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a b s t r a c t

Imbalanced data are common in many machine learning applications. In an imbalanced data set, the
number of instances in at least one class is significantly higher or lower than that in other classes.
Consequently, when classification models with imbalanced data are developed, most classifiers are
subjected to an unequal number of instances in each class, thus failing to construct an effective model.
Balancing sample sizes for various classes using a re-sampling strategy is a conventional means of
enhancing the effectiveness of a classification model for imbalanced data. Despite numerous attempts
to determine the appropriate re-sampling proportion in each class by using a trial-and-error method
in order to construct a classification model with imbalanced data (Barandela, Vadovinos, Sánchez, & Ferri,
2004; He, Han, & Wang, 2005; Japkowicz, 2000; McCarthy, Zabar, & Weiss, 2005), the optimal strategy for
each class may be infeasible when using such a method. Therefore, this work proposes a novel analytical
procedure to determine the optimal re-sampling strategy based on design of experiments (DOE) and
response surface methodologies (RSM). The proposed procedure, S-RSM, can be utilized by any classifier.
Also, C4.5 algorithm is adopted for illustration. The classification results are evaluated by using the area
under the receiver operating characteristic curve (AUC) as a performance measure. Among the several
desirable features of the AUC index include independence of the decision threshold and invariance to a
priori class probabilities. Furthermore, five real world data sets demonstrate that the higher AUC score
of the classification model based on the training data obtained from the S-RSM is than that obtained using
oversampling approach or undersampling approach.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In supervised learning, learning systems construct a classifica-
tion model for an output variable with several categories based
on simulated relations between input and output variables. The
output variable is also called the class variable. For instance, credit
scoring data can be classified as either good or bad credit. In real
world applications, data sets with several classes are generally
imbalanced, i.e. each class differs in the number of instances and,
occasionally, differs significantly. For instance, in fiduciary loan
data, the number of good credit customers significantly exceeds
that of bad ones.

For imbalanced data of two categories, the category with more
data is called the majority class; the minority class refers to the
category with less data. Imbalanced data are common owing to
erroneous decision or a rare subject, e.g., a valuable abalone in
comparison with a common one. Bankrupt prediction data and
credit scoring data are normally imbalanced data. As a dichoto-
ll rights reserved.

w, teapenny300@gmail.com
mous decision, bankrupt prediction forecasts whether enterprises
or individuals are bankrupt. For instance, banks can determine
whether an enterprise or an individual has good or bad credit
based on a credit scoring model. Results from a credit scoring mod-
el can also facilitate banks to decide whether or not to grant loans
to a corporation or an individual. In this case, corporations or indi-
viduals with bad credit are normally significantly lower than those
with good credit. However, bad credit cases may incur substantial
revenue losses for a bank.

When a classification model is developed based on instances
from imbalanced data, most classifiers are subjected to a priori class
probability and thus fail to construct an appropriate model (Jap-
kowicz & Stephen, 2002). The priori class probability refers to a
probability in which an instance belongs to a certain class under
general circumstances. As long as data are accumulated properly,
the probability that the accumulated data belong to a certain class
can be treated as a priori class probability. Consider a credit scoring
data set, in which bad credit data comprises 1/10 of the entire data
set; in addition, the priori class probability of bad credit and good
credit are 0.1 and 0.9, respectively. Classifiers such as artificial
neuron network (ANN) or decision tree (DT) construct models are
based on properties from instances to identify classes. Most
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classifiers prioritize the overall accuracy during model construc-
tion. Once training data are extremely imbalanced, most classifiers
neglect the properties provided by the minority class and attempt
to classify all instances belonging to the majority class. Some clas-
sifiers, including the C4.5 decision tree, cannot construct an appro-
priate classification model with extremely imbalanced data. Under
this circumstance, although the overall accuracy of an inappropri-
ate classification model may, for instance, exceed 95% and the accu-
racy rate of the majority class may, for instance, also exceed 95%,
the accuracy rate of the minority class may fall below 30%. In prac-
tice, misjudging the minority class generally incurs a significantly
higher cost than that of a majority class (Phua, Alahakoon, & Lee,
2004). Thus, the inability of a classifier to identify instances of the
minority class accurately would normally incur considerable loss.

