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The usefulness of  an automatic workpiece classification system 
depends primarily on the extent to which its classification 
results are consistent with users' judgements. Thus, to evaluate 
the effectiveness o f  an automatic classification system it is 
necessary to establish classification benchmarks based on 
users' judgements. Such benchmarks are typically established 
by having subjects perform pair comparisons o f  all workpieces 
in a set of  sample workpieces. The result of  such comparisons 
is called a full-data classification. However, when the number 
of sample workpieces is very large, such exhaustive compari- 
sons become impractical. This paper proposes a more efficient 
method, called lean classification, in which data on compari- 
sons between the samples and a small number of  typical 
workpieces are used to infer the complete classification results. 
The proposed method has been verified by using a small set 
of  36 sample workpieces and by computer simulation with 
medium to large sets of  100 to 800 sample workpieces. The 
results reveal that the method could produce a classification 
that was 71% consistent with the full-data classification while 
using only 10% of the total data. 

Keywords: Automatic workpiece classification system; Classi- 
fication benchmarks; Full-data classification; Lean classification 

1. Introduction 

Group technology (GT) refers to techniques by which work- 
pieces with similar shape, size, or manufacturing requirements 
are grouped into families in order to enhance design and 
manufacturing productivity. Early GT methods, which were 
based primarily upon manual classification of  the similarity of 
workpiece attributes, were complicated, time-consuming, and 
error-prone. Since then considerable research has been carried 
out on automatic classification of workpieces [1-4]. However, 
the methods thus developed still employ only the local shapes 
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of workpieces as classification criteria and have two major 
shortcomings: 

1. Similarity in local geometric features does not necessarily 
entail similarity in global shape. 

2. Methods based on local shape are less applicable during 
the design phase, because a designer's conceptual model 
tends to develop from an overall picture to local details. 

Thus, methods that use local shape attributes as workpiece 
classification criteria are generally limited in global shape 
retrieval applications. 

More recent GT work has begun to characterise workpieces 
on the basis of global shape and to apply automatic classi- 
fication systems [5-7]. This approach does not focus on local 
attributes but on the overall contour of workpieces. Focusing 
on the overall contour enhances the usefulness of workpiece 
classification for conceptual design work and can help to 
improve efficiency in manufacturing and assembly. A key 
concept in choosing an effective automatic workpiece classi- 
fication system for design, manufacturing, and assembly appli- 
cations is the degree of consistency between the classification 
results and users' judgements. To help ensure a high level of 
consistency, benchmarks based on user classification must be 
established with which to measure the performance of auto- 
matic workpiece classification systems. 

To establish such classification benchmarks, Hsu et al. [8] 
presented a full-data classification technique, in which a set of 
sample workpieces are selected from the general population of 
workpieces, and subjects make pair comparisons of each pair 
of sample workpieces on the basis of the similarity of the global 
shape of the workpieces. The degree of similarity between each 
pair of sample workpieces is obtained from the overall results 
of the user comparisons, and these data are used to classify 
the samples. The classification results can be regarded as a 
benchmark for classifications of the sample workpieces. By 
comparing these classification results with those of various 
automatic classification systems for the same set of samples, 
one can identify an automatic classification system that pro- 
duces results most consistent with users' judgements. Yet 
full-data classification is also problematic, because it requires 
exhaustive pair comparisons of all of the sample workpieces. 
If the number of workpieces is n, and the number of compari- 
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sons that must be made is at least n ( n -  1)/2. That is, the 
testing needed to classify a large set of sample workpieces will 
be extremely time-consuming. Moreover, when experimental 
subjects are required to make a very large number of pair 
comparisons, they are likely to become fatigued and to produce 
biased or inconsistent judgements. 

The aim of the research reported here was to develop a 
"lean classification" method that reduces shortcomings of full- 
data classification by maintaining classification accuracy while 
reducing the number of comparisons needed to produce a 
classification of the sample workpieces. In this method, partial 
experimental data obtained from pair comparisons of each 
sample workpiece with a small number of typical workpieces 
are used instead of exhaustive data obtained by comparing 
every pair of sample workpieces. If it performs as intended, 
this method will yield a classification that was 71% consistent 
with the full-data classification while using only 10% of the 
total data. 

2. Experiments to Collect Lean 
Classification and Full-Data Classification 
Data 

An experimental study was carried out to collect pair similarity 
comparison data for a set of 36 sample workpieces. These data 
were then used to establish a lean classification and a full- 
data classification. The procedure followed is outlined in Fig. 1. 

2.1 Selecting Sample Workpleces from the 
Workplace Population 

In an automatic workpiece classification system, if a large 
number of workpieces must be classified, there are likely to 
be a large number of workpiece categories. In this research, a 
comparatively small number of workpieces were chosen from 
the general workpiece population and the similarity of these 
sample workpieces was compared manually to establish a 
classification benchmark. Sample workpieces were selected 
according to a stratified sampling method [9]. A broad estimate 
was made of the number of workpiece categories likely to be 
appropriate in the practical environment in which an automatic 
classification system is used, the number of workpieces in each 
category was estimated, and then sample workpieces were 
selected from the general population according to the proportion 
of the number of workpieces in each category. For instance, 
suppose there are nine categories of workpieces in a certain 
design and manufacturing environment and there are approxi- 
mately the same number of workpieces in each of these nine 
categories. Then if we randomly select four workpieces from 
each category, the total number of sample workpieces will be 
36 (see Fig. 2). (For convenience, this set of 36 sample work- 
pieces will be used as an example for the remainder of 
the paper.) 

2.2 Selecting Typical Workpleces from Sample 
Workpieces 

Select sample workpieces from workpiece population 

Collect partial 

Select typical 
workpieces from 
sample workpieces 

Collect partial 
expetimeml aata 
from pair 
comparisons 

Collect complete data 

Collect complete 

Infer complete I 
experimemJ a m  from I 
partial experiment data 

Fuzzy clustering analysis 

Establish lean Establish full-data 
classificadon classification 

Fig. 1. Procedure for establishing lean classification and full-data 
classification. 

