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Adomian’s decomposition method for eigenvalue problems

Yee-Mou Kao1 and T. F. Jiang2
1Institute of Applied Mathematics, National Chiao-Tung University, Hsinchu 30010, Taiwan

2Institute of Physics, National Chiao-Tung University, Hsinchu 30010, Taiwan
sReceived 10 September 2004; published 8 March 2005d

We extend theAdomian’s decomposition methodto work for the general eigenvalue problems, in addition to
the existing applications of the method to boundary and initial value problems with nonlinearity. We develop
theHamiltonian inverse iterationmethod which will provide the ground state eigenvalue and the explicit form
eigenfunction within a few iterations. The method for finding the excited states is also proposed. We present a
space partition method for the case that the usual way of series expansion failed to converge.

DOI: 10.1103/PhysRevE.71.036702 PACS numberssd: 02.70.Wz, 03.65.Ge

I. INTRODUCTION

Adomian’s method solves nonlinear differential equations
with decompositions. Neither linearization nor perturbation
is applied to the nonlinear part. The method has been widely
applied to various domains in science and engineering, but is
less popular in physics. Actually, in Chap. 14 of Adomian’s
comprehensive bookf1g, he treated many physical topics,
namely, the Navier-Stokes equations, onset of turbu-
lence, Burger’s equation, nonlinear transport, advection-
diffusion equation, Korteweg–de Vries equation, nonlinear
Schrödinger equationsNLSEd, and classicalN-body dynam-
ics, etc. It shows thatAdomian’s decomposition method
sADM d is extremely versatile in nonlinear physical prob-
lems. For some other examples, Adomian and co-workers
also formulated the solutions for Thomas-Fermi equationf2g
and the Ginzburg-Landau equationf3g. Wazwaz employed
ADM to give the soliton and periodic solutions of the Bouss-
inesq equationf4g. Abbaouiet al. discussed the convergence
of the ADM f5g. Guellal et al. gave the ADM explicit solu-
tion of the Lorenz systemf6g.

The ADM is generally applicable to nonlinear differential
equations for either initial value problems or boundary prob-
lems. The basic theory is clearly described in Adomian’s
book f1g. On the other hand, we are not able to find out
systematic treatment for the eigenvalue problems by ADM.
Since the eigenvalue problem is fundamentally important for
the structure of a system, the pursuit of ADM for the eigen-
value problem is a worthwhile work. It is, nevertheless, not
straightforward. Also, the ADM gives an explicit form of
solutions that the numerical grids method cannot do. Thus
the ADM treatment of the eigenvalue problem is valuable to
computational physics. In this paper, we develop the method
for solving the eigenvalue problems by ADM. We will
briefly describe the ADM first, and then present our method
for the eigenvalue problem. Some paradigmatic examples of
both linear and nonlinear eigenvalue equations are given.

The paper is organized as follows. In Sec. II, we introduce
the Hamiltomian inverse iteration scheme for the ADM of
eigenvalue problems. In Sec. III, we apply the method to the
problem of a particle in a box. In Sec. IV, the method is
applied to the simple harmonic oscillator. Section V is a

treatment of the anharmonic oscillator, and in Sec. VI, we try
to solve the nonlinear Gross-Pitaevskii equation that de-
scribes the Bose-Einstein condensate by the new scheme. We
find that the straightforward way of ADM failed to converge.
We introduce in Sec. VII the space partition method to over-
come the trouble of divergence encountered in the previous
section. Section VII is devoted to concluding remarks.

II. HAMILTONIAN INVERSE ITERATION

Consider the general eigenvalue problem

Husxd = lusxd, s1d

where

H = L + V„usxd…. s2d

L is usually a differential operator such as −1/2sd2/dx2d
and V(usxd) is the potential function, either dependent or
independent ofusxd. The former case is a linear problem
while the latter case is nonlinear and is called a nonlinear
Schrödinger equation. We describe the difficulty in the ADM
for eigenvalue problems first. Adomian wrote the solution as
the sum of decompositions

usx;ed = o
n=0

`

enunsxd. s3d

Expand the potentialV(usx;ed),

V„usx;ed… = o
n=0

`

enAn; s4d

here we introduce the parametere to collect the coefficients
of same order in both sides to find out the decompositionsAn
for a generalV. The introducede is set equal to 1 at last.
Some examples ofAn can be found in Ref.f1g and will not
be repeated here. LetL−1 be the inverse operator ofL. Op-
erating theL−1 to Eq. s1d, we have

L−1Lu = lL−1u − L−1V. s5d

The solution of decomposition orders are obtained system-
atically f1g. That is,
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u0sxd = c0 + c1x,

uk+1sxd = lL−1uk − L−1Ak, s6d

wherec0 and c1 are the integration constants generated by
the double integration ofL−1. They can be determined either
by symmetric property or by the boundary condition. For the
eigenvalue problems, the value ofl is unknown, the scheme
does not work mainly due to the accumulation of unknownl
into higher orders during the iterations. Thus the ADM to the
eigenvalue problems is not straightforward.