Most classifiers in machine learning assess their classification
results based on the overall accuracy while assuming equal prior
class probabilities. However, the prior class probabilities are un-
equal in the imbalanced data. Moreover, the performance of classi-
fication results is evaluated inaccurately when using the overall
accuracy as a performance measure. Rather than using the overall
accuracy as a performance measure for a classifier, some studies
recommend other measures to mitigate the influence caused by
prior class probabilities, such as true positive rate (TPR), true neg-
ative rate (TNR), and the geometric mean of TPR and TNR (Baran-
dela, Sánchez, Garcı́a, & Rangel, 2003; Barandela et al., 2004), the
relative misclassification cost (Japkowicz & Stephen, 2002; McCar-
thy et al., 2005), the receiver operating characteristic (ROC), and
the area under the ROC curve (AUC) (Bradley, 1997; Provost, Fawc-
ett, & Kohavi, 1998). Among these measures, AUC is deemed a
more effective means in evaluating the classification results than
other measures since AUC is not subjected to the prior class prob-
abilities and different decision thresholds in classifiers; in addition,
it can be expressed as a single number (Bradley, 1997). Moreover,
when the relative misclassification cost is known, the relative mis-
classification cost can also be used as an assessment measure. This
is despite the fact that, in practice, the relative misclassification
cost is normally unknown.

Two conventional approaches to constructing a classification
model for imbalanced data are (a) to modify current classification
algorithms, such as utilizing meta-learning with different algo-
rithms to enhance the ability of the classifier (Phua et al., 2004)
and (b) to balance the sample sizes for different classes based on
the re-sampling strategy (Provost, 2000). Undersampling and over-
sampling are two commonly adopted re-sampling methods. When
an undersampling approach is adopted, few instances are drawn
from the majority class as the training data. For the oversampling
approach, instances are duplicated one or more times the amount
of the original data in the minority class. The two re-sampling ap-
proaches have their merits and limitations. An undersampling ap-
proach produces less training data than the original data, possibly
increasing the calculation efficiency. However, an undersampling
approach discards information involved in unselected instances,
possibly reducing the classifying accuracy of a classification model.
Similarly, an oversampling approach introduces more data into
analysis, thus making it time-consuming. Moreover, an oversam-
pling approach occasionally incurs over-fitting of the classification
model (McCarthy et al., 2005). Many studies attempted to deter-
mine the appropriate re-sampling proportion in each class of an
imbalanced data set based on a trial-and-error method (Barandela
et al., 2004; He et al., 2005; Japkowicz, 2000 McCarthy et al., 2005).
However, trial-and-error method may not include the appropriate
re-sampling proportion in each class of an imbalanced data set.
Constructing an effective classification model requires a systematic
re-sampling approach to determine the optimal proportions of in-
stances for the majority and minority classes, respectively, in
imbalanced data.
Design of experiments (DOE) is extensively adopted in industry
to determine the optimal settings of process parameters in order to
attain the desired quality of a process/product. Response surface
methodology (RSM) optimizes the process/product by constructing
proper equations to correlate the input and output variables with
each other. RSM has recently been applied to machine learning. Ir-
ani, Cheng, Fayyand, and Qian (1993) constructed a polynomial
using RSM with only a limited amount of semiconductor manufac-
turing data and, then, derived an equation to simulate a variety of
manufacturing circumstances. Subsequently, a large data set was
generated to provide classifiers in order to construct models. Shin,
Guo, Choi, and Kim (2007) developed a two-stage robust data
mining (RDM) method that consists of two stages for a water treat-
ment plant to determine the optimal settings of process parame-
ters in order to minimize the conductivity of treated water. The
first stage involved selecting four critical manufacturing variables,
i.e. three controllable and an uncontrollable variable, based on fea-
ture selection. The second stage entailed applying RSM to
determine the optimal setting of process parameters while consid-
ering of an uncontrollable variable.

