(2/{3)

NSC93-2213-E-009-030-
93 08 01 94 07 31

¢)

94 5 19

3 &

% (Bluetooth) #HiFia— FTE A2 B A F b RREE > TFFH A A K ERT 04
BHEEY BPIFRFLEL LT S ETF AR ALK I Y AR FRK A (blde F B 42

BB AT B EMR) LA kR B EVHRY G I E LN S EED G

i

PR ET RS NI A R E T R E R
ﬁ%yﬂ@%&%%f?ﬁ%iﬂﬁ%’ﬁm—}Nﬁﬁ%%ﬁébﬁﬁ » X BT E
B R E T 4k (scatternet) & e (piconet) 0 3T # B R *f#ﬁﬁ’f R
P e R NE P REIE RS TP e

AP FPAR P HE 2 SO T MRERT U GR N FEE o A E - £
HHRET PG RRERERTL - AT HRTRET > FHIEEAN (poll) %
KE 240 - G 2HET Hf 4 = (payload field) v % z thidpite » H Y
{r*»dpr*i5- BETEH (time slot) > %ﬁt“#’tﬂ Ty lceEh 7 332448
(throughput)» @ 8 { i s faF L o

AFLEBHRNE D ETFET AR o F - Enl (FER A RBEBARERES - B A
SRR LA AT AR - BETAUREORTEH 0 5 ERBlueRing) - &
T F T FE%R2)% (formation) » ¥/ (routing) ~ 4% ¢ (maintenance) ™ % # i -
B 4] (recovery mechanism) > @ FHFRAFHEHE § F4i 4 > IR FFN

R EESH ot APPSR ETIRE VL1 w2 VI2% AT HAE S T e
(frequency-matching) ezt EpFfF » T 44 o 47nd % - H N T ZBF UKD FT A HFF

BFen= 2 o

Mékim : FY o 40 ke

:‘:_E,P\ g ...
I 'T:—Fj ..
II,{j;Zggﬁ ..
III.XZ‘H?{""?“}\ ...
IVFI;Z:,\.% ..
et s e g
[B 2E T DD

=1
p
=
Kol

T g KR 2 R %1 (master-slave configuration) # A& 4 chgept ¥ ~ff

= ficfe (piconet) » M@ frfeid e k¥ 1027 — B { < PR SH - f5 e
(scatternet) #d » 2 F T M F PR F A JTp NGB E 72 08 ARG T Tk o
HALE FRF AP T - B E D B T ATk E R B ARE D
i ETEF a5 BAaasiser (Wireless Personal-Area Network > WPAN)
I ERBEREA TR T AT EREFOE DY > AP RT - BETAICRELRE
ﬁ’ﬁéf%(Mwmw)w%m&w%$u&%ﬁiﬁgﬁt%’ﬁﬁﬁﬁﬁ%$i%?
itfE s e E (bridge) M F £ 7 Bk (inter-piconet) 2 3f& ik ip b ru vt
BB A > APk Fk (BlueRing) 25+ (formation) ~ #/& (routing) ~ % 4%
7 (maintenance) #+#] > =& H & wszic (communication efficiency) % % 4 it
4 (fault tolerance) F > frH vip AR AR DL R o JLoh > F ET Y DA EL >
B BRE RIS AR Y o Flet o AP e E 5 7 pe(frequency-matching) szt Y& pF
st BREEFF*HETIRE V9IL w2 VI2% TREATOESE KN T 24

FUEAETREHEFRE O o

I3 TS

AERDLTEB AR B RS - B FRREHE TR B BINA
PR ET IR AT R FEOTE B E FTRF TR o AFTRAEP
EH A RT o R T > iEa A 2 BAETIREERE (Wireless
Personal-Area Network » WPAN) » &5 s> & afF g it a AP - B
T 4ce chrk A %4 G R (BlueRing) - i@ 5345 F (F %R 2 2) < (formation) » ¥
= (routing) ~ ##¥ & 2 (maintenance) ! % #% - faw 12 4] (recovery mechanism) > i
ChepdpE Sl Fé4ad o ROREFFLRAE Y RERGHE 20 APERET
FHE®E V11 Rz V912 > & 47 H 48 5 7 fe(frequency-matching) sz ¥E pr /> 4444 4 47 eh

SEORNTZAVIURIATTEEWIRFF G2 o

IRzt

1A T A cnIR A 4 £k (BlueRing) 0 A W3R H 25 & (formation)

i (routing) ~ 4% ¥ ®(maintenance) ¥ {84 » T A7 F T XRFHFPFT 2 £ Ndeiv ik

1. ¥ (BlueRing):7; = % (Formation Protocol)

2 ER Y B A 24 (Centralized formation mechanism) o 3K #77
EREARTAARTAEENFRFPN > 2 F BET XY L&- BERS R (RINGMEM) %
Bo AN ETE R ER2? LY (FESIREEFEZ0R8FE) BIR 4 RINGMEM% % 0 -
Z2EAES A BIFE

Fofrsr o FRETAEMBF D AN ([) 2 s lphaiafsn (IS FF

Bl E2EXBISARE RS BET ARSI WHY 3 =2 BB L R

it m ;‘#*“4?@—‘5 Rl E- DY RR a Sl W RE R B R RETT Pk

) TEPF AR IT R o BArA B S (inquiry

~of
b
putd]
=
b
=
F}-
<k
=
T,
_‘“
—=
=
b
=
(e

timeout) (IT) P ix G 22l E ¢ 433 /A FH AL > BT 2 2 SAHEY - BF
FEFE R FF LR AR BV AR F R SRR R
£ et e o

S RREY T ATE 2 TR AR TR IR W TR 4 U E

>3
B

o w

ﬁj’—g_r/{k%f&_ﬂ m?

-

A

o
i3
|t
ETIR
=
i3
|t
beiis
A
S
b
ﬁ
=%
"
3
=
W
|t
i
4k
e
14
P
T
1.

Py BT PR PRI BT SHOTRE 0 F - BAERRT AR S ECORT i
KRHAE - T2 p e el o REHRFIRIINEY RAETEE » 20T et 551 %

Bed e FRSRa- 0 EYERRERY | 2R 1

2. ¥ (BlueRing)#nse/s 1% 2 (Routing Protocol)

LipBAEP Y 0 AR I ATERY HEVAELEHE®E (unicasting) % B3
(broadcasting) 2 $Efite € o 3B P - ¢ %3] T4 €IrFLEHRD v BT 0 d
WAt e L FEHRInE B S PP e 3 F R ESIH AEIL (route discovery process)
FER o FERY GBS G kB2 moRE > TR S A FREEFRE S F 0 S

P AR SRS ERE R TR @R (Ad hoc network) 2 $E/Ts TF & AL

T2 #e § FARIED RPpdte ML N S e TRt a~3e f RS b
Eafe RSN cedts fIRNaBA s B E BB EBE He RS D A
TSR E BB E B At PRI CRATAROLE Z0 AERI L]
B2 BEAIEANHE f R AR BE A G2 AR 0 2 Bl

s uE R H =~ (Broadcast bit)~ ® # = (Relay bit)~ %=~ (Dirty bit)-

Bafe fERNO02Y Ve A8z RIREY KR =ak (SA - Source BD_ADDR) 1 = >

2 A8 =z pengEy %% u (DA Destination BD_ADDR) > &4k T A% 2 =4 %
Py A 2z adte RN B Al MRAETEE M EHBERRE
TR 2 ma e

A

To A ERAHEENE AEE RS2 LR WP g AUEERE R 3 KR Rl

ﬂ'-!d\
.
N
=
"
e
(i
;1‘\
o

Accept the packet and
forward it to
the upper layer

SAInmy
piconet ?
(including itsel

Dirty bit=1

Discard the packet
(orphan packet or
redundant broadcast)

i A i Makea copy of
Relay Dirty the packet, and

b y bitd Relay bit=0
™ _l_
! ! Saurce mmisier

Feurce— Fi
Source =8A
Reing a f]l-“ih'ﬁll . Forward the packet
Iridge ¥ ‘ DAlnmy to the
/ picenet? downstream bridge
Hake ooy o ' Accept the packet and
fhe pachel, ad X o forwarditto
Relay it =1 the upper layer
Relay bit =0
Accept the packel snd
———p freardilie
the vpsier hjer X
Broadeast the packet
toits piconet Fc:;';:;':;r?;:" —b{ End
Forvard the pack te
I I
e EfPRSET e Bsier Tt ‘