In a practical environment, if there are an excessive number 
of sample workpieces, then it will be time-consuming and 
costly to carry out complete experimental comparisons of the 
workpieces. Consider a set of 1000 sample workpieces; com- 
plete experimental testing would involve about 0.5 million pair 
comparisons (i.e. C~°°°). If each of these comparisons took 10 
seconds and the subjects worked 8 hours a day, it would take 
173 working days to complete the comparison. Even a set of 
36 sample workpieces would involve 630 individual compari- 
sons. In place of this exhaustive testing, the proposed method 
is to select a small number of typical workpieces with different 
shapes from among the sample workpieces, and then to com- 
pare each of these typical workpieces with each of the sample 
workpieces to obtain partial comparison data. Then these partial 
data are extrapolated to estimate the results of the complete 
experimental data for all of the samples. The classification 
results obtained by using the estimated data are called the lean 
classification. The degree of consistency between the lean 
classification and the full-data classification will indicate the 
effectiveness of the method used to produce the lean classi- 
fication. 

Typical workpieces are selected from among the sample 
workpieces by using a binary clustering method. First, the 
sample workpieces are classified by selecting a user at random 
and having the user hierarchically divide the workpieces into 
subgroups on the basis of the similarity of their global shape 
(see Fig. 3). Secondly, groups in the hierarchy are selected at 
random according to the number of typical workpieces needed: 
when a lean classification is to be established, the exact number 
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Fig. 2. The 36 sample workpieces used in this research. 
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Fig. 3. Selecting typical workpieces from sample workpieces by binary clustering. 

Relative hierarchy (h) 

of groups sampled from the relative hierarchy (h) will depend 
on the number of  typical workpieces (m) required. The relation 
between m and h can be expressed by 2 h- ~ < m <- 2 h. Then 
one workpiece is chosen at random from each selected group, 
and the resulting workpieces are used as the typical workpieces. 
For example, if a lean classification is to be established on 
the basis of  six typical workpieces, then the typical workpieces 
should be randomly selected from any six of the eight groups 
in the third level of  the hierarchy (see Fig. 3). Selecting typical 
workpieces from different groups in this way helps to ensure 
that there are significant differences between the typical work- 
pieces. 

2.3 Pair Similarity Comparison between Typical 
and Sample Workpisces 

For the proposed classification method to be effective, it must 
be based on accurate data concerning users' judgements of the 
relative similarity of the typical and sample workpieces. For 
this reason, a number of subjects were randomly selected from 
among employees in various departments of a factory using 
an automatic workpiece classification system. Each subject was 
asked to compare each typical workpiece with each sample 
workpiece on the basis of the similarity of their global shape. 
A classification based on human judgement is likely to lack 
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clear-cut boundaries between categories [10], Therefore, when 
each pair of workpieces was presented for comparison, subjects 
were asked to use fuzzy linguistic terms in comparing the 
degree of similarity between the workpieces. Each linguistic 
term can be regarded as a fuzzy number, so the comparison 
data from each subject can be aggregated through operations 
with fuzzy number arithmetic. After defuzzification of these 
aggregated fuzzy numbers, a crisp value can be obtained to 
represent the degree of similarity between any two tested 
workpieces. The procedure for comparing the similarity of the 
workpieces involves the following issues: 

1. The manner in which the workpieces are displayed. 

2. The definition of the linguistic terms of comparison. 

3. The aggregation of the comparison results from each subject. 

4. The determination of crisp values from the aggregated com- 
parison data. 

Each of these issues is discussed below. 

2.3.1 Display of the Workpieces 

To provide global information concerning the shape of each 
workpiece and to prevent incorrect judgements in the pair 
comparisons, each workpiece was displayed by using six iso- 
metric views: front, back, top, bottom, left, and right sides 
(see Fig. 4). 

2.3.2 Definition of Terms of Comparison 

Subjects provided comparison data by selecting linguistic terms 
to describe the degree of similarity between each pair of 
workpieces. The linguistic terms, based on Chen and Hwang's 

I ~ 1  I I I t I ...... J I ,,1 

v~.¢ low similarity low aimikmty rea~ittra similarity kish ~ai lnfi ty vca'y tfilgh Jimik~fity 

Fig. 4. Workpieces represented in six isometric views for comparison. 

suggestions [11], are treated as five fuzzy numbers: very low 
similarity, low similarity, medium similarity, high similarity, 
and very high similarity. 

2.3.3 Aggregation of Subjects' Comparison Results 

The linguistic terms chosen by the subjects after comparison 
of each pair of workpieces were aggregated by using the 
following formula [12]: 

where (~ 
® 

represents addition of fuzzy numbers 

represents multiplication of fuzzy numbers 

represents the membership function of the 
linguistic term chosen by the kth subject com- 
paring the similarity of the ith and the jth 
workpieces, k = 1 . . . . .  w, w = number of 
subjects 
represents the membership function after 
aggregation of w subjects' comparisons of the 
ith and jth workpieces 

2.3.4 Determining Crisp Values from Aggregated Data 

The value of the membership function obtained by aggregating 
the data for all subjects' comparisons of a pair of workpieces 
is still a fuzzy number, and it is difficult to perform numerical 
operations with fuzzy numbers. Hence, for convenience in 
handling the aggregated comparison data, these values can be 
transformed into crisp numbers through a defuzzification pro- 
cess. In this research, the aggregated fuzzy numbers were 
defuzzified by applying the centre of gravity method as fol- 
lows [13]: 

Xc(,)=Ii xlx'-(x)dx 
'1 (2) 

j ~x)dx 
0 

where S~ represents a fuzzy number 

x represents any element of the fuzzy number 
in the interval [0, 1 ] 

IxXx) represents the membership function of x in 
the fuzzy set 

Xa(~) represents the crisp value of 

2.4 Using Partisi Experimental Data to Infer 
Complete Experimental Data 

This section describes a method for using partial experimental 
data to infer complete experimental data. The aim is to use 
the known data obtained from pair comparisons between each 
typical workpiece and all of the sample workpieces to infer 
unknown data concerning the degree of similarity between all 
of the non-typical workpieces. The combination of the known 
and inferred data will then be equivalent to using complete 
experimental data. 
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For convenience, the levels of similarity between all work- 
pieces will be expressed in the format of a matrix S, in which 
x~, x2 . . . . .  x, are sample workpieces; x~, x2 . . . . .  Xm are typical 
workpieces; and x,~+ i, x,,+2 . . . . .  x ,  are non-typical workpieces. 