Therefore, this work attempts to determine the optimal re-sam-
pling strategy of a classifier for two-class imbalanced data using
DOE and RSM. The proposed method, Sampling-RSM (S-RSM),
can determine the proper re-sampling proportions for the majority
class and the number of duplications of the instances in minority
class for the training data for a classifier. Additionally, a classifica-
tion model is developed for a two-class imbalanced data set based
on re-sampled data obtained from S-RSM. Moreover, effectiveness
of the proposed S-RSM model is evaluated based on the AUC score.
The rest of this paper is organized as follows. Section 2 describes
the research methodology. Section 3 then introduces the proposed
S-RSM model. Next, Section 4 summarizes the experimental results
obtained from using the proposed model to classify five real world
data. Conclusions are finally drawn in Section 5.
2. Methodology

This section describes pertinent literature. Section 2.1 intro-
duces the evaluation of classification results by using AUC. Sections
2.2 and 2.3 briefly introduce RSM and C4.5 decision tree,
respectively.
2.1. AUC score

AUC refers to the area under ROC, which was originally used in
signal detection theory and, more recently, in machine learning to
determine an appropriate operating point or decision threshold.
ROC provides trade-off information between TPR and FPR. In
ROC, the x-axis denotes FPR, the y-axis represents TPR, and the area
under ROC is AUC. AUC equals the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly
chosen negative one (Fawcett, 2006). AUC, with a value ranging be-
tween 0 and 1, is a single number evaluation of a classifier perfor-
mance which can simplify the comparison of different classifiers or
classification models.

The area under the ROC curve is often determined through trap-
ezoidal integration, which uses the slope and intercept of the fitted
ROC to obtain AUC (Bradley, 1997). However, given its use of
straight lines to connect all the points in ROC, this approach tends
to underestimate the actual AUC formed by smooth concave curves
(Bradley, 1997; Hand & Till, 2001). Alternatively, the AUC score can
be obtained by the formula which is the same as the Mann–Whit-
ney U test statistic (Hand & Till, 2001; Hanley & McNeil, 1982).

A higher AUC score implies a better performance of the classifi-
cation. A situation in which AUC equals 1 suggests the impossibil-
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ity that the probability of a randomly chosen negative sample to be
classified into a positive (p(+|�)) is higher than the probability of
any randomly chosen positive sample to be classified into a posi-
tive sample (p(+|+)). When AUC is 0.5, the classification results pro-
vide no credible information because all samples are classified into
the same class.

2.2. Response surface methodology

RSM comprises statistical and mathematical approaches that
use DOE to explore how several explanatory variables and one or
more response variables are related. RSM largely focuses on
obtaining an optimal response based on a set of designed experi-
ments. While RSM models polynomial functions for the functional
relationship between a response and independent variables, a re-
sponse surface visualizes the surface shape (Montgomery, 2005).
Importantly, RSM can reduce the number of trials when consider-
ing many factors and interactions between factors. Moreover, the
continuous search feature RSM is useful in determining how con-
tinuous factors and responses are related.

RSM provides design criteria to design proper experimental
points for experimenters to select based on their specific require-
ments. Conventional response surface designs include central
composite designs (CCD) (Montgomery, 2005) and Box–Behnken
design (Box & Behnken, 1960). In addition to conventional re-
sponse surface designs, experimenters can alternatively adopt
computer-generated designs to design experiments under certain
circumstances such as when experimenters can not select a stan-
dard design. A computer-generated design can occasionally prove
more effective in the number of trails than that of a standard de-
sign. As a computer-generated design, D-optimal design may be
the most frequently adopted optimality criterion (Jahani, Alizadeh,
Pirozifard, & Qudsevali, 2008).