BT OREERDFRRAR o 57 1TRR 5 A A (threshold-based) 2 {vg 12§ * ik /
g x (parkfunpark) & $o i@ * Tab = B2 (DT BRREY FGH 2Rl @

QTm s B %KEY 25 B2 Rl 02 Q)Ton! i HHER T H e L FR S L E -

B ARERT o d 0 SR R EBEAM BRI e AR ERA RS
B oo Br e D TSR o Fl T T %»4%(‘§$,4%* S EML T FL R R A RAEN G

-

Pedeg i e chite o

3. E#(BlueRing):hiad* ¢ 7 (Maintenance Protocol)

Gfe S FHAAAONA FULLFRRET AERY P kY
RAGERAE RE TRE Y Y RSAPRL O ATOE T EE T s o T Aol

- B BReE R § BReE 2 (iR o

¥ gh4s 3% (Single-Point Failure) @ B3k % - 5 4 %% 2 4 & ;f%i:ﬁ?%é % > ¥4 f
FRe AL e BRie RENI o BE PAPBEZFEY - AF whihe
ate f PRSI A - BATHPLS "2 (Direction) T 2 Al o BB ARt A48
i‘i%&ﬁ.ﬁﬁ?}" w (2w /F®)e

% L4528 (Multi-Point Failure) @ F it 2. 45 ¥E/T p2 TAC TMEIE 7 X B8 B T
AP A PRET - B RS HT N E TR S TRER o AT 8 T A 0 R
FPFER > P RPEAEL c FERZG S BUHLLFFL D T 227 1 idiF

AEY AT 63 B 5K 439554 (DIACs » Dedicated Inquiry Access Code) 12
FRFFRPN FLFLHEE AR ABETAEREA B A8 5- 2R
LHFEBIY - R RAAGTERE B ERRAR o PRy > R - B A G
(GIAC - General Inquiry Access Code) #3513 f4e » {7 FTh o 11T 2 BIP 4o
e A F (bridge leaving) » i % % 2 (master leaving) » 11 % 4 i@ ,%gr} A2 L5 N
R TR -

T R RERERLEH U FLT UL AT 2 FT REED AP
TOUEE A TR el D o d N ET R A L gl o T H - MR F R ehip

KEHDP FU(ST) 0 Flpt o B floefic) RrAF R Tl T KRR &P - § 5 -

AEEET AR B EIRP ARBFR IR G E MR AR - Bt 1KY 2

ERAT A B UFRL I ERERZTEYT HE -
4. EF % % 3% (Bluetooth Device Discovery) 4 45 2 H 4cig 4841

WHFT AR OPFRTEE > B EREDPFIFI FHRY > Flt o AP HET IR
V11 w2 V12 > » 47 245 5 7 fe(frequency-matching) sz ¥& & [> 4245 24 1% 4 47 0
SO RTRORBIOFEE L 28554 s Ft Lt L EHL TSR R &g ¥ E
EERIFET R T A3 FEER S FEA B F D ka2 B § (inquiry
window) » #4t > APEE DT 2BV et T OREEFEL D 2 0 AR5
® Half Inquiry Interval (HII) : #-33 R Shid 508 5 — 2 > H ok ¥ 0 s il en3 &
PERR o
® Dual Inquiry Scan (DIS) : & h %% #-H WGaRAE F B 53 B> 7 U S F g B
eI g o Fla 2 BRI S T feanaf o
® Combinationof HIlandDIS : % & FiEm 8> 72 » B2 & RFT U1 EenR EHF R

2&2355 f/'}%fﬁf@f‘] 1138 7?/ °

IV, b

AP EEEAEIE > PEREAY S MG AT o B b e

® T.-Y. Lin, Y.-C. Tseng, and K.-M. Chang, “A New BlueRing Scatternet Topology for
Bluetooth with Its Formation, Routing, and Maintenance Protocols”, Wireless
Communications and Mobile Computing, Vol. 3, No. 4, June 2003, pp. 517-537.
(SCIE)

® J.-R.Jiang, B.-R. Lin, and Y.-C. Tseng, "Analysis of Bluetooth Device Discovery and
Some Speedup Mechanisms"”, Int'l J. of Electrical Engineering, Vol. 11, No. 4, Nov.
2004, pp. 301-310. (EI)

A New BlueRing Scatternet Topology for Bluetooth
with Its Formation, Routing, and Maintenance
Protocols

Ting-Yu Lin!, Yu-Chee Tseng', and Keng-Ming Chang?

"Department of Computer Science and Information Engineering
National Chiao-Tung University, Hsin-Chu, 300, Taiwan
E-mail:{tylin, yctseng}@csie.nctu.edu.tw

2Department of Computer Science and Information Engineering
National Central University, Chung-Li, 320, Taiwan

Corresponding author: Professor Yu-Chee Tseng
E-mail: yctseng@csie.nctu.edu.tw

Abstract

The basic networking unit in Bluetooth is piconet, and a larger-area Bluetooth network
can be formed by multiple piconets, called scatternet. However, the structure of scatternets
is not defined in the Bluetooth specification and remains as an open issue at the designers’
choice. It is desirable to have simple yet efficient scatternet topologies with well supports of
routing protocols, considering that Bluetooths are to be used for personal-area networks with
design goals of simplicity and compactness. In the literature, although many routing protocols
have been proposed for mobile ad hoc networks, directly applying them poses a problem due to
Bluetooth’s special baseband and MAC-layer features. In this work, we propose an attractive
scatternet topology called BlueRing which connects piconets as a ring interleaved by bridges
between piconets, and address its formation, routing, and topology maintenance protocols. The
BlueRing architecture enjoys the following nice features. First, routing on BlueRing is stateless
in the sense that no routing information needs to be kept by any host once the ring is formed.
This would be favorable for environments such as Smart Homes where computing capability is
limited. Second, the architecture is scalable to median-size scatternets easily (e.g., around 50~70
Bluetooth units). In comparison, most star- or tree-like scatternet topologies can easily form a
communication bottleneck at the root of the tree as the network enlarges. Third, maintaining
a BlueRing is an easy job even as some Bluetooth units join or leave the network. To tolerate
single-point failure, we propose a protocol-level remedy mechanism. To tolerate multi-point
failure, we propose a recovery mechanism to reconnect the BlueRing. Graceful failure is tolerable
as long as no two or more critical points fail at the same time. As far as we know, the fault-
tolerant issue has not been properly addressed by existing scatternet protocols yet. In addition,
we also evaluate the ideal network throughput at different BlueRing sizes and configurations
by mathematical analysis. Simulations results are presented, which demonstrate that BlueRing
outperforms other scatternet structures with higher network throughput and moderate packet
delay.