The inverse iteration is a powerful procedure to compute
the eigenfunctions and eigenvalues of a linear systemf7g.
The basic idea of our Hamiltonian inverse iteration follows
that for linear system. Consider an initial trial solutionC0 of
Eq. s1d, C0 in principle will be a linear combination of the
eigenfunctionshfnj:

C0 = o
n=0

`

cnfn. s7d

Repeatedly applying the inverse Hamiltonian operator toC0
leads to

fH−1gkC0 = o
n=0

`

cn
fn

slndk . s8d

Without loss of generality, we assume the eigenspectrum is
h0,l0,l1,l2, ¯ j. For sufficiently large value ofk, the
remaining of iterations will be dominated by the ground state
eigenfunction only.

Symbolically, given an initialC0, and denoting the ap-
proximate eigenvalue of thekth iteration bylk, we have, for
the next iterationCk+1,

H−1Ck =
1

lk
Ck+1, s9d

where theC8s are renormalized at the end of each iteration.
Convergence of the inverse iteration toward an eigenstate

can be estimated by theRayleigh QuotientssRQd, which are
given by

lk =E CkHCk+1dx. s10d

The eigenvalue of the ground state is the stationary point of
lk8s,

lim
k→`

Ck = f0, and Hf0 = l0u0. s11d

We call this procedure theHamiltonian inverse iterations
sHII d. If we project out the obtained ground statef0 from the
initial trial function C0, the HII will lead to the next higher
eigenstate. The excited states can thus be found by HII, too.

Next, we will estimate the number of iteration steps to
reach a given accuracy in the eigenvalue. Consider we are
solving thenth eigenstate for a system. Afterk times HII
iteration procedures, we may denote the result as a factor of
s1−ed in the component offn and a factor ofe in the next
higher statefn+1. The components in other higher states are

negligible through the HII scheme. So the expectation value
of the eigenvalue is

klnlk = s1 − edln + eln+1 , s12d

hence the error is

dk = klnlk − ln = esln+1 − lnd . s13d

Iterate one more time, the component infn becomes
Ck+1s1−ed /ln, and the component offn+1 is Ck+1 e /ln+1,
whereCk+1 is the normalization constant. Assumee is very
small, then

Ck+1 =
1

s1 − ed/ln + e/ln+1
. lnF1 + eS1 −

ln

ln+1
DG .

s14d

Thus the expectation of the eigenvalue will be

klnlk+1 . S1 − e
ln

ln+1
Dln +

ln

ln+1
eln+1 . s15d

The error now will be

dk+1 = klnlk+1 − ln = e
ln

ln+1
sln+1 − lnd = S ln

ln+1
Ddk.

s16d

It means that when we iterate one more time, the error will
be smaller by a factor ofln/ln+1. To reach theNth decimal
place accuracy in eigenvalue, the number of iterations can be
estimated to beN/ logsln+1/lnd.

III. EXAMPLE OF THE PARTICLE IN A BOX

We start to explore the method with the simple problem of
a particle in a box. Its eigenstates are analytically known.
The potentialVsxd is

Vsxd =5
`, x , −

p

2
,

0, −
p

2
, x ,

p

2
,

`,
p

2
, x.