2.3. C4.5

Developed by Quinlan (1993) for inducing classification models,
decision tree C4.5 algorithm has been extensively adopted in dif-
ferent fields owing to its ability to generate rules and operate fast.
Let D denote a collected data set with N instances, D ¼ fðxl; ylÞg

N
l¼1, l

represent the lth instance and yl e {0, 1} be the corresponding bin-
ary variable. Moreover, let p0(p1) be the proportion of class 0 (class
1), p0 = 1 � p1, in sample S. The entropy of S is calculated as

EntropyðSÞ ¼ �p1log2ðp1Þ � p0log2ðp0Þ ð1Þ

Decision tree algorithm continuously splits nodes into subtrees
to obtain a lower entropy until system cannot increase the gain,
which is the reduced entropy after splitting and can be calculated
by Eq. (2):

GainðS; xlÞ ¼ EntropyðSÞ �
X

v¼valuesðxlÞ

jSv j
jSj EntropyðSvÞ ð2Þ

In Eq. (2), Sv denotes the subsample of S and the attribute xl has one
specific value. In different splitting points, decision tree prioritizes
the largest gain after splitting. However, Eq. (2) prefers to split at
the feature containing many values, e.g., the age attribute or the
ID attribute, than fewer ones, e.g., gender. For rectifying this situa-
tion, C4.5 uses Gainratio which is defined as Eq. (3):

GainratioðS; xlÞ ¼
GainðS; xlÞ

SplitInformationðS; xlÞ
ð3Þ

SplitInformation (S, xl) is calculated by Eq. (4):

ðS; xlÞ ¼ �
X

k2valuesðxlÞ

jSkj
jSj log2

jSkj
jSj ð4Þ
where Sk denotes a subsample of S and the attribute xl has a
specific value. SplitInformation is the entropy of S with respect
to xl .

3. S-RSM procedure

The proposed S-RSM procedure attempts to determine the opti-
mal proportion of a two-class imbalanced data by using D-optimal
design, DOE and RSM in order to develop an effective classification
model.

The S-RSM procedure contains the following three steps:

Step 1: Design an experiment.
An experiment is designed to obtain an appropriate re-sampling
strategy for the majority class and minority class in a two-class
imbalanced data. While the number of instances drawn from
the majority class and the number of the instances duplicated
from the minority class are designed by using undersampling
and oversampling, respectively. The experiment considers two
factors. Factor A and factor B represent a/b and d/b, respectively,
where a denotes the total number of the re-sampling instances
in the majority class; b denotes the total number of instances in
the minority class of the training data; and d denotes the num-
ber of instances duplicated in the minority class. Both factors
are continuous, ranging from 0 to r, where r represents NL/NS,
r P 1; NL represents the total number of instances in the major-
ity class; and NS is the total number of instances in the minority
class. This work adopts the D-optimal design with a cubic
model. The D-optimal design is generated using Design-Expert
7.0.0 computer software, in which a 25-run design is generated,
including five replications at the center. The experimental error
is estimated using replications and the adequacy of a fitted
model is confirmed. The response variable is the average AUC
score of classification model for the majority class and minority
class.
Step 2: Conduct the experiment.
(a) Randomly split the data into training data (D1) and testing

data (D2) using 5-fold cross validation. Do (b) and (c) for
each fold.

(b) Sample and duplicate D1 based on each generated combina-
tion in step 1 to obtain a new data composition (D3).

(c) Utilize C4.5 to construct a classification model using D3; use
the classification model to classify D2 and access classifica-
tion results by the AUC score.

(d) Calculate the average AUC score of the 5-fold cross valida-
tion and, then, use the averaged AUC score as the response
variable.

Step 3: Fit a model and obtain the optimal re-sampling strategy.
The response surface model is obtained to demonstrate the

relation between factor A, factor B, and the response variable,
i.e. AUC score. The fitted model adequacies are confirmed by
the lack-of-fit test, coefficient of determination (R2) and the
adjusted coefficient of determination R2 (Adj-R2). Obtain the
optimal re-sampling strategy for the majority class and minor-
ity class.