Keywords: ad hoc network, Bluetooth, mobile computing, personal-area network (PAN), piconet,

routing, scatternet, wireless communication.

1 Introduction

Wireless communication is perhaps the fastest growing industry in the coming decade. It is an en-
abling technology to make computing and communication anytime, anywhere possible. Depending
on whether base stations are established or not, a wireless network could be classified as infrastruc-
ture or ad hoc. According to the radio coverage and communication distance, it can be classified
as wide-area, local-area, personal-area, or even body-area.

This paper focuses on Bluetooth [1], which is an emerging PAN (Personal Area Network) tech-
nology, and is characterized by indoor, low-power, low-complexity, short-range radio wireless com-
munications with a frequency-hopping, time-division-duplex channel model. Main applications of
Bluetooths are targeted at wireless audio link, cable replacement, and ad hoc networking. The basic
networking unit in Bluetooth is called piconet, which consists of one master and up to seven active
slaves. For a larger wide-spread deployments, multiple piconets can be used to form a scatternet.
A host may participate in two piconets to relay data, to which we refer as a bridge in this paper.

In the Bluetooth specification, the structure of scatternets is not defined, and it remains as an
open issue at the designers’ choice. In the literature, although many routing protocols have been
proposed for mobile ad hoc networks based on wireless LAN cards [10], directly applying them poses
a problem due to Bluetooth’s special baseband and MAC-layer features [3]. It is desirable to have
simple yet efficient scatternet topologies with well supports of routing protocols, considering that
Bluetooths are to be used for PAN with design goals of simplicity and compactness. According
to [4, 5], Bluetooth-based mobile ad hoc networks need routing protocols closely integrated with
underlying scatternet topologies. The reason stems from the physical and link-level constraints
of Bluetooth technology, making legacy routing protocols for mobile ad hoc networks (e.g., [10])
unsuitable for scatternets.

Several previous papers [6, 9, 12] have addressed the performance issues, which motivate studies
of the scatternet formation problem. References [7, 11, 13, 14] propose various scatternet formation
mechanisms (refer to the review in Section 2.4). However, all these works fail to provide clear and
efficient routing protocols to run over the proposed scatternet topologies. Until recently, reference
[8] proposes a routing protocol based on a 2-level hierarchical scatternet. Two types of local
networks are defined: PAN (Personal Area Network) and RAN (Routing Area Network). RAN
is responsible of interconnecting PANs. All traffic from a PAN needs to go through the RAN to

reach another PAN. However, this approach suffers from two drawbacks. First, the number of

participating Bluetooth units is limited. Second, the RAN may become the bottleneck of the whole
network, in terms of both communication delays and fault tolerance capability.

In this work, we propose an attractive topology called BlueRing for scatternet structure, and
address its formation, routing, and maintenance protocols. While similar to the IEEE 802.5 token-
ring in topology, our BlueRing differs from token ring in several aspects due to Bluetooth’s special
baseband features. First, the ring consists of multiple piconets with alternating masters and slaves
and thus can de facto be regarded as a ring of trees since each master can connect to multiple
active slaves. Second, no token is actually running on the ring. Third, since each piconet has its
unique frequency hopping sequence, multiple packets may be relayed on the ring simultaneously.
Routing protocols to support unicast and broadcast on BlueRings are proposed. For bridges (slaves
connecting two piconets), a bridging policy is clearly defined so as to relay packets efficiently.

The BlueRing architecture enjoys the following nice features. First, routing on BlueRing is
stateless in the sense that no routing information needs to be kept or constructed by any host
once the ring is formed. This would be favorable for environments such as Smart Homes where
computing capability is limited. Second, the architecture is scalable to median-size scatternets
(e.g., around 50~70 Bluetooth units). In comparison, most star- or tree-like scatternet topologies
can easily form a communication bottleneck at the root of the tree as the network enlarges. Third,
maintaining a BlueRing is an easy job even if some bluetooth units join or leave the network. To
tolerate single-point failure, we propose a protocol-level remedy mechanism. To tolerate multi-point
failure, we propose a recovery mechanism to reconnect the BlueRing. Graceful failure is tolerable
as long as no two or more critical points fail at the same time. As far as we know, the fault-tolerant
issue has not been properly addressed by existing scatternet protocols yet.

The rest of this paper is organized as follows. Preliminaries are in Section 2. The formation,
routing, and maintenance protocols for BlueRing are proposed in Section 3, Section 4, and Section 5,
respectively. In Section 6, we present some analysis and simulation results. Finally, Section 7

summarizes the paper and points out our future work.

2 Preliminaries

2.1 Bluetooth Protocol Stack

Bluetooth is a master-driven, short-range radio wireless system. The smallest network unit is a

piconet, which consists of one master and up to 7 active slaves. Each piconet owns one frequency-

Applications
SDP TCP/IP RFCOMM
L2CAP

Link Manager
Baseband
RF

Figure 1: Bluetooth protocol stack.

hopping channel, which is controlled by its master in a time-division-duplex manner. A time slot
in Bluetooth is 625us. The master always starts its transmission in an even-numbered slot, while
a slave, on being polled, must reply in an odd-numbered slot.

Fig. 1 shows the Bluetooth protocol stack. On top of RF is the Bluetooth Baseband, which
controls the use of the radio. Four important operational modes are supported by the baseband:
active, sniff, hold, and park. The active mode is most energy-consuming, where a bluetooth unit
is turned on for most of the time. The sniff mode allows a slave to go to sleep and only wake up
periodically to check possible traffic. In the hold mode, a slave can temporarily suspend supporting
data packets on the current channel; the capacity can be made free for other things, such as
scanning, paging, inquiring, and even attending other piconets. Prior to entering the hold mode,
an agreement should be reached between the master and slave on the hold duration. When a slave
does not want to actively participate in the piconet, but still wants to remain synchronized, it can
enter the park mode. The parked slave has to wake up regularly to listen to the beacon channel,
for staying synchronized or checking broadcast packets.

On top of Baseband is the Link Manager (LM), which is responsible for link configuration and
control, security functions, and power management. The corresponding protocol is called Link
Manager Protocol (LMP). The Logical Link Control and Adaptation Protocol (L2CAP) provides
connection-oriented and connectionless datagram services to upper-layer protocols. Two major
functionalities of L2ZCAP are protocol multiplexing and segmentation and reassembly (SAR).

The Service Discovery Protocol (SDP) defines the means for users to discover which services are
available in their neighborhood and the characteristics of these services. The RFCOMM protocol
provides emulation of serial ports over L2ZCAP so as to support many legacy applications based on

serial ports over Bluetooth without any modifications. Up to 60 serial ports can be emulated.

2.2 Operations of the Park Mode

This paper proposes a new topology called BlueRing for scatternet structure. Since a scatternet
must involve multiple piconets, some devices must participate in more than one piconet. Such
devices are called bridges in this paper, and a bridging policy is needed for them to efficiently relay
packets from piconets to piconets. A bridge host has to frequently pause activities in one piconet
and switch to another piconet. In this paper, we propose to adopt the park mode for this purpose.

Below we give the reason why we choose park mode. The Bluetooth specification provides three
options for a device to temporarily pause its current activity: sniff, hold, and park modes. The
sniff mode has a periodical, prearranged wakeup pattern, and thus is more suitable for a device
to switch from piconets to piconets with a regular pattern. It is not selected here because with
a regular pattern time slots may easily get wasted. Moreover, with our BlueRing, which chains a
sequence of piconets, determining a good sniffing pattern is very difficult. The hold mode would
be favorable if the amount of time that a bridge should stay in each piconet can be predetermined.
Unfortunately, this assumption is unrealistic, especially in a dynamic environment. The park mode
is more favorable in our case since it allows a device to temporarily give up its current activity in
one piconet for an arbitrary period of time until an unpark request is issued. The unpark request
can be master-activated or slave-activated, but should be approved by the master. Hence, we adopt
the park mode in our bridging policy, considering its simplicity and flexibility.