S = [sol , ,"  = 

X I 

x ~  

Xm+l 

X n 

x I x . ,  x=+ l x .  
- -  , ,,,, , , ,  

• ~ - K n o w n d a t a  - - • 

1 ] ~ .  . . . .  s .  

(3) 

In equation (3), an element s~ of matrix S represents the 
degree of similarity between x~ and xj. Because s~i =~)~ and 
s.  = l, the matrix is symmetric. Therefore, only the upper part 
of the data need be considered. In so, if i = l, 2 . . . . .  m and 
j = i + 1 . . . . .  n, then the elements in the trapezoid part are 
known data and the elements in the remaining triangular part 
are unknown data. The structure of the inference is discussed 
below and then this structure is used to determine the unknown 
data with the max-min method. 

2.4.1 Inference Structure 

The basic method used in this research is to infer unknown 
data about similarity levels between non-typical workpieces by 
using the degree of similarity between two workpieces and a 
third workpiece to infer the degree of similarity between the 
two workpieces. As shown in Fig. 5(a), according to known 
data, the degree of similarity between a typical workpiece xk 
and a non-typical workpiece xp is spk and that between xk and 
another non-typical workpiece Xq is Skq. The inference method 
proposed here allows us to estimate Spq, the degree of similarity 
between x ,  and Xq. This degree of similarity will be denoted 
by Spq~k), which means that the degree of similarity between xp 
and Xq will be derived from the typical workpiece xk. 

Because there are m typical workpieces, each unknown S~,q 
can be inferred from m typical workpieces; that is, Spq~k), 
k = 1, 2 . . . . .  m. To use the existing data to infer the degree 

(a) (b) 

l l q  

Spq(k) = Spk (') S kq $pq = A G G  Spq(k ) 
k = l  

Fig. 5. s~  is inferred from m similarity levels between xp and xq. 

of similarity between xp and Xq, mathematical methods must 
be used to aggregate these m data, as shown in Fig. 5(b). 
Accordingly, the above-mentioned inference process can be 
described as follows: 

where 

m 
Spq = AGG Spk Q) Skq 

k = l  

m 

= AGG Spq(k ) (4) 
k - I  

® 

AGG 

Spk 

Skq 

Spq~k~ 

Spq 

represents the inference method 

represents the method of aggregation 

represents the degree of similarity between xp 
and xk 

represents the degree of similarity between xk 
and xq 

represents the degree of similarity between Xp 
and Xq, which is inferred from k typical work- 
pieces 

represents the degree of similarity between 
two non-typical workpieces xp and Xq, which 
is inferred from m typical workpieces. 

2,4,2 Using the Max-Min Method to Infer Unknown 
Data 

Fuzzy set theory is used to infer the unknown data. First, the 
global shape attributes of each typical workpiece are used as 
a template. The global shape similarity between any two non- 
typical workpieces and this template can be regarded as a 
fuzzy relation between these non-typical workpieces and the 
template, with a value of [0, t]. Secondly, the degree of 
similarity between the two non-typical workpieces can be 
inferred by performing max-min composition of the fuzzy 
relation between the two non-typical workpieces and all typical 
workpieces. Finally, this method can then be used to infer the 
degree of similarity between all non-typical workpieces. 

The max-min composition of two fuzzy relations is defined 
as follows [14]. 

Definition 1: Suppose ~ is a fuzzy relation on the Cartesian 
product X X Y and ,~ is a fuzzy relation on Y × Z. Then the 
max-rain composition of/~ and S, denoted by/~ o 5, is a fuzzy 
relation on X x Z and the membership functions 

IXaoS-(X,Z) = max rain [~(x,y) ,  Izs.(y,z)] 
y e Y  

( V x e  X, z E Z) 

The above definition can be used to infer unknown data on 
degrees of similarity between non-typical workpieces. We can 
let K - -  {x~,x2 . . . . .  x,.} be a referential set of typical work- 
pieces and P = Q = {x,,+~, xm+2 . . . . .  x,,} be a referential set 
of  non-typical workpieces. Suppose SeK = [s~]~ . . . .  )m is a fuzzy 
relation on P x K in which p = m + 1 . . . . .  n, k = 1,2 . . . . .  m, 
and S;xo = [Skq]m~,-m~ is a fuzzy relation on K X Q in which 
k =  1,2 . . . . .  m, q = m +  1 . . . . .  n. Then the composition of 
these two fuzzy relations can determine a fuzzy relation 
between non-typical workpieces P × Q. That is, 
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= [Spt,]~,,-.,~ o [Skqlm(n-m) 

"~ [Spq](n-m)(n-m)  (5) 

where 

spq = max min (Spk, Skq) (6) 
I<_k<_m 

In equation (5), o represents the operation of max-min com- 
position, and in equation (6) min is the inference method (Q) 
and max the method of aggregation (AGG). To infer unknown 
data, the value of the diagonal in ~eo should be 1 to meet the 
reflexivity requirement. Therefore, when this fuzzy relation is 
used to make inferences, its membership function should be 
partially revised as shown in equation (7): 

max min(spk, Skq) w h e n m +  1--<pg:q<---n 

Spq-~'l;-k~ra when m + l < - - p = q < - - n  

(7) 

As an example, consider five workpieces (x~, x2 . . . . .  xs) and 
two typical workpieces (xj, xz), by means of which partial 
experimental data based on subjects' similarity comparisons 
will be used to infer the complete experimental data. Suppose 
the partial experimental data are denoted by matrix P. 

Xl X2 X 3 X4 X 5 

p = x , [ l  0.1 0.8 0.5 0.3] (8) 

x2 1 0.1 0.2 0.4 

Then this method infers the complete experimental data as 
shown in matrix R. Take s34, for example. From eqs (4) and 
(7), we  k n o w  that $34(i ) = min (0.8, 0.5) = 0.5 and 
$34(2 ) = min (0.1, 0.2) = 0.1. Therefore, s34 = max (s34o). s34~2)) 
= 0.5 (as shown in Fig. 5). 