4. Illustration

Effectiveness of the proposed method was demonstrated using
five of the UCI data sets provided by Machine Learning Repository
at the University of California, Irvine (Asuncion & Newman, 2007).
The five data sets chosen are Abalone, Balance Scale, Letter
Recognition, Mfeat-zer and Satimage. The S-RSM procedure
focuses on the re-sampling strategy, which functions with any
classifier. For demonstrative purposes, C4.5 decision tree is used
as the classifier.



Table 2
Experiments and results for abalone data.

Run Factor A Factor B Response; AUC score

1 1.00 6.63 0.757
2 1.00 1.00 0.796
3 5.29 1.00 0.758
4 5.34 5.34 0.729
5 5.29 1.00 0.693
6 7.45 7.50 0.709
7 3.17 8.36 0.746
8 9.68 1.00 0.500
9 1.00 9.68 0.766
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4.1. Data description

This work develops the optimal re-sampling strategy for two-
class imbalanced data. Therefore, the original five UCI data sets
are transformed to simulate two-class imbalanced data. Table 1
summarizes the contents of the transformed data. The transformed
standard is based on Lin, Wu, and Zhou (2006). Column 2 lists the
number of features in each data set; columns 3 and 4 list the crite-
ria that form the majority class and minority class, respectively;
and column 5 shows the ratio of number of instances in the major-
ity class to that in the minority class.
10 9.68 1.00 0.500
11 5.34 5.34 0.713
12 1.00 9.68 0.774
13 2.81 3.23 0.739
14 1.00 1.00 0.773
15 5.34 5.34 0.707
16 7.82 3.21 0.655
17 5.33 9.68 0.724
18 9.68 9.68 0.673
19 5.34 6.18 0.726
20 9.68 6.58 0.695
21 5.34 5.34 0.723
22 5.34 5.34 0.737
23 9.68 9.68 0.670
24 3.17 5.79 0.753
25 5.34 3.41 0.681

Notably, the number of sampling instances is (the level of factor) � (the total
number of the minority class in D1 = 313). When the levels combination is
(A, B) = (1.00, 6.63), the number of sampling instances is (313, 2075).

Table 3
Lack-of-fit tests of abalone data and model summary statistics.

Source SS DF MS F-Value P-Value R2 Adj- R2

Linear 0.037 13 0.003 8.681 0.0014 0.675 0.645
2FI 0.017 12 0.001 4.356 0.0171 0.836 0.813
4.2. S-RSM procedure using abalone data set

By using the abalone data set as an illustration, the effectiveness
of the proposed S-RSM procedure is demonstrated as follows.

Step 1: Design an experiment.
The factors of interest range from 1 to 9.8 (r = 3786/ 391). A D-
optimal design with 25 combinations is generated by using
Design-Expert 7.0.0, as shown in Table 2.
Step 2: Perform the experiment.
Randomly split abalone data set into D1 and D2 based on 5-fold
cross validation. Each D1 contains 3342 instances (3029 major-
ity instances and 313 minority instances) and each D2 contains
835 instances. For every fold, (b) and (c) were implemented.
Next, the average AUC scores of the 5-fold cross validation were
calculated, as shown in the last column in Table 2.
Step 3: Fit the model and develop the optimal re-sampling
strategy.
The relationship between factor A, factor B, and response-AUC
score was demonstrated by fitting the following response sur-
face model.
Table 1
Experim

Data

Abal
Balan
Lette
Mfea
Satim

Quadratic 0.011 10 0.001 3.439 0.0384 0.884 0.854
Cubic 0.002 6 0.000 0.798 0.5949 0.963 0.941
Pure Error 0.003 9 0.000

Boldface represents the results of the selected model and 2FI represents the two-
factor interaction.
dAUC ¼ 0:722837� 0:04864Aþ 0:045787Bþ 0:046286AB