In the following, we review the park mode operations in more details. On entering the park

mode, a slave gives up its active member address AM_ADDR, but receives two new addresses:
e PM_ADDR: 8-bit Parked Member Address
e AR_ADDR: 8-bit Access Request Address

The PM_ADDR distinguishes a parked slave from the other parked slaves. This address is used
in the master-initiated unpark procedure. In addition to the PM_ADDR, a parked slave can also
be unparked by its 48-bit BD_ADDR (Bluetooth Device ADDRess). The all-zero PM_ADDR is
a reserved address. If a parked unit has the all-zero PM_ADDR, it can only be unparked by the
BD_ADDR. In that case, the PM_ADDR has no meaning.

The AR_ADDR is used by the slave in the slave-initiated unpark procedure. All messages sent
to the parked slaves have to be carried by broadcast packets (the all-zero AM_ADDR) because they

have no AM_ADDR. To support parked slaves, the master establishes a beacon channel when one

beacon instant
i 2 N b 2
re nont
I
I

——— S t

beacon slots

Figure 2: General beacon channel format.

access window 1 access window 2 access window M
access

T
access access

beacon instant

Figure 3: Definition of access window.

or more slaves are parked. The beacon channel consists of one beacon slot or a train of equidistant
beacon slots which is transmitted periodically with a constant time interval. The beacon channel is
illustrated in Fig. 2. In each period of T's slots, a train of Np (Np > 1) beacon slots is transmitted.
The start of the first beacon slot is referred to as the beacon instant, which serves as the timing
reference. Parameters Np and T’ are chosen such that there are sufficient beacon slots for a parked
slave to synchronize during a certain time window in an error-prone environment.

In addition to the beacon slots, an access window is defined where parked slaves can send unpark
requests. To increase reliability, the access window can be repeated M cess times (Mgecess > 1),
as shown in Fig. 3. The first access window starts a fixed delay Dg.cess after the beacon instant.
The width of each access window is Tyeeess- The same TDD structure is adopted by alternative
transmission between the master and slaves, as shown in Fig. 4. However, the slave-to-master slot
is divided into two half slots of 312.5us each. A parked slave should count the half slots and only
in the proper half slot corresponding to its AR_ADDR may it respond. The parked slave is only
permitted to send an unpark request if in the preceding master-to-slave slot a broadcast packet has

been received. If the unpark request is approved, the master polls the parked slave.

slot | sl;

slot

AR_ADDR=1

AR_ADDR=2
AR_ADDR=3
AR_ADDR=4
AR_ADDR=5

broadcast
packet

broadcast
packet

-

broadcast
packet
t
I

I I

I I

. I I

) 625 ps 3125 1% ! !

ID packets

=

Start of access window

Figure 4: Unpark request procedure in access window.

2.3 Bluetooth Device Address and Access Codes

Following the IEEE 802 standard, each Bluetooth unit is assigned a unique 48-bit Bluetooth device
address (BD_ADDR), which consists of three fields as follows:

e LAP: 24-bit lower address part,
e UAP: 8-bit upper address part, and
e NAP: 16-bit non-significant address part.

The clock and BD_ADDR of a master defines the frequency hopping sequence of its piconet.
In addition, the LAP of a master’s BD_ADDR determines the access code to be used within its
piconet. In Bluetooth, each packet is preambled by a 68/72-bit access code. The access code is

used mainly for synchronization and identification. Three types of access codes are available:

e Channel Access Code (CAC)
e Device Access Code (DAC)
e Inquiry Access Code (TAC)

The CAC is determined by the LAP of master’s BD_ADDR and is used in connected mode,
when piconets are already established. CAC, which precedes every packet, identifies all packets
exchanged on the same piconet channel. Hence a Bluetooth unit can easily tell packets of its own
piconet from others. The DAC is used for paging and responding to paging. DAC is derived from
the LAP of the paged device’s BD_ADDR. The TAC is used in inquiry process. Two variants of

TAC are supported:
e General Inquiry Access Code (GIAC) and
e Dedicated Inquiry Access Code (DIAC).

There is only one GIAC, which is for discovering all Bluetooth devices in range. However, there
are 63 DIACs, each for discovering a specific class of Bluetooth units. Since TACs are derived from
LAPs, a block of 64 contiguous LAPs is reserved for this purpose. One LAP is used for general
inquiry, and the remaining 63 LAPs are reserved for dedicated inquiries. None of these LAPs can
be part of a Bluetooth unit’s BD_ADDR.

We will take advantage of the reserved DIACs in our BlueRing recovery procedures for fault

tolerance.

2.4 Review of Scatternet Formation Algorithms

Below, we review some existing scatternet formation schemes. The work in [6] has studied one
piconet with both active and park slaves. Slaves are switched between active and park modes
based on the timestamps when they entered a state. A parked slave with the oldest timestamp is
periodically unparked by parking the active slave with the oldest timestamp. This model suffers
from low system throughput and long packet delays, and incurs many mode-switching overheads
when the number of slaves is large. Also, with one piconet, the multi-channel benefit of using
scatternet is not exploited. According to [9], by grouping nodes into different piconets, significant
performance improvement may be obtained. The reason is that simultaneous communications can
occur among different piconets. However, since different frequency-hopping channels of different
piconets may still present radio interference, the Bluetooth Whitepaper [2] has suggested that up
to 8 piconets may coexist in the same physical environment.

Scatternet formation is explored in [7, 11, 13, 14]. In [11], a 2-stage distributed randomized
algorithm is proposed to form a network of star-shaped clusters, where each cluster is a piconet with
at most 7 active slaves. The goal is to maximize the number of nodes into each piconet so that the
number of clusters is minimized. However, how these piconets are interconnected is not addressed.
A similar work is in [14], where a fast scatternet formation algorithm is proposed to connect
piconets as a tree. How to form a tree-like scatternet with bounded time and message complexities
is presented in [7]; there is no limitation on the number of participant nodes. Clearly, the center/root
host in a star/tree scatternet can become a communication bottleneck of the network. Furthermore,
designing fault-tolerant routing protocols on a star/tree-like network is a difficult job since any single
fault will partition the network. In [13], assuming that all devices are within each other’s radio
coverage, a fully-connected scatternet is constructed such that connectivity exists between each
pair of piconets. At most 36 Bluetooth devices can participate in the scatternet.

We note that all the above works [7, 11, 13, 14] do not clearly address the corresponding routing
and bridging protocols to be run over the proposed scatternets. While there is no standard criteria

for good scatternet topologies, we conclude some guidelines for scatternet construction:

e The number of piconets should be kept as small as possible, so as to reduce inter-piconet

interference and communication complexity.

e A node should participate in at most two piconets, so as to reduce switching overheads.

e To reduce redundant inter-piconet links, two piconets should not be connected by more than

one bridge.
e Simple and efficient routing.

e Good mobility- or fault-tolerant capability.