Xl X2 X3 X4 X5 

1 
0.3 x~ 1 0.1 0.8 0.5 

xz 1 0.1 0.2 0.4 
R = x 3  1 0.5 03  (9) 

x4 1 0i3 
X5 

2.5 Using Inferred or Actual Complete 
Experimental Data to Establish a Lean Classification 
or Full-Data Classification 

A lean classification can be established by using the max-min 
method. In the experiment carded out in this research, pair 
comparisons were made between several typical workpieces 
selected by the binary clustering method from a set of 36 
sample workpieces and the complete set of 36 samples. The 
partial experimental data obtained were then used to infer the 
complete experimental data that would be obtained by pair 
comparisons between all 36 of the sample workpieces. The 
inferred data were used to formulate a classification by means 
of the fuzzy clustering method, and a lean classification was 

established. A full-data classification was also formulated by 
using complete experimental data with the fuzzy clustering 
method. This section describes the procedure for establishing 
the lean classification and the full-data classification, which 
can be divided into two parts: fuzzy clustering analysis and 
establishing the two types of classifications (several lean classi- 
fications were established by using different numbers of typi- 
cal workpieces). 

2.5.1 Fuzzy Clustering Analysis 

To use the fuzzy clustering method, first it is neccessary to 
determine the similarity levels between the objects to be clus- 
tered. This similarity level in a fuzzy set can be thought of 
as a fuzzy relation, R. The fuzzy relation /~ is both reflexive 
and symmetric. If it is also transitive~ then ~ is said to be a 
similarity relation [15], denoted by R._By properly selecting 
an a-cut of the membership matrix (/~) for this similarity 
relation, one obtains an ordinary similarity relation. The equiv- 
alency of similarity relations among clustered objects can be 
used to carry out clustering. The definition below is a descrip- 
tion of the fuzzy relation and similarity relation defined in 
fuzzy mathematics. 

Definition 2: Suppose X = {xt, x2 . . . . .  x,} is a referential set. 
A binary fuzzy relation /~ on X is a fuzzy subset of the 
Cartesian product X × X, 

Let ~ : X × X ---, [0, 1 ] 

denote the membership function of/~ and let 

/~ = [r , iL°  

A fuzzy relation/~ on X is said to be reflexive if ILk (x~, xj) = 1 
for all x~ E X,/~ is symmetric if P.k (x~, xj) = I~k (xj, x~) for all 
x~, xj ~ X, i~ is (max-min) transitive if for any xi, xk e X 

p~ (xi, xk) >- max{min{p~a (xi, xj), P.a (xj, xk)}} 

(Vx~ ~ n 

If the fuzzy relation /~ on X is reflexive, symmetric, and 
transitive, th.en /~ is said to be a similarity relation on X, 
denoted by/~  [15]. 

Because /~ is a similarity relation on X that exiats and is 
unique, then for any a-cut of membership matrix ~ = [~j], 
in which a • [0, 1] 

{10 ( r ~ - - a )  (10) 

are all similarity relations on X. These similarity relations can 
be used to classify the elements in X [15,161. This kind of 
classification is called fuzzy clustering analysis. Example 1 
illustrates this type of analysis. 

Example 1. If  /~ is a fuzzy relation on the set X = 
{xt,x2 . . . . .  xs} with its membership matrix as follows, the 
elements in this matrix represent the level of similarity between 
xi and xj using fuzzy clustering analysis for classification. 
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x~ X 2 X 3 x 4 X 5 xf10080 0il ] ~ = X a  01 1 0.1 0.2 0.4 

x3 j0.8 0.1 1 0.5 03  
x4 0.5 0.2 0.5 1 0 
x5 0.3 0.4 0.3 0.3 

From the above definition, /) is reflexive and symmetric. 
We now need to calculate the max-min transitivity. The method 
of calculation is to search /~z = ~ o/~ . . . . .  until /)2k = /~k is 
found. In this example, we calculate /)a and /)4 until ~ =/~z 
is found, and then 1)2 is a similarity relation on X, denoted by/). 

X ] X 2 X 3 X 4 X 5 

x~ [ t. 0.3 0.8 0.,  0.3 
/ ~ = R 2 =  x2 03  1 0.3 0.3 0.4 

x3 10.8 0.3 1 0.5 0.3 
x4 [0.5 0.3 0.5 1 0.3 
x5 0.5 0.4 0.3 0.3 1 

7 7 
By using R for any a-cut (R~), we can cluster all similarity 

relations. The clustering results for each of these similarity 
relations are shown in Fig. 6. 

As mentioned earlier, different a values represent different 
clustering groups and different elements in one group. When 
the value of a is high, only elements that have a high level 
of similarity will be placed together; when the value is low, 
elements that have a lower level of similarity will be placed 
together. In workpiece classification, this a value can be seen 
as an index of flexibility. Users can use the value of a to 
adjust the number of groups in the resulting classification 
according to their practical needs. 

as a fuzzy relation /) in the Cartesian product X x X of a 
referential set X =  {x,,x2 . . . . .  x36}. This fuzzy relation is 
reflexive and symmetric, so wf need to calculate whether it 
satisfies (max-min) transitivity/). If it does, then an exhaustive 
list of the classification results serves as a lean or full-data 
classification, respectively. 

Consider an example of partial experimental data based on 
comparisons with eight typical workpieces (the 24th, 14th, 
llth, 1st, 26th, 18th, 3rd, and 12th workpieces in Fig. 2) 
collected from 30 subjects. In which each subject should make 
a total of 252 individual comparisons. Through the global 
shape similarity comparison of the typical workpieces with the 
other sample workpieces, the level of similarity among the 36 
workpieces can be inferred by using the max-min method. 
Taking the inferred complete experimental data to calculate 
the max-min transitivity, we find that /)8 = / ) ,  and then this 
fuzzy relation is just a similarity relation on X. Taking the a-  
cuts (1, 0.864, 0.823, 0.781 . . . . .  0.417) in decreasing order 
of similarity, we find that different a-cuts of the membership 
matrix (/~) yield different numbers of groups in each hierarchy. 
An exhaustive list of the clustering results gives us the lean 
classification established by these eight typical workpieces 
(see Fig. 7). 

To obtain the full-data classification, we had the 30 subjects 
classify the 36 sample workpieces and thus obtained actual 
complete experimental data from their pair similarity compari- 
sons. The list of the results for different numbers of groups 
in each hierarchy is the full-data classification. 