� 0:02919A2 � 0:0093B2 þ 0:0436A2B� 0:0551AB2

þ 0:008141A3 � 0:0502B3
Table 3 summarizes the results of the lack-of-fit test of the fitted
models with R2 and Adj-R2. Owing to the insignificance of the cubic
term for the lack-of-fit test, the cubic model is appropriate (p-va-
lue = 0.5949). In Table 3, boldface represents the results of the se-
lected cubic model. The values of R2 and Adj- R2 for the cubic
model are 96.3% and 94.1%, respectively. By utilizing the response
surface model, the optimal factor-level combination of factor A
and factor B is determined as (A, B) = (1.45, 1.00).

Fig. 1 shows the generation of the response surface and contour
plot for the fitted model. According to this figure, factor A is more
sensitive to AUC scores than factor B. While factor A increases, AUC
increases slowly initially and then decreases dramatically.
ental data sets.

set Number of feature Majority

one 8 Ring – 7
ce Scale 4 Class – ba

r Recognition 16 Class – A
t-zer 47 Class – 10
age 36 Class – 4
4.3. Experimental results with five data sets from the S-RSM procedure

The S-RSM procedure is adopted in five real world data sets de-
scribed in Table 1. The right-hand side of Table 4 summarizes the
experimental results. Column 6 of this same table lists the selected
model, while Column 7 lists the optimal re-sampling strategies ob-
tained via the S-RSM procedure (called S-RSM strategy). For in-
stance, the S-RSM strategy of abalone data is (1.45, 1.00), which
represents the factor-level for the majority class and for the minor-
ity class, respectively. Column 8 shows R2, while column 9 shows
Adj-R2, which represents variability in the response could be ex-
plained by the model. According to Table 4, Adj-R2 exceeded 80%
in four of the five data sets, except for the balance scale data set.
The highest Adj-R2was the abalone data set, which was 94.11% of
class Minority class Ratio

Ring = 7 (3786/391) = 9.68
lance Class = balance (576/49) = 11.76

Class = A (19,211/789) = 24.35
Class = 10 (1800/200) = 9.00
Class = 4 (5809/626) = 9.28
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Fig. 1. Response surface of abalone data set.

Table 5
Multiple comparison factors of the three strategies.

Data Strategies

S-RSM S L

Abalone _1_ _1_ _2_
Balance _1_ _3_ _2_
Letter _1_ _1_ _1_
Mf-zer _1_ _1_ _2_
Satimage _1_ _2_ _3_

Note: When applying Duncan’s multiple comparison, a smaller number represents a
better performance.
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variability in the response that could be explained. However, the
lowest Adj-R2 was the balance scale data set, which was merely
54.44% of variability in the response that could be explained.

A comparison was made of three other re-sampling methods
frequently adopted to deal with imbalanced data, i.e. without sam-
pling (without strategy), undersampling (S strategy) and oversam-
pling (L strategy). Re-sampling strategies are only applied to the
training set and not to a testing set. Without a strategy involves di-
rectly using training sets to construct classification models; S strat-
egy refers to randomly selecting the majority instances until the
amount of majority instances is as much as the minority class;
and L strategy refers to duplicating and randomly selecting the
minority instances until the amount of minority instances is as
much as the majority class. For L strategy, duplicating and ran-
domly selecting are for the integer part and the decimal part of
the ratio of the amount of majority instances divided by that of
the minority instances.

Next, classification models are constructed using four re-sam-
pling strategies: without a strategy, S strategy, L strategy and S-
RSM strategy. Table 4 lists the estimated AUC scores to access
the classification models. According to this table, AUC scores of
without a strategy were the average scores of 5-fold cross valida-
tion. The other three re-sampling strategies were obtained by aver-
aging the 50 AUC scores (5-fold cross validation � each strategy
applying re-sampling ten times). Comparing these four strategies
in terms of AUC scores reveals that without a strategy performed
worse than other strategies, except in the Letter recognition data
set, as shown in the left portion of Table 4. Comparing the other
three strategies, except for without strategy, reveals that L strategy
performed worse than S strategy, i.e. a finding similarly observed
Table 4
AUC scores from re-sampling strategies and results of S-RSM strategies.