3 The BlueRing Formation Protocol

3.1 Network Architecture

In this subsection, we propose the BlueRing structure. A BlueRing is a scatternet consisting of a
cycle of piconets which form a ring. Although physically the ring is undirected, logically we impose
a direction on it (say, clockwise). So each piconet has a downstream piconet in the forward direction,
and an upstream piconet in the backward direction. Packets will flow following the direction of the
ring, until destinations are reached. In each piconet, two of the slaves are designated as bridges,
one for connecting to the upstream piconet, called the upstream bridge, and one for connecting to
the downstream piconet, called the downstream bridge. For instance, as shown in Fig. 5, nodes
4 and 6 are upstream and downstream bridges of master M2, respectively. Similarly, each bridge
also has a upstream and a downstream masters. Therefore, each bridge host serves as an upstream
bridge in one piconet and a downstream bridge in another piconet, and each piconet should have

at least two slaves. Fig. 5 illustrates the BlueRing architecture and a real example.
3.2 Initial Formation

In order to construct a BlueRing, we adopt a centralized formation mechanism similar to [13]. As-
sume that all Bluetooth devices are within the radio coverage of each other. We define a parameter
RING_MEM for each Bluetooth to indicate whether it has become a member of the BlueRing or

not (1 for “yes”, 0 for “not yet”). Initially, RING_MEM equals 0. The construction has two stages.

e Stage I: Each Bluetooth chooses to inquiry (I) with probability p and to inquiry scan (IS)
with probability 1 — p. When some I matches with some IS, the two Bluetooths establish a
temporary piconet. Three parameters are exchanged between them: RING_MEM, number
of acquired Bluetooths, and BD_ADDR. First, their RING_.MEMs are compared. The one
with RING_MEM=1 wins if the other’s RING_MEM=0. In case of a tie, the one that has

gathered more Bluetooths’ information wins. If the above cannot determine a winner, tie is

(a) (“\ Routmg direction

Bridge node

g m\‘\/
f %

5\;@% \\n

Bridge node /

Bridge node

re
(b)

Figure 5: (a) the BlueRing architecture with nodes 2, 5, 7, 11, and 12 serving as masters, and (b)

a BlueRing example.

broken by their unique BD_ADDRs. The loser should provide the winner with all Bluetooths’

information it has gathered. After the information exchange, the temporary piconet is torn

down. The potential winner can claim itself as a leader if no further I/IS message is received

within an inquiry timeout (IT). Then the (potentially only) leader enters the page state, trying

to collect other non-leaders, which must enter the page scan state, waiting to be paged. The

details are in Stage II.

e Stage II: Based on the desired ring topology, the leader designates several Bluetooths as

masters by paging them and setting up a temporary piconet. For each designated master,

the leader provides it with the information of its slaves, including assigned downstream and

upstream bridges. Upon receiving such information, each master pages its slaves and estab-

lishes its piconet. A unit serving as a bridge should make sure that both its downstream and

10

3 bits 4 bits 1 bit 1 bit 1tk

JAAMiADDR | Type [Flow[ARQN [SEQN [HEC-A ‘
4 bite e
{ Access Code ‘ Heazier Payl‘oad
72 bits 0-2745 bits
‘ Preamble ‘ Sync WOLTd Tr;J.'.‘ler
4 bits 64 bits 4 bits

Figure 6: General baseband packet format.

upstream masters have connected to it properly. Once becoming part of the ring, a Bluetooth

sets its RING_MEM to 1.

The resultant BlueRing is quite fault-tolerable and scalable. We will discuss the maintenance

protocol to handle Bluetooths leaving and joining in Section 5.

4 The BlueRing Routing Protocol

4.1 Unicast and Broadcast

In this subsection, we propose a routing protocol, which supports both unicasting and broadcasting
on BlueRing. As mentioned earlier, data packets will be routed following the direction of the
BlueRing. Since a packet flowing around the ring will eventually reach its destination piconet, no
route discovery process is required. So routing on BlueRing is stateless since no routing table needs
to be maintained (on the contrary, most routing protocols for ad hoc networks need to keep routing
tables [10]).

To understand how packets are routed, we need to discuss the packet formats in more details.
The general Bluetooth baseband data packet format is shown in Fig. 6. Fach packet has a 72-bit
access code, which can uniquely identify a piconet, followed by a header and a payload. The header
carries 18 bits of information, and is encoded by the 1/3 FEC (Forward Error Correction) code,
resulting in a 54-bit header. The payload can range from 0 to 2745 bits.

Data packets supported by the ACL (Asynchronous ConnectionLess) link can occupy 1, 3, or 5
time slots. Type DM1/DH1 packets cover a single time slot, type DM3/DH3 packets 3 slots, and
type DM5/DHb5 packets 5 slots. On the payload field, there is also a payload header. Bluetooth
adopts different payload headers for single-slot and multi-slot packets. Fig. 7 details the formats
of payload headers.

To route packets on our BlueRing, several control bits should be appended after the payload

header. There are three formats for the payload field in BlueRing, depending on their communica-

11

2 bits 1 bit 2 bits 1 bit 9 bits

L_CH ‘Flov* Length ‘ | L CH |Flov} Length Undeffi

(a) (b)

Figure 7: Payload header formats: (a) single-slot packets and (b) multi-slot packets.

tion types, as shown in Fig. 8. These fields (in gray) are explained below.

e Broadcast bit: This bit distinguishes broadcast packets from unicast ones. This bit is set
to TRUE if the packet needs to be disseminated throughout the whole BlueRing, and set to
FALSE otherwise.

e Relay bit: For single-hop unicasting, the relay bit is set to FALSE, indicating no relaying
is needed to reach the destination. By observing a packet with relay bit set to FALSE, a
Bluetooth unit accepts the packet. For multi-hop unicasting packet, its relay bit is set to
TRUE, indicating that the packet needs to be relayed to reach the destination. The packet
continues to be relayed along the ring, until some master discovers that either the destination
is itself or the destination belongs to its piconet. In the former case, the master accepts the
packet. In the latter case, the master sets the relay bit to FALSE and forwards the packet to
the destination slave. On seeing a packet with relay bit = FALSE, the slave realizes that this
is a packet destined for itself, and thus accepts the packet. For broadcasting, if the source
is a master, the relay bit is initialized to FALSE and the packet is broadcast to its piconet.
All slaves within the piconet will accept the packet. On examining the packet content, the
downstream bridge of the sending master will determine that it is a broadcast packet and
needs to be further relayed. The downstream bridge will set the relay bit to TRUE and
forwards the packet to its downstream master to continue broadcasting. The relay bit (=
TRUE) is to inform the downstream master that the received packet should be relayed further.
The downstream master should set the relay bit back to FALSE and broadcasts the packet
to its piconet. This procedure is repeated to disseminate the packet over the BlueRing. On
the other hand, if the source is a slave, the relay bit is initialized to TRUE and the broadcast

packet is sent to its master for broadcasting.

e Dirty bit: For single-hop unicasting, the dirty bit is set to FALSE. Along with the relay
bit (= FALSE), the receiving side can easily tell that the packet is directly from the sending

host. For multi-hop unicasting and broadcasting, the dirty bit is to detect the presence

12

Payload
header

Relay
bit

Dirty
bit

Payload (data)

8/16

8/16

1

1

1 48

48

(bits)

(bits)

Payload
header

Relay
bit

Dirty
bit

BroadcagtSA (sourc
pit | BD_ADDR)

BD_ADDR)

eDA (dest.