3. Measuring the Effectiveness and 
Efficiency of Lean Classification 

2.5.2 Establishing Lean Classifications for Different 
Numbers of Typical Workpieces and Establishing 
Full-Data Classification 

By means of fuzzy clustering analysis, we can take the com- 
plete experimental data inferred by using comparisons between 
different numbers of typical workpieces and all the sample 
workpieces or the actual complete experimental data obtained 
from pair similarity comparisons of  all the sample workpieces 
and use these data to formulate a classification. The level of 
similarity between the 36 sample workpieces can be regarded 

~0.3 

~ 0.4 

~ 0.5 

a~0.8 

~1 .0 

Ix, lx3?,l 

Fig. 6. Using fuzzy clustering for Example 1. 

After establishing the lean classification and full-data classi- 
fication, we can compare them to determine the degree of 
consistency between the two. We can then evaluate the effec- 
tiveness and efficiency of  the lean classification, which is 
determined by its consistency with the full-data classification 
and the extent to which it reduces the cost of  establishing a 
classification. These issues are discussed in the following sub- 
sections. 

3.1 Consistency of the Lean Clauiflcstlon with the 
Full-Data Classification for the Same Groups 

At present, no useful method is available for comparing the 
degree of consistency between two different classification sys- 
tems applying different classification methods. Therefore, the 
aim of this section is to develop a heuristic algorithm for 
measuring the consistency between the classification results 
for the same groups in the lean classification and full-data 
classification. The idea is to take the classification results of 
full-data classification as a benchmark and calculate the ratio 
of the sum of the number of workpieces in each corresponding 
group in the two classifications that are the same over the 
total number of workpieces within each group. This ratio will 
be referred to as the degree of consistency between the lean 
classification and the full-data classification. The higher the 
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Fig. 7. Lean classification inferred from data for 8 typical workpieces by the max-min method. 

degree of consistency, the more consistent the two sets of 
classification results are. Let the term corresponding groups 
refer to groups in the two classification schemes that have a 
one-to-one relation when the classifications have the same 
number of groups. The algorithm used for measuring the degree 
of consistency between two classifications is as follows: 

36 
workpieces 

1 group 

6 groups 

12 groups 

18 groups 

24 groups 

30 groups 

36 groups 

Step t: Arrange the two sets of classification results in a 2D 
matrix, with one set as a column and the other as a row 

1. Suppose there are n workpieces, x~, x2 . . . . .  x~, whose group 
numbers are indicated by l, after being classified by the 
two classification methods, and the results are denoted 
by A~ . . . . .  Ai . . . . .  Al and BI . . . . .  B i . . . . .  Bt, respectively. Ai 



refers to the set of workpieces within group i of the first 
classification. B~ refers to the set of workpieces within group 
j of the second classification. 

2. Place the two classification results in columns or rows, 
respectively (see Table 1). 

Table 1. Two sets of classification results arranged in 2D matrix. 

1st 2nd classification 
classification 

B,  . . .  Bj . . .  B,  

A~ cN . . .  c~ i . . .  c~t d~ 

A~ cim . . .  c o • . .  ca d~ 

At cll . . .  c O . •. ctl dl 

S tep  2: Let C~j in the 2D matrix be the number of workpieces 
included in both At and B i, that is cij = N(A~ fq Bj) 

S tep  3: Determine the corresponding groups 

1. Arrange all values of ctj in decreasing rank, i = 
1,2 . . . . .  l , j =  1,2 . . . . .  I. 

2. Take the largest value of clj. The At and B i corresponding 
to this cij will then be the first corresponding pair of groups 
from the two classification methods. Delete the row i and 
column j that correspond to this cti in the matrix. 

3. If  there are two or more identical largest values of ctj, then 
compare the second-largest value in the ith row and the jth 
column corresponding to these values of  ctj. Select the 
smaller of the second-largest values. If  the second-largest 
values are also identical, then compare the third-largest 
values, and so on until a result is obtained. If the last 
values for comparison are still the same, then choose either. 

4. Repeat the above three procedures for the undeleted values 
of c 0 until all values of c~j have been deleted. 

S t e p  4: Measure the degree of consistency between two classi- 
fications with I groups 

1. Let di denote the value of cti for each pair of correspond- 
ing groups. 

2. Let H denote the number of workpieces shared by all 
corresponding groups over the total number of  workpieces. 
The value of H is calculated as follows: 
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! 

H - i=l (11) 
n 

H is the degree of consistency between two different classi- 
fication schemes. The value of H falls between l l n  and I. If 
there are a large number of workpieces, that is, n-> 0, then 
the value of H may fall between 0 and 1. Example 2 illustrates 
how H is found. 

E x a m p l e  2. Consider a set of I0 sample workpieces 
(x~,x2 . . . . .  X~o). Suppose two classification schemes each 
include four groups, as shown in Table 2. We will use the 
above algorithm to calculate the degree of consistency between 
the two sets of classification results. 

First, we calculate the number of workpieces ctj that appear 
in any pair of groups Ai and Bj, as shown in Table 2. In this 
case, the value of c~ is 1, which means there is only one 
workpiece x~, that is included in both As and B~. Secondly, 
we arrange all values of c 0 in order from largest to smallest. 
The largest value is 2, and there are three sets, c22, c23, and 
c43 , with this value. So we then compare the second-largest 
value in each of the rows and columns corresponding to these 
three sets, and we find that in each case the second-largest 
value is 2. Hence, we must go on to compare the third-largest 
values in each row or column, which are 1, 2, and 1, respect- 
ively, and then compare the fourth-largest values between c22 
and c43 , which are 0 and 1, respectively. Thus, for the first 
pair of corresponding groups we must choose A2 and B2 (c22), 
and so we delete the second row and the second column. Now 
we repeat the procedure and arrange all undeleted values of 
cij in order from largest to smallest. The largest value remaining 
is c43. Therefore, the second pair of corresponding groups is 
A4 and B3. We repeat this procedure until all the values of c o 

are deleted from the matrix. In this example, we eventually 
obtain four pairs of corresponding groups: A~ and B~, A2 and 
B2, A 3 and B4, and A 4 and B3. The number of workpieces 
shared between each of these pairs of corresponding groups is 
1, 2 , 0 ,  and 2, respectively. T h u s H  = (1 + 2 + 0 + 2)/10 
= 0.5, which is the degree of consistency between these two 
classification schemes when the number of groups is 4. 

