger value, the direct use of power
Ag=gp¥ = % AgiX, (44) series expansion in ADM does not converge, and no solution
h will be found. So the eigenvalue=1.1684 is not the correct
and ground state. This happens if the cutoff lies beyond the ra-
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dius of convergence for the power series expansion. To over- TABLE I. The eigenvalues of the Gross-Pitaevskii equation cal-
come the trouble, we develop the space partition method iaulated by the space partition method fobosons.
the next section.

N Number of iterations Chemical potential
VIl. SPACE PARTITION METHOD FOR ADM 100 10 1.127825
EIGENVALUE PROBLEMS 500 16 2.88870
To justify the convergence of series expansion, we divide 1000 28 4.522398
the space [0,L] into p partitions [Xy1,Xp],m 5000 93 13.1060

=1,2,3,...p. And the iteration functionV, in the mth par-
tition is denoted asly (x) with X & [Xp-1,Xp]. The global

solution is given by

p
V() = 2 W m(XxmX), x e [0,L], (49)
m=1
where
)1 XE X1 Xl
Xm(x) = {0' X £ [Xm—lvxm]v (50)
and
[0.L]= @l[xm,xml. (51)

In mth partition, note that the potentia¥/(x) become

V(X1 tX).

We choosd =6, p=6, andX,,=m, the connection condi-

tion atx=X, is

Mn(D)Cri=Mmn1(0)Crii1, 1=m=p-1, (52

M,(1)C, =B, (53
where
1 0 0
Mm(x) = \I’a,m(x) \I’ﬁ,m(x) q’y,m(x) ’ (54)

Wom) Ypm(x) WX

whereM,(0)=I and

1 1
Cn=|Cn1| B= 0 . (59)
Cm,2 \I,l,((l—)

with unknownW¥, (L).
For the even parity ground statg; ;=0. we have p-1

unknown constants. The order parameter and its first deriva-

B=M,(1)Cp=My(L)M,1(1)Cp 4
=Mp(DOM,_1(DMg5(1) - -+ M4(1)Cy

=MC;, (56)

where M=M ()M _1(1)My_5(1)---M4(1). We determine
C,, and ¥, ; by the Eq.(56), and the next neighbor order
parameter by the E@52). The totalV; can then be obtained.

With the space partition method, we overcome the prob-
lem of convergence. The results of some calculations are
shown in Table I.

VIIl. CONCLUSION

Adomian’s decomposition method together with the
Hamiltonian inverse iteration technique provide a simple and
powerful tool for the eigenvalue problems. Unlike other nu-
merical grids methods, the ADM technique gives explicit
form of solution. Moreover, although we showed only the
decomposition solutions for differential equations, the
method is applicable to algebraic equations, too.

The inverse iteration for finding the eigenfunctions and
eigenvalues is well known in matrix theory, but applications
to differential equations are not common. The difficulty lies
particularly in writing down the inverse of the Hamiltonian.
But with the ADM, we have found a way to do it. Combining
the Hamiltonian inverse iteration and Adomian’s decomposi-
tion method, we have developed an efficient algorithm to
solve the general eigenvalue problem. We show that the new
method works well for both the linear and nonlinear prob-
lems. Even for the nonlinear case, only a few iterations are
required to achieve high accurate results, while using our
pseudospectral method for Gross-Pitaevskii takes far more
steps of iterations.

A drawback of the ADM is the constraint of the boundary
condition, especially when the size of boundary is larger than
the radius of convergence of the expansion series of the wave
function. We develop the partition of the space method and
overcome this trouble.
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