s17d

The Hamiltonian operator for the particle inside the box is

H = −
1

2

d2

dx2 , s18d

and the boundary conditions at the box ends are

cSx = ±
p

2
D = 0. s19d

Using the notationLxx=d2/dx2 and H−1=−2Lxx
−1, by the

HII method, the relationship between consecutive iterations
is

C1 = H−1C0 = − 2Lxx
−1C0. s20d

Assuming the decomposition forms are
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C0sxd = o
n=0

a0,nx
n, and C1sxd = o

n=0
a1,nx

n, s21d

then the HII leads to the following coefficient relations:

a1,0= C1 san unknown integration constantd,

a1,1= C2 san unknown integration constantd,

¯

a1,k = −
2

ksk − 1d
a0,k−2. s22d

We can assign the unknown constants by the parity of the
wave function in this case. For the ground state,C2=0. we
arbitrarily use the starting trial functionC0sxd=1−s2x/pd2.
The C1 derived from Eq.s15d is used as the new trial func-
tion. We iterate tok=7, the eigenvalue obtained is accurate
to 15 decimal places. And the obtained coefficients give us
an explicit form of the ground state eigenfunction. For the
first excited state, symmetry requiresC1=0. We useC0sxd
=xf1−s2x/pd2g, the iterations tok=16 provides the eigen-
value accurate to 10 decimal places, and iterations tok=24
leads to 15 decimal places accuracy.

IV. EXAMPLE OF THE SIMPLE HARMONIC
OSCILLATOR

The next example is the classic case of the simple har-
monic oscillator. Again, the eigenstates are analytically
known. The potentialVsxd now is

Vsxd =
1

2
x2, s23d

with the boundary condition

csx → ± `d → 0. s24d

By the HII method, the relation of iteration is

C0 = −
1

2
LxxC1 +

1

2
x2C1. s25d

Assume the decomposition forms

Cisxd = o
n=0

ai,nx
n, with i = 0,1 s26d

and the coefficient relations from HII are

a0,0= −
2 3 1

2
a1,2,

a0,1= −
3 3 2

2
a1,3,

a0,2= −
4 3 3

2
a1,4+

1

2
a1,0,

¯

a0,k = −
sk + 2dsk + 1d

2
a1,k+2 +

1

2
a1,k−2, k . 2. s27d

In terms of the power ofx,

x0: a1,0= C1 san unknown integration constantd,

x1: a1,1= C2 san unknown integration constantd,

x2: a1,2= − a0,0,

¯

xk: a1,k =
1

ksk − 1d
sa1,k−4 − 2a0,k−2d. s28d

To find the integration constantsC1 andC2, we regroup the
wave functionC1 into three parts

C1 = Ca + C1Cb + C2Cg, s29d

where

Ca = o
n=0

aa,nx
n, Cb = o

n=0
ab,nx

n, Cg = o
n=0

ag,nx
n.

s30d

Then we have the following relationships for the three series:

x0: aa,0 = 0,

x1: aa,1 = 0,

x2: aa,2 =
− 2

2 3 1
a0,0,

x3: aa,3 =
− 2

3 3 2
a0,1,

¯

xk: aa,k =
1

ksk − 1d
saa,k−4 − 2a0,k−2d ; s31d

and

x0: ab,0 = 1,

x1: ab,1 = 0,

x2: ab,2 = 0,

x3: ab,3 = 0,

¯

xk:ab,k =
1

ksk − 1d
ab,k−4 ; s32d

and

ADOMIAN’s DECOMPOSITION METHOD FOR… PHYSICAL REVIEW E 71, 036702s2005d

036702-3



x0: ag,0 = 0,

x1: ag,1 = 1,

x2: ag,2 = 0,

x3: ag,3 = 0,

¯

xk: ag,k =
1

ksk + 1d
ag,k−4 . s33d

We choose the boundaryC1sLd=0 at L=6.0. For the

ground state, we setC0=e−x2
and expand it to the power of

200 in x for iteration, atk=12 the eigenvalue is accurate to
10 decimal places; and atk=15 the accuracy is up to 15
decimal places. For the first excited state, we chooseC0

=xe−x2
, at k=15 the eigenvalue is accurate to 10 decimal

places, and atk=33 the accuracy is up to 13 decimal places.

V. EXAMPLE OF THE ANHARMONIC OSCILLATOR

We consider in the following the anharmonic oscillator
that was recently treated by the imaginary time propagation
methodf8g. It provides the calibrations of our method. The
potential form is

Vsxd =
1

2
x2 + v4x

4 + v6x
6, s34d

and the boundary condition is the same as the simple har-
monic oscillator. By the HII method, the relationship be-
tween iterations is

C0 = −
1

2
LxxC1 + S1

2
x2 + v4x

4 + v6x
6DC1; s35d

as in the previous power series expansion, the coefficient
relations are

a0,0= − a1,2,

a0,1= −
3 3 2

2
a1,3,

a0,2= −
4 3 3

2
a1,4+

1

2
a1,0,

a0,3= −
5 3 4

2
a1,5+

1

2
a1,1,

a0,4= −
6 3 5

2
a1,6+

1

2
a1,2+ v4a1,0,

a0,5= −
7 3 6

2
a1,7+

1

2
a1,3+ v4a1,1,

¯

a0,k = −
sk + 2dsk + 1d

2
a1,k+2 +

1

2
a1,k−2 + v4a1,k−4

+ v6a1,k−6, when k ù 6.