3.2 Evaluating the Effectiveness of Lean 
Classification 

In both the lean classification and the full-data classification, 
users' judgements concerning the degree of similarity between 

Table 2. The two sets of classification results in example 2. 

1st 2nd classification 
classification 

B~ = {xj, xg} B2 = {x2, x3,x4} B3 = {xs, x6, xT, x~o} B4 = {x8} Number of workpieces Workpiece(s) in 
in both Ai and Bi both A~ and B~ 

A~ = {xt} 03 0 0 0 1 x~ 
A2 = {x2, x4, xs, x6} 0 (~  2 0 2 x2, x4 
A 3 = {Xa} 0 1 0 (~) 0 
A4 = {XT, xs, Xg, x,o} 1 0 ~) 1 2 x7, xlo 
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different workpieces can be employed to choose the number 
of groups used in the classification scheme. If the user requires 
that only workpieces with a very high degree of similarity be 
placed in the same group, then a higher a value can be used 
as the basis for the classification, and there will be more 
groups but fewer workpieces within each group. If the user 
can allow workpieces with a lower degree of similarity to be 
classified in the same group, then a lower et value can be used 
as the basis for the classification, and there will be fewer 
groups but more workpieces within each group. 

The average degree of consistency of lean classification with 
different typical workpieces is evaluated with reference to the 
full-data classification result comprising different numbers of  
groups of 36 workpieces. The average degree of consistency 
is plotted as shown in Fig. 8. In the case of the lean classi- 
fication with eight typical workpieces, the average degree of 
consistency for every number of groups is 78%. In other 
words, the classification results based on only 40% (the partial 
experimental data with eight typical workpieces are 252 and 
the complete experimental data are 630) of the complete 
experimental data are 78% consistent with the results of  full- 
data classification. 

4. Simulation Method for Evaluating the 
Effectiveness and Efficiency of Lean 
Classification 

The example used in Section 3 to demonstrate the efficiency 
of lean classification included only 36 sample workpieces. To 
determine whether lean classification maintains a high level of 
efficiency even when a large number of sample workpieces 
are being classified, we will present in this section a simulation 
method for estimating the efficiency of lean classification for 
sets of from 100 to 800 sample workpieces. In Section 4.1, 
we construct a simulation matrix; in Section 4.2, we determine 
a reasonable interval of  degrees of similarity between two 
workpieces; and in Section 4.3 we simulate the efficiency of 
lean classification for a large number of workpieces. 

4.1 Constructing a Simulation Matdx 

To use a simulation method to evaluate the efficiency of lean 
classification, we need to construct a simulation matrix S. The 
elements in the matrix will denote the simulated degree of 
similarity as a subject performs pair comparisons of n work- 
pieces (x~, x2 . . . . .  xn). The elements of  the matrix are inter- 
related in certain ways. For example, if two workpieces are 
both very similar to a third one, then these two workpieces 
will have a high degree of  similarity. Therefore, the values of 
the elements in S cannot be assigned randomly, but must be 
assigned in light of the interrelations between the elements. 
For convenience, we will use the reflexive and symmetric 
properties of the matrix, that is, s~ = 1, s~j = s~, and consider 
only the upper part of  the data in our discussion. 

X 1  

X2 
S = [S0"]nn = 

X 3  

x~ 

xt X2 x3 ... xn 

1 6 ' 1 2  6 ' 1 3  "'" Sin 
1 s23 .-* 6̀ 2,, 

1 ... s3, 
"... 

1 

(12) 

The values of the elements in the simulation matrix are pro- 
duced as follows. 

Step 1: Assign preliminary values to the first row. 
Assign random numbers [0, 1] to the first row of 
the matrix su, j = 2 . . . . .  n; this means the degree of 
similarity between workpiece xt and other workpieces 
(x2, x3 . . . . .  x~) is known. 

Step 2: Determine a reasonable interval among other rows sij. 
From the degree of similarity between workpiece x~ 
and other workpieces, a reasonable interval of degrees 
of similarity between any two workpieces, except those 
in the first row, can be inferred; that is, we infer the 
interval that sij, i = 2, 3 . . . . .  n and j = i + 1 . . . . .  n may 
fall in. 

Step 3: Assign sli a value in the interval determined in step 2. 
Randomly assign si i a value in the interval of degrees 
of similarity between any two workpieces; this kind of 
simulation matrix will reflect that all the workpieces 
are interrelated in certain ways. 

1 ~  o 9 0  o.91 o.94 o,96 

O.78 0.1! -% 

0,62 

2~4°~'~ ~ eor~lntcdamtn~l 

Nu~oct of 
w f  i t i i i i i i . . . . . . .  

]34 ~gs as2 305 354 ~,~ 4¢0 4"nstoS:'sc~s602630 

O) (4) (6) (I) {to) (1~) (1t,) (16) Us) (20)(*~) 06) 06 ) ~ . . ~ (  .Humor o f  

wontpm~ ) 

Fig. 8. Average degree of consistency for lean classifications with 
different numbers of groups. 

4.2 Determining Interval of Degrees of Similarity 
Between Two Workpleces 

In constructing the simulation matrix, we need to know the 
degree of similarity between workpiece Xl and other workpieces 
in order to infer a general interval for the degree of similarity 
between any two workpieces (except for the first row of 
elements in the matrix). The theoretical basis of  the inference 
is to regard the information content of the global shape of 
each workpiece as a set. The total value is assumed to be 
100%, that is, 1. The degree of similarity between the global 
shapes of two workpieces is then just the intersection of two 
sets. The inference method is to use the intersection of  the 
sets representing the global shape information of  any two 



workpieces and workpiece xt to determine the smallest and 
largest possible intersection between the two workpieces. These 
will then serve as the lower bound and upper bound of  the 
interval of  the degree of similarity between the two workpieces. 