Payload (data)

8/16

1

(b)

1 48

(bits)

Payload
header

Relay
bit

Dirty
bit

BroadcagtSA (sourc|
pit |BD_ADDR)

Payload (data)

Figure 8: Payload formats in BlueRing: (a) single-hop unicast communication, (b) multi-hop
unicast communication, and (c) scatternet broadcast communication. The fields in gray are what

added by BlueRing.

of orphan packets (with missing receiver) or duplicate broadcast to prevent packets from
endlessly circulating on the BlueRing. Whenever a master touches a packet, the dirty bit
is set to TRUE before relaying it to the next hop. This dirty bit, together with the source
BD_ADDR, is to identify if a packet has traveled throughout the whole ring or not. If the
packet has already traveled around the whole ring once, it is removed from the network to
avoid unnecessary circulation. When first initiated, a packet sent by a slave has dirty bit =

FALSE, and a packet sent by a master has dirty bit = TRUE. However, the former’s dirty

(c)

bit will be changed to TRUE once being relayed by the first master.

e SA: This field contains a 48-bit source Bluetooth Device ADDRess (BD_ADDR).
e DA: This field contains a 48-bit destination Bluetooth Device ADDRess (BD_ADDR).

The formal BlueRing routing protocol is provided in Fig. 9 and Fig. 10. Fig. 9 illustrates the
operations to be taken by a slave upon receiving a packet. If the relay bit is 1, the packet is directly
forwarded to the downstream master without further examining its content. If the relay bit is 0,
the packet should be accepted and forwarded to the upper layer. The dirty bit can be used to
determine the origin of the packet. If the dirty bit is 0, this packet is directly from the master;
otherwise, it has been relayed and its origin can be found from the field SA. In addition, for those
slaves acting as downstream bridges, they should check the broadcast bit. If the broadcast bit is

1, the bridge makes a copy of the packet (forwarding it to the upper layer), and sets relay bit to 1.

Then the bridge forwards the packet to its downstream master.

13

N Dirty

0
e bit ?
1 1 Source = mastgr

Being a downstresag
bridge ?

Make a copy of
the packet, and
Relay bit = 1

Accept the packef] an
» forward it tofe—
the upper layep

A 4

Forward the packegt to
the downstream magter

Figure 9: The BlueRing routing protocol for slaves.

Fig. 10 shows the operations to be taken by a master upon receiving a packet. If the relay bit
is 0, the packet is accepted. Otherwise, we check the dirty bit. For a packet with dirty bit = 1,
we need to check if the SA (source host address) is in this piconet (including the master itself).
If so, this is an orphan packet or duplicate broadcast and should be deleted from the network.
Also, whenever the first master touches a packet with dirty bit = 0, the dirty bit is set to 1 (so
as to detect future orphan packets/duplicate broadcasts). Then depending on the broadcast bit,
the master proceeds as follows. For a broadcast packet, the master sets the relay bit to 0, and
broadcasts it to its piconet. For a unicast packet, the master needs to decide whether the packet
should be forwarded or not. If the DA field is equal to the master itself, the packet is accepted.
Otherwise, the DA field is compared to the list of BD_ADDRSs belonging to this piconet. If so,
the packet is forwarded to host DA in the local piconet; otherwise, the packet is forwarded to the
downstream bridge.

Below, we demonstrate several routing examples based on the network in Fig. 5(a). Fig. 11(a)
illustrates the packet contents for a single-hop unicast from node 8 to node 7 in piconet MS3.
Fig. 11(b) and (c) are multi-hop unicasts from node 8 to node 10 and from node 3 to node 9,

respectively; the former is an intra-piconet communication, and the latter an inter-piconet commu-

14

Make a copy of
the packet, an
Relay bit = 0

A

Source = SA

!

Accept the packef]

> forward it to
the upper laye
h 4
Broadcast the packqt

to its piconet

Accept the packet
forward it to
the upper layer

and

DA in my
piconet ?

Forward the pa
to local host

SA in my
piconet ?
including j

Discard the pac
(orphan packet
redundant broadc

Forward the pac
to the
downstream bridge

Figure 10: The BlueRing routing protocol for masters.

4.2 Bridging Policy

15

nication. Finally, Fig. 11 (d) illustrates the packet contents for a scatternet broadcast originated

In BlueRing, a bridge host should participate in two piconets. Since Bluetooth is a TDD, FH radio
system, a unit can only stay in one piconet at one time. In BlueRing, we propose to use parking and
unparking for bridges to switch between piconets. We give the reason why we choose park mode
as follows. The Bluetooth specification provides three options for a device to temporarily pause its
current activity: sniff, hold, and park modes. The sniff mode has a periodical, prearranged wakeup

pattern, and thus is more suitable for a device to switch from piconets to piconets with a regular

AM_ADDR Relay bif Dirty blt

Node 8: | 52 I. ‘. 0 I 0 I

Node 7: Accept!

(a)

| AM_ADDR lRela% Dirt* EroadcaftSA (sourcf DA (dest| |
bit | bit bit BD_ADDR) | BD_ADDR) | *** =+ =
Node 8: l s2 | . l W1 ‘ 0 ‘ 0 I BD_ADDR (8)‘ BD_ADDR (14) e e o I
Node 7: l sS4 | . L .0 ‘ 1 ‘ 0 ‘ BD_ADDR (3)‘ BD_ADDR (1‘:{) cee o o I
Node 10: Accept!
(b)
| AM_ADDR lRela% Dirt* BroadcaTtSA (sourcf DA (dest| |
“bit bit bit BD_ADDR) BD_ADDR) see e
Node 3: I S1 | . l .1 ‘ 0 ‘ 0 ‘BDiADDR <1)| BD_ADDR (9‘ . I
Node 2: I s2 ‘ . L .1 ‘ 1 ‘ 0 ‘ED}DDR (3)‘ BD_ADDR (9‘ . I
Node 4: I s1 | . 4 .1 ‘ 1 ‘ 0 ‘ BD_ADDR m[BD_ADDR (9] l
Node 5: I S2 | . l W1 ‘ 1 ‘ 0 ‘ BD_ADDR <3)| BD_ADDR (9‘ I
Node 6: I s1 ‘ . J o1 ‘ 1 ‘ 0 ‘ BD_ADDR (3}] BD_ADDR (9' I
Node 7: I S3 ‘ . l .0 ‘ 1 ‘ 0 ‘EDiADDR (3)[BD_ADDR (91 vee o o I
Node 9: Accept!
(c)
| AM_ADDR lRela)i Dirt* BroadcaTtSA (sourcf |
. it | bit bit | BD_ADDR) oo o
Node 5: L 0 Ij .0 ‘ 1 ‘ 1 | BD_ADDR (5){ e e . I
Broadcasting.
Node 6: l s1 | . J .1 ‘ 1 ‘ 1 IEDJ-\DDR (5)[e . I
Node 7: l 0 | . L .0 ‘ 1 ‘ 1 lBDJmDR <5>[—. . I
Broadcasting.
°
°
°
Node 4: l S1 ‘ . L .1 ‘ 1 ‘ 1 ‘ BD_ADDR (5)
Node 5: Discard the packet, stopping broadcasting!
(d)

Figure 11: BlueRing routing examples: (a) intra-piconet one-hop unicast (node 8 to node 7), (b)
intra-piconet two-hop unicast (node 8 to node 10), (c) inter-piconet multi-hop unicast (node 3 to
node 9), and (d) scatternet broadcast originated at node 5.

16

pattern. It is not selected here because with a regular pattern time slots may easily get wasted.
Moreover, with our BlueRing, which chains a sequence of piconets, determining a good sniffing
pattern is very difficult. The hold mode would be favorable if the amount of time that a bridge
should stay in each piconet can be predetermined. Unfortunately, this assumption is unrealistic,
especially in a dynamic environment. The park mode is more favorable in our case since it allows
a device to temporarily give up its current activity in one piconet for an arbitrary period of time
until an unpark request is issued. The unpark request can be master-activated or slave-activated,
but should be approved by the master. Hence, we adopt the park mode in our bridging policy,
considering its simplicity and flexibility.