In terms of the power ofx,

x0: a1,0= C1 san unknown integration constantd,

x1: a1,1= C2 san unknown integration constantd,

x2: a1,2=
− 2

2 3 12
a0,0,

x3: a1,3=
− 2

3 3 2
a0,1,

x4: a1,4=
1

4 3 3
sa1,0− 2a0,2d,

x5: a1,5=
1

5 3 4
sa1,1− 2a0,3d,

¯

xk: a1,k =
1

ksk − 1d
sa1,k−4 + v4a1,k−6+ v6a1,k−8 − 2a0,k−2d.

s36d

We again regroup the power series intoCa ,Cb, andCg. The
integration constantsC1 and C2 can be found by Eq.s29d.
For ground state withv4=0.02, andv6=0.01 f8g, we choose
C0=e−x2/2 and expand to the power ofx up to 200. Iterations
to k=12 and set cutoff atL=4.5, the eigenvalue is accurate to
nine decimal places. For the first excited state, takeC0

=xe−x2/2 and expand to the power ofx up to 200. Iterations to
k=20 gives the eigenvalue accurate up to eight decimal
places.

VI. EXAMPLE OF NLSE, THE GROSS-PITAEVSKII
EQUATION

In the recent Bose-Einstein condensation experiments of
dilute alkali atomic gasesf9g, the condensate is well de-
scribed by the mean-field approximation, that is, the Gross-
Pitaevskii equationsGPEd. Furthermore, if the trap potential
is cigar shaped, the GPE is effectively one dimensionalf10g.
Following the pseudospectral methodf11g, we have devel-
oped an efficient and accurate numerical scheme for solving
the GPE. Our pseudospectral method has been calibrated
with published calculationsf12g and provides a way to jus-
tify our new ADM of eigenvalue problems.

Consider the eigenvalue problem of the GPE,

YEE-MOU KAO AND T. F. JIANG PHYSICAL REVIEW E71, 036702s2005d

036702-4



S−
1

2

d2

dx2 + Vsxd + guCu2DC = mC, s37d

with the order parameter normalized to the number of con-
densed atoms

E
−`

`

uCu2dx= N. s38d

By the HII, the iteration relationships are

C0 = S−
1

2

d2

dx2 + Vsxd + guC0u2DC1. s39d

We expanduC0u2=r=oirix
i, and the nonlinearity into de-

compositions

grC1 = o
i

Aix
i . s40d

The coefficient relationships are

a0,0= A0 −
2 3 1

2
a1,2,

a0,1= A1 −
3 3 2

2
a1,3,

¯

a0,k = Ak −
sk + 2dsk + 1d

2
a1,k+2 +

1

2
a1,k−2. s41d

In terms of the power ofx,

x0: a1,0= C1 san unknown integration constantd,

x1: a1,1= C2 san unknown integration constantd,

x2: a1,2= A0 − a0,0,

x3: a1,3=
2

3 3 2
sA1 − a0,1d,

¯

xk: a1,k =
2

ksk − 1d
SAk−2 − a0,k−2 +

1

2
a1,k−4D . s42d

We again regroup it intoCa ,Cb, andCg to find the integra-
tion constantsC1 and C2, by Eq. s29d. The three nonlinear
terms are expanded as