Take two workpieces xp and xq as an example. Let s m Sq 
and s~ denote the global shape information of  the three work- 
pieces x m Xq, and xt,  respectively. Assume that the degree of 
similarity between xp and xt is spt and that between xt and Xq 
is Stq, and we want to find a reasonable interval of the degree 
of similarity between the two workpieces xp and Xq. First, we 
find the lower bound of the interval of s m by finding the 
smallest intersection between sp, Sq and sj. See Fig. 9(a). When 
sp and sq are on different sides of s~, then spt = sp fq st and 
stq = st f3 Sq; when spt + Stq > 1, the lower bound of s m is 
spj + S~q - 1; and when sp~ + Stq -< 1, the lower bound of S,q 
equals 0. Secondly, to calculate the upper bound of the interval 
of s m we find the largest intersection set between sp, Sq and 
sj see Fig. 9(b). Now Sp and Sq are both on the same side of 
st. When spl -- stq, the upper bound of s m is Spt + (1 - Stq); 
when spt >-- S~q, the upper bound is Stq + (I - SpO. These two 
formulae can be combined into the general formula 
1 - Isp~ -Sq t] .  Thus, a reasonable interval for the degree of 
similarity between any two workpieces through x~ is 
[max [0, spt + SIq - -  1], 1 - ]sp~ - s~q]]. In the following sec- 
tion, we use Example 3 to illustrate this inference method. 

Example 3. Construct a 5 × 5 simulation matrix. The prelimi- 
nary values sv,  j = 2, 3, 4, 5 of the elements in the first row 

(a) 

Sl ] 

N? 
when spl + Stq > 1, 

I 
I 
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of the matrix are assigned randomly. Now we infer the interval 
in which s~j, i = 2, 3, 4, 5 and j = 3, 4, 5 may fall as follows: 

xi x2 x3 x4 x5 
xt 1 0.9 0.7 0.3 0.1 

x2 1 [0.6, 0.81 [0.2, 0.4] [0, 0.21 
x3 1 [0, 0.6] [0, 0.4] 

.,c4 1 [0, 0.81 
x5 1 

Take sz3 as an example. Because the similarity level between 
Xz and x~ os 0.9 and that between x3 and xt is 0.7, the lower 
bound of s~3 is max[0,0.9 + 0 . 7 -  1] = 0.6 and the upper 
bound is 1 - [0.9 - 0.71 = 0.8. Therefore, a reasonable interval 
of the degree of  similarity between x2 and x3 can be inferred 
to be [0.6, 0.8]. Values are assigned randomly within this 
interval to construct the simulation matrix. 

4.3 Using a Large Sample to Examine the 
Efficiency of Lean Classification 

Once the simulation matrix has been constructed, we can 
formulate a simulated full-data classification on the basis of 
all the data in the matrix. We can also take a portion of the 
data and use the max-min method to infer classification results 
for the complete data, thus obtaining a simulated lean classi- 
fication. By measuring the consistency between the two classi- 
fication results and comparing the cost of establishing the lean 

t 

St ] ....... 

s~=~  

when Sp, + Slq < 1, 
Spq = 0  

(b) I" 1 ~l 

s, [ !i 

s. I 
when spl < Stq , 

Spq = Spl + (1 - Stq ) . 

St ' '[" 
[ s,, j s, ~ "! 

when spt >_ Stq , 

$pq = slq + (1 - Spl ) . 

:.s,q= l - t , , , - ,  d 

I 

Fig. 9. The (a) lower and (b) upper bound of S~q can be determined by using the degree of similarity with workpiece x~. 
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classification and full-data classification, we can determine the 
efficiency of the simulated lean classification. As it is very 
difficult to judge the global shapes of n sample workpieces 
from the simulation matrix, the typical workpieces used in the 
simulated lean classification are selected, not by the binary 
clustering method described in Section 2, but, directly from 
the n sample workpieces by their order, based on the required 
number of typical workpieces. For instance, to establish a 
simulated lean classification base on six typical workpieces, 
we can take the first six rows of  elements directly from the 
simulation matrix as partial experimental data. 

To examine the efficiency of the lean classification method, 
we constructed four simulation matrixes, with 100, 200, 400, 
and 800 sample workpieces, respectively. The values of the 
elements were set to the second decimal place, and then lean 
classification was simulated with different typical workpieces. 
To compare the classification results for these four sets of 
sample workpieces, we will use lean classifications employing 
from 10% to 100% of the complete experimental data to 
calculate the average degree of consistency with the full-data 
classification for different numbers of groups (see Table 3). 

From Table 3 we can make three interesting observations. 
First, the results of lean classification based on only a small 
portion of the data are still highly consistent with the results 
of full-data classification. For example, for 800 sample work- 
pieces, the degree of consistency between the lean classification 
based on only 10% of the complete data and the full-data 
classification was 71%. Secondly, when the percentage of the 
experimental data used in formulating the lean classification is 
doubled, only a limited increase occurs in the degree of 
consistency with the full-data classification. For instance, sup- 
pose there are 800 sample workpieces. If the percentage of 
the experimental data used is increased fivefold, that is, if a 
lean classification is established with 50% of the complete 
data, then the degree of consistency between the lean and full- 
data classifications will be 78%, an increase of only 7%. 
Moreover, the size of this increase continues to shrink as the 
amount of data used in the lean classification increases. Thirdly, 
as the number of sample workpieces increases, a lean classi- 
fication using the same percentage of the data achieves an 
increasing degree of consistency with the full-data classi- 
fication. For example, suppose the number of sample work- 
pieces increases from 100 to 800. Then the degree of consist- 
ency between the full-data classification and a lean 
classification based on just 10% of the complete experimental 
data increases from 65% to 71%. 

These simulation results show that in a practical workpiece 
classification application, as the number of sample workpieces 
increases, only a small portion of the complete experimental 
data is needed to produce a lean classification that is highly 
consistent with the full-data classification. For a sample of 800 
workpieces, for example, gathering complete experimental data 
would involve making 319600 pair comparisons. However, if 
lean classification were used instead, we could produce a 
classification that was 71% consistent with the full-data classi- 
fication while using just 40 typical workpieces (less than 10% 
of  the total data) and making only 31 180 pair comparisons. 