Below, we propose the bridging policy used in our BlueRing. A threshold-based strategy is
adopted to initiate park/unpark requests. Three parameters are used in the bridging policy: (1)
Ty: a threshold value to evaluate the queued packets in a bridge, (2) Tj,: a threshold value to
evaluate the queued packets in a master, and (3) T,y a timeout value to evaluate when a bridge
should switch piconets. Intuitively, under normal situations, a bridge will connect to its upstream
piconet for most of the time. When some threshold conditions become true, it will switch to its
downstream piconet. Once connected to its downstream piconet, the bridge will be treated with
higher priority by its downstream master so as to drain the packets in its buffer. The detailed

switching strategy is described below.

e From upstream to downstream: A bridge connecting to its upstream piconet should
switch to its downstream piconet when: (i) the number of queued packets to be relayed
exceeds Tj, or (ii) the clock T,,; expires. In this case, a park request should be sent to its
upstream master and an unpark request should be sent in the next available access window
in the downstream piconet. The downstream master should treat this bridge with higher

priority to drain its buffered packets.

e From downstream to upstream: A bridge connecting to its downstream piconet should
switch to its upstream piconet when: (i) all its buffered packets have been drained by its
downstream master, or (ii) its upstream master has queued a number of packets exceeding
the threshold T},. In the former case, the unparking request is initiated by the bridge itself,
while in the latter case, the unparking request is initiated by the upstream master to call
the slave back. A bridge called by its upstream master should park its current piconet

immediately, and switch to the calling piconet channel.

17

5 The BlueRing Maintenance Protocol

Fault tolerance is an essential issue in packet routing, especially under a mobile environment. In
BlueRing, when any master or bridge leaves the network, the ring will become broken and reduce
to a linear path. New Bluetooth units may join the network. In this section, we show how to
maintain a BlueRing. To tolerate single-point failure, Section 5.1 proposes a protocol-level remedy
mechanism. To tolerate multi-point failure, Section 5.2 proposes a recovery mechanism to reconnect
the BlueRing. Note that the former one does not try to reestablish the BlueRing so the network may
become a linear path. The later one will conduct local reconnection. Graceful failure is tolerable

as long as no two or more critical points fail at the same time.
5.1 Single-Point Failure

Suppose that one host serving as a master or a bridge fails. Since there is a default routing direction
on BlueRing, a host is unable to reach another host in the backward direction if packets are always
sent in the forward direction. The basic idea here is to add a new control bit called Direction after
the payload header. This bit assists hosts to determine which routing direction (forward/backward)
to be followed. Below, we summarize the necessary enhancements on our BlueRing protocol for the

fault-tolerant routing.

e The default value for Direction is 0, which indicates the forward direction. When a mas-
ter/bridge on the BlueRing detects that the next hop on the ring is non-existing any more,

it simply sets Direction = 1 and relays the packet backwards.

e Any master/bridge on receiving a packet with Direction = 1 should relay the packet in the

backward direction.

e The condition for discarding orphan packets should be revised as follows. Observe that a
packet with Direction = 1 may reach the source piconet more than once. It is erroneous to
discard such a packet by the source piconet master on observing Dirty = 1. In this case, the
packet should be allowed to continue traveling on the ring until the destination is reached or
the other end of the BlueRing is reached. Therefore, the condition for determining a packet
to be an orphan should be done by a master/bridge with no upstream node when observing

a packet to be undeliverable with Direction = 1.

18

/ New bridg
o

(b)

Figure 12: An example to illustrate bridge leaving recovery procedures: (a) DTAC1 discovering and
(b) the reconnected BlueRing.
e (Optional) One optimization which can be done here is to have each master keep a list of
destination addresses that are unreachable on the forward direction of the BlueRing. On
seeing a packet destined to any host in the list, the packet can be sent directly on the

backward direction to save communication bandwidth.

Note that if the failure point is a bridge, the whole network remains connected. If a master
fails, the non-bridge slaves of the master will become orphans. The other masters should execute
the inquiry process from time to time to collect such orphan slaves. The details are in the next

subsection.
5.2 Multi-Point Failure

The fault-tolerant routing protocol proposed above ensures routing unaffected, but leaving the
broken point unfixed. In this subsection, we propose a recovery mechanism that can reconnect the
network as a BlueRing. New hosts can join an existing BlueRing too. Only local reconnection is
required. As long as no two critical points fail simultaneously, the protocol can work correctly.

Recall that Bluetooth provides 63 reserved DIACs for discovering certain dedicated units in
range. Here, we propose to use 2 reserved DIACs, say DIAC1 and DIAC2, to facilitate BlueRing
recovery. Also, the GIAC will be used to invite new hosts to join an existing BlueRing.

Below, we show how to manage cases of bridge leaving and master leaving. In some cases we

will have to extend a BlueRing by creating more piconets.

e Bridge Missing: When a bridge leaves, its downstream master performs DIAC1 inquiry,

hoping to connect with another upstream bridge. On the other hand, the leaving bridge’s

19

Joining another j

Becoming non-bridge slave

Figure 13: An example to illustrate master leaving recovery procedures: (a) DIACI discovering
and (b) the reconnected BlueRing.

upstream master checks if it has any other non-bridge slaves that can serve as its new down-
stream bridge. If this is the case, the master notifies this bridge such and commands it to enter
DIACT! inquiry scan. Otherwise, the upstream master should tear down its current piconet
and wait to be discovered by other masters. This case will induce a missing master, which
can be cured by the “Master Missing” procedure in the subsequent paragraph. Fig. 12
illustrates the recovery procedures when the bridge node 4 leaves. Upstream master node 2
reassigns node 3 as its new downstream bridge and then node 3 enters DIAC1 inquiry scan.
Meanwhile, the downstream master node 5 performs DIAC1 inquiry, and discovers node 3.

A new connection is formed between nodes 5 and 3, healing the BlueRing.

e Master Missing: When a master leaves, all of its slaves, except the downstream and up-
stream bridges, become orphans. The downstream bridge of the leaving master should change
its state to a non-bridge and inform its downstream master to perform DIAC1 inquiry, in hope
of finding a new upstream bridge. On the other hand, the upstream bridge of the leaving
master enters DTAC1 inquiry scan, hoping to be discovered. Fig. 13 shows the scenarios when
master node 2 leaves, leaving node 3 isolated from the ring. The downstream bridge node
4 reduces a non-bridge slave and informs its downstream master node 5 to execute DIAC1
inquiry. Upstream bridge node 1 starts DIAC1 inquiry scan, and is discovered by node 5. A
new connection is established between nodes 5 and 1. Moreover, by GIAC inquiry/inquiry
scan, node 3 is discovered and invited to join node 5’s piconet, thus becoming part of the ring

again. So the BlueRing is reconnected.

20

Detaching upstream bridge

(:) and two non-bridge slave
DIAC2
X Q i
SN

: % \:\‘Q & e
O T e Q ... e .
@/ N s)

(a) (b)

10

New master ®

Figure 14: A BlueRing extension example with o = 4.

e Piconet Splitting: Recall that in order to include more Bluetooths into the BlueRing, each
master should execute GIAC inquiry from time to time. This happens when new Bluetooth
units join or orphan Bluetooth units appear. When the number of slaves belonging to a
master exceeds a certain limit, we will split it into two piconets. The procedure is as follows.
Assume that the desirable maximum number of slaves per piconet is @ (o > 4). Whenever
the number of slaves a master possesses reaches «, the master sends out a split_request token
to obtain split permission from all other masters. The split_request packet traverses the ring
to ensure that concurrent splitting operations on the BlueRing do not exist. Once the split
request is approved by all piconets on the ring, the master detaches its upstream bridge and
two non-bridge slaves (this must succeed since o > 4). Then the master starts DTAC2 inquiry.
Upon discovering master missing, the upstream bridge enters DIAC1 inquiry scan in search
of new downstream master. On the other hand, one of the two detached non-bridge slaves
is designated as new master and provided with the information of the other detached slave,
which is informed to enter page scan. The former will then page the later, thus setting up a

new piconet consisting of two members (one master and one slave). The new master designates

21

Table 1: Routing distances for packets originated at (a) a non-bridge slave, (b) a master, and (c)
a bridge.