Aa = grCa = o
i=0

Aa,ix
i , s43d

and

Ab = grCb = o
i=0

Ab,ix
i , s44d

and

Ag = grCg = o
i=0

Ag,ix
i . s45d

Then the relationships become

x0: aa,0 = 0,

x1: aa,1 = 0,

x2: aa,2 = Aa,0 − aa,0,

x3: aa,3 =
2

3 3 2
sAa,1 − a0,1d,

¯

xk: aa,k =
2

ksk − 1d
SAa,k−2 − a0,k−2 +

1

2
aa,k−4D; s46d

and

x0: ab,0 = 1,

x1: ab,1 = 0,

x2: ab,2 = Ab,0,

x3: ab,3 =
2

3 3 2
sAb,1d,

¯

xk: ab,k =
1

ksk − 1d
s2Ab,k−2 + ab,k−4d; s47d

and

x0: ag,0 = 0,

x1: ag,1 = 1,

x2: ag,2 = Ag,0,

x3: ag,3 =
2

3 3 2
sAg,1d,

¯

xk: ag,k =
1

ksk − 1d
s2Ag,k−2 + ag,k−4d. s48d

For the trap with parametersg=0.017 84 andN=100, by
using the trial functione−x2/2, and cutoff atL=2.38. We ob-
tain l=1.1684 for iterations up tok=16. However, if we
extend the cutoffL to larger value, the direct use of power
series expansion in ADM does not converge, and no solution
will be found. So the eigenvaluel=1.1684 is not the correct
ground state. This happens if the cutoff lies beyond the ra-
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dius of convergence for the power series expansion. To over-
come the trouble, we develop the space partition method in
the next section.

VII. SPACE PARTITION METHOD FOR ADM
EIGENVALUE PROBLEMS

To justify the convergence of series expansion, we divide
the space f0,Lg into p partitions fXm−1,Xmg ,m
=1,2,3, . . . ,p. And the iteration functionCk in the mth par-
tition is denoted asCk,msxd with xP fXm−1,Xmg. The global
solution is given by

Cksxd = o
m=1

p

Ck,msxdxmsxd, x P f0,Lg, s49d

where

xmsxd = H1, x [ fXm−1,Xmg,

0, x Þ fXm−1,Xmg,
s50d

and

f0,Lg = ø
m=1

p

fXm−1,Xmg. s51d

In mth partition, note that the potentialVsxd become
VsXm−1+xd.

We chooseL=6, p=6, andXm=m, the connection condi-
tion at x=Xm is

Mms1dCm = Mm+1s0dCm+1, 1 ø mø p − 1, s52d

Mps1dCp = B, s53d

where

Mmsxd = 3 1 0 0

Ca,msxd Cb,msxd Cg,msxd
Ca,m8 sxd Cb,m8 sxd Cg,m8 sxd

4 , s54d

whereMms0d= I and

Cm = 3 1

Cm,1

Cm,2
4, B = 3 1

0

Ck8sLd
4 . s55d

with unknownCk,m8 sLd.
For the even parity ground state,C1,1=0. we have 2p−1

unknown constants. The order parameter and its first deriva-
tive must be continuous at the junctions of partitions, and
CksLd=0, so the number of constraints is also equal to 2p
−1.

To find theMms1d,

B = Mps1dCp = Mps1dMp−1s1dCp−1

=Mps1dMp−1s1dMp−2s1d ¯ M1s1dC1

=MC1, s56d

where M =Mps1dMp−1s1dMp−2s1d¯M1s1d. We determine
C1,2 and C1,1 by the Eq.s56d, and the next neighbor order
parameter by the Eq.s52d. The totalC1 can then be obtained.

With the space partition method, we overcome the prob-
lem of convergence. The results of some calculations are
shown in Table I.

VIII. CONCLUSION

Adomian’s decomposition method together with the
Hamiltonian inverse iteration technique provide a simple and
powerful tool for the eigenvalue problems. Unlike other nu-
merical grids methods, the ADM technique gives explicit
form of solution. Moreover, although we showed only the
decomposition solutions for differential equations, the
method is applicable to algebraic equations, too.

The inverse iteration for finding the eigenfunctions and
eigenvalues is well known in matrix theory, but applications
to differential equations are not common. The difficulty lies
particularly in writing down the inverse of the Hamiltonian.
But with the ADM, we have found a way to do it. Combining
the Hamiltonian inverse iteration and Adomian’s decomposi-
tion method, we have developed an efficient algorithm to
solve the general eigenvalue problem. We show that the new
method works well for both the linear and nonlinear prob-
lems. Even for the nonlinear case, only a few iterations are
required to achieve high accurate results, while using our
pseudospectral method for Gross-Pitaevskii takes far more
steps of iterations.

A drawback of the ADM is the constraint of the boundary
condition, especially when the size of boundary is larger than
the radius of convergence of the expansion series of the wave
function. We develop the partition of the space method and
overcome this trouble.
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TABLE I. The eigenvalues of the Gross-Pitaevskii equation cal-
culated by the space partition method forN bosons.

N Number of iterations Chemical potentiall

100 10 1.127825

500 16 2.88870

1000 28 4.522398

5000 93 13.1060
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