5. Application and Limitations of Lean 
Classification 

When full-data classification is employed as a benchmark to 
measure the performance of an automatic classification system, 
the automatic classification system under test and the full-data 
classification are both used to classify the same group of 
sample workpieces, and then the degree of consistency between 
their results is compared. In this paper, we have described a 
type of lean classification, which enables us to establish a 
benchmark on the basis of only a small percentage of the 
experimental data needed to establish a full-data classification. 
The simulation method described above allows us to determine 
the degree of consistency between a lean classification and a 
full-data classification for different numbers of typical work- 
pieces. Selecting an appropriate lean classification to measure 
the performance of an automatic classification system enables 
us to evaluate the performance of  the automatic classification 
system, just as if we were using a full-data classification. Since 
only a lean classification is used, however, such a comparison 
is much more efficient. 

The method for employing a lean classification to evaluate 
the performance of an automatic classification system is an 
extension of the method described in Section 4.2. In Fig. 10, 
for example, let a represent the degree of consistency between 
the lean classification and the full-data classification, and let b 
represent the degree of consistency between the results of the 
automatic classification system and those of the lean classi- 
fication. The term b can also be regarded as representing the 
performance of the automatic classification system as measured 
by the lean classification. Denote the value of an interval by 
[x,y], in which the lower bound x = max [0, a + b - 1] and 
the upper bound y = [1 - la - bl]. For example, if the degree 

Table 3. Degree of consistency between lean and full-data classifications for samples of 100 to 800 workpieces. 

Number of sample % Experimental data 
workpieces 

Average degree of consistency between lean/full-data classification 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Remarks 

100 0.65 0.67 0.68 0.74 0.77 0.80 0.80 0.83 0.90 1.00 Using simulation matrix instead of 
200 0.67 0.67 0.68 0.72 0.75 0.77 0.83 0.85 0.91 1.00 pair comparison data, directly 
400 0.68 0.69 0.72 0.75 0.75 0.80 0.82 0.85 0.90 1.00 selecting samples to establish lean 
800 0.71 0.71 0.73 0.76 0.78 0.79 0.84 0.87 0.91 1.00 classification 
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automatic classification system with respect to full data classification. 

of consistency between the lean classification and the full-data 
classification is 0.71, and that between the results of the 
automatic classification and those of  the lean classification is 
0.9, then we can infer that the degree of consistency between 
the automatic classification system and the full-data classi- 
fication should fall in the interval [0.61, 0.81]. If the degree 
of consistency between the lean classification and the full-data 
classification is reduced to 0.4 and that between the results 
of the automatic classification system and those of the lean 
classification is still 0,9, then the degree of consistency between 
the automatic classification system and the full-data classi- 
fication is within [0.3, 0.5]. This interval gives us an estimate 
of the performance of the automatic classification system meas- 
ured with respect to the full-data classification. 

By using such intervals to estimate the performance of an 
automatic classification system with respect to the full-data 
classification, we can investigate the application and limitations 
of lean classification. As shown in Fig. 10, if we want to find 
a useful automatic classification system that is compatible with 
users' judgements of the similarity between workpieces, two 
conditions have to be satisfied. First, there must be a high 
degree of consistency between the lean classification selected 
and the full-data classification - the degree of consistency must 
at least fall within the scope of tolerance of the user. Secondly, 
the performance of the automatic classification system as meas- 
ured by the lean classification must be high. In this case, the 
lean classification can just replace the full-data classification 
as the classification benchmark used to select an optimal 
automatic classification system. Consider again the above 
example. Suppose a = 0.71, a value that is within the scope 
of tolerance of the user, and b = 0.9. Then the performance 
of the automatic classification system as measured by the full- 
data classification falls in the interval [0.61, 0.81]. If the users 
find values in this estimated interval acceptable, then they may 
decide to adopt the automatic classification system under test. 
This is a typical way in which lean classification could be 
used to replace full-data classification. However, when a has 
a lower value, we will be unable to use the lean classification 
to identify an automatic classification system compatible with 
users' judgements. In that case, we would have to use the full- 
data classification as a benchmark; this is the main limitation of 
lean classification in practical applications. Let us look again 

at the above example. If a = 0.4 and b = 0.9, the performance 
of the automatic classification system with respect to the full- 
data classification can he estimated by the lean classification 
as falling in the interval [0.3, 0.5]. Because values in this 
interval are very low, in this case users would not want to 
accept the test classification system for practical use. Hence, 
in this case, the lean classification would not he useful for 
identifying an optimal classification system but instead would 
only be useful for sifting out ineffective automatic classi- 
fication systems. 

6. Conclusion 

To evaluate the performance of an automatic classification 
system, we need to examine whether its classification results 
are consistent with users' judgements. The higher the degree 
of consistency, the more effective the classification, Therefore, 
classification benchmarks based on users' judgements are 
necessary. Such a benchmark is typically established by having 
a large number of subjects make exhaustive pair comparisons 
between all workpieces in a group of sample workpieces and 
then using their judgements to classify the workpieces. A 
classification based on this type of  exhaustive data is called a 
full-data classification. A full-data classification provides an 
accurate evaluation of the performance of  an automatic classi- 
fication system, but when a large number of samples are 
involved, it may be costly, time-consuming, and unreliable 
because of bias due to fatigue among the subjects. 

To mitigate these shortcomings, this paper has proposed a 
lean classification method, in which only a relatively small 
number of typical workpieces are used to make pair compari- 
sons with all of the sample workpieces. The partial experi- 
mental data are then used to infer results similar to those that 
would be obtained from the complete experimental data. In an 
experiment with a small set of 36 sample workpieces, if we 
take eight typical workpieces which in turn represent only 40% 
of the complete experimental data, the average degree of 
consistency between the classification results for various num- 
bers of classification groups, the lean classification is 78% 
consistent with the full-data classification. In simulations with 
medium to large samples of 100 to 800 workpieces, we found 
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that when the number of workpieces increases, if we take the 
average degree of consistency of the classification results for 
various numbers of groups, a lean classification established 
with only 10% of  the complete experimental data is 71% 
consistent with the full-data classification. 

We can also use lean classification to evaluate the perform- 
ance of automatic classification systems measured with respect 
to full-data classification. However, lean classification can be 
used to select an effective automatic classification system only 
when the degree of  consistency between the lean classification 
and the full-data classification is within the user's scope of 
tolerance and that the automatic classification system achieves 
a high level of performance as measured by the lean classi- 
fication. If  one or both of these two conditions fails to be 
satisfied, then the lean classification can be used only as a 
tool for sifting out inferior classification systems, and not for 
selecting an effective system. 
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