No. of destinations Dista No. of destinations Dista
Intra-piconet{staves-3 de1 = 2 Intra-piconetyshgvesS-2 Gu =1
Ring-body e =R dez =R+1 Ring-body Cr2 = R-1 Gm2 =R
Inter-piconetrskave S¢2)R-1)| dgs =R+2 Inter-piconetishave S{2)RC1) dns =R+1
(a) Source is a non-bridge slave (b) Source is a master
No. of destinations Dista
Intra-piconettstgveS-2 A1 = 2
Ring-body G2 = R-1 A2 =R
Inter-piconettshave S{2)RF1)| dps =R+1

(c) Source is a bridge

its only slave as its downstream bridge, and starts DIAC1 inquiry to discover an upstream
bridge. Meanwhile, the new master orders its downstream bridge to enter DIAC2 inquiry
scan. Fig. 14 shows a splitting example, assuming o = 4. After obtaining the permission
to split, master node 7 disconnects from nodes 6, 8, and 9, and designates node 8 as the
new master. Immediately, node 8 sets up a new piconet with node 9, which serves as its
downstream bridge. Then node 8 discovers node 6 by DIAC1 inquiry, while node 7 discovers
node 9 via DIAC2 inquiry. The ring is now connected again with one more piconet. By

creating more piconets, more new Bluetooths can join the ring, making BlueRing extensible.

We remark on two points. First, every split operation needs to detach 2 non-bridge slaves.
Plus downstream and upstream bridges, only piconets with no less than 4 slaves can request for
splitting. That explains why we enforce a > 4. Second, the split_request token should compete
with other potential split_request tokens while traveling on the ring. The can be easily done by
allowing a requesting master with a higher BD_ADDR to inhibit other requesting masters’ tokens
with lower BD_ADDRs.

6 Analysis and Simulation Results

In this section, we first evaluate the maximum achievable throughput of the BlueRing. Let the ring
contain R piconets (R > 2) and each piconet contain S slaves (including both non-bridge slaves and

bridges). So the total number of Bluetooths on the ring is S- R. We shall derive the average number

22

Ideal Throughput
T..x (Kbps)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ring LengRh
Figure 15: Ideal BlueRing throughput for different R’s and S’s.

of hops that a data packet needs to travel before reaching its destination. This will depend on the
roll of the source, which can be master, bridge slave, and non-bridge slave. Table 1 summarizes
these three cases. In the tables, destinations are classified into ring-body, intra-piconet-slave, and
inter-piconet-slave. Note that the ring-body contains all masters and bridges, and the rest of the
slaves are classified into intra- and inter-piconet cases.

Based on Table 1, we derive the average distances ds, d,, and d, for packets originated at a

non-bridge slave, master, and bridge, respectively, as follows:

Cs1 - ds1 + o2 - dgo + ¢3 - dg3 . SR2+SR—2

dy = = !

N Cs1 + Cs2 + Cs3 SR—1 ()

dm:le'dm1+cm2'dm2+cm3'dm3:SR2_R:R (2)
Cm1 t Cm2 + Cm3 SR -1

4= ~dyp1 +cp2 - dyo + Co3 - dpz SR>+ (S-3)R (3)
Cp1 + Cp2 + Cp3 SR—1

Since there are (S —2)R non-bridge slaves, R masters, and R bridges, the average traveling distance

can be derived as:

D (§-2)-R-ds+R-dn+R-dy S*R*+(S*—S—4)R*+ (4—25R)
wa SR B S2R?2 — SR '

Taking S = 7 and R = 3 for example, the average traveling distance Dy, will be 3.89.
The following analysis further considers interference between piconets. Assume that the maxi-
mum throughput of a single piconet under an interference-free environment is 7'. By extending to

a scatternet, different piconets which choose the same FH channel in the same time slot result in a

23

collision. Given that 79 frequencies are available in Bluetooth, the probability that a time slot of
a piconet suffers no interference, denoted by Ps, can be approximated by (78/ 79)F~1, where R is
the number of piconets in the transmission range of each other.

The available network bandwidth is 7' - R - Pg. Dividing this by the average traveling distance
Dgyq, we obtain the maximum achievable throughput 77,4, of BlueRing:

T-R-Ps
Dave ’

Tma:z: =

(5)

Using the Bluetooth nominal bandwidth 7" = 1 Mbps, S = 7, and R = 3, we can compute
Trmaz = 751 Kbps. Fig. 15 shows the ideal throughput T},4; by varying R and S. From the curves,
it can be seen that a BlueRing length of R = 5 ~ 8 would be quite cost-effective.

In the following, we present our simulation results to verify the above theoretical analysis and
to compare our BlueRing with other scatternet topologies. We simulate only DH1 data packets.
For a single-slot DH1 packet, 336 bits (including the access code, header, payload header, payload,
and CRC) are transmitted over a time slot with 625us duration, which contributes to a reduced
T = 538 Kbps throughput/piconet. For simplicity, we assume that collisions due to frequency
overlapping do not happen, and thus Ps = 1. Taking a 21-node BlueRing (S = 7, R = 3) for
instance, we obtain T},,q, = 415 Kbps, which predicts the saturation point in throughput. This can
be used to verify the correctness of our analysis.

In our simulation, the number of Bluetooth devices that may participate in the BlueRing could
be N = 14, 21, 28, 35 or 42. For each simulation instance, we initiate N/3 data-link connections,
each with a randomly chosen source-destination pair. Each connection is an ACL link and can
be an intra- or inter-piconet communication. We also vary the ratio of the numbers of intra- to
inter-piconet connections. The numbers of intra- to inter-piconet connections could be equal, more
intra-connections, or more inter-connections. We will evaluate the influence of this factor. For each
connection, we assign it one of three data arrival rates, 256 Kbps, 128Kbps, and 16Kbps, with equal
possibility. A master keeps a separate buffer queue for each of its slaves. No mobility is modeled.
Besides, physical properties such as fading and interference are not considered. Each simulation
run lasts for 75 seconds. Only DH1 data packets are simulated.

The bridging policy proposed in Section 4.2 is followed. Switching between piconets is realized
using park/unpark procedures by following the proposed control message exchanges. We set the
buffering threshold to 60% for bridges to switch between piconets. The maximum number of

slaves per piconet is set to S. This factor will affect the ring length as well as packet delay. Two

24

Bridge Buffer Threshold = 60% Bridge Buffer Threshold = 60%

o)
5
m 900 = 4.00
% 800 —®—N = 14 8 3.50
! Jook EN =21 A
~ —%—N = 28 x///’/////,,a S 3.00
") 600 —A—N = 35 \ 27 e
3, 500 XN = 42 o™
& a @2 o0
o 2
gv 400 o=
1.50
8 300 %
c g 1.00
& 200 o
100 2 0.50%
0 0.00 M M
4 5 6 7 4 5 6 7
Maximum Number of Slaves PerSPicon Maximum Number of Slaves PerSPicone