Data sets AUC scores

Without strategy S strategy L strategy S-R

Abalone 0.500 0.793 0.680 0.8

Balance Scale 0.500 0.505 0.542 0.6

Letter Recognition 0.983 0.978 0.977 0.9

Mfeat-zer 0.617 0.812 0.744 0.8

Satimage 0.761 0.823 0.781 0.8

Comparison of four strategies (without strategy, S strategy, L strategy and S-RSM strategy
boldface is the best strategy.
in other studies (Barandela et al., 2004; Japkowicz, 2000), and sig-
nificantly worse than the S-RSM strategy.

Next, three re-sampling strategies were compared in terms of
AUC scores by applying Duncan’s multiple comparison test, with
a significance at the 5% level. Table 5 summarizes the results of
Duncan’s multiple comparison tests in terms of the ranks of strat-
egies’ performance, in which a lower number represents a better
performance. According to Table 5, S-RSM strategy performed sig-
nificantly better than the other strategies in four of five data sets,
expect for in the Letter data set. For the Letter data set, Duncan’s
multiple comparison test indicated that the three strategies did
not differ. Their similarity may be owing to that classifying the Let-
ter data set is an easy classification task, resulting in the AUC
scores exceeding 0.97 in the four strategies, as shown in Table 4.
5. Conclusion

When a classification model for two-class imbalanced data is
developed using classifiers, the re-sampling strategy for majority
and minority classes is often determined based on a trial-and-error
method. The optimal re-sampling strategy determined using the
trial-and-error method may not classify the imbalanced data effec-
tively if the re-sampling strategy determined by the trial-and-error
method does not include the optimal re-sampling strategy. The
conventional S strategy or L strategy determines a specific re-sam-
pling proportion. The classification model is developed based on
the specific re-sampling proportion for either the majority class
or the minority class. A situation in which the optimal re-sampling
proportion is not the specific re-sampling proportion for the major-
ity class or the minority class makes it impossible for the classifiers
to develop an effective classification model either.

This work presents a novel analytical procedure to determine
the optimal re-sampling strategy using RSM. The S-RSM procedure
utilizes the oversampling and undersampling approaches simulta-
neously to determine the sufficient number of instances drawn
from the majority class and duplicated in the minority class,
respectively. By using the re-sampling strategy determined by
the proposed procedure to compose the training data, a classifica-
tion model can then be developed using any classifier. Additionally,
S-RSM strategy

SM strategy Model Optimal strategy R2 Adj-R2

03 Cubic (1.45, 1.00) 0.9632 0.9411

18 2FI (2.22, 11.76) 0.6022 0.5454

80 Quadratic (17.73, 1.08) 0.8399 0.7978

07 Cubic (2.39, 2.05) 0.8762 0.8010

33 Linear (1.00, 9.28) 0.9130 0.9050

) in AUC scores, where an underline denotes the worst strategy in each data set and
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the S-RSM strategy is not subjected to integral sampling levels. Uti-
lizing S-RSM to deal with imbalanced data may reduce the ineffi-
cient time incurred by a trial-and-error method when composing
a training set. Moreover, a more effective classification model can
be constructed via the S-RSM strategy than by using a training
set formed by trial-and-error. Furthermore, the S-RSM procedure
is not restricted to certain classifiers and can be used in a diverse
array of applications.

Finally, validity of the classification model obtained using the
proposed procedure is demonstrated using five data sets. Through
statistical testing (Duncan’s multiple comparison), analysis results
indicate that the S-RSM strategy performs significantly better than
S strategy and L strategy, as shown in Table 5, further demonstrat-
ing that the S-RSM procedure can enhance the ability of a classifier
to identify a class in two-class imbalanced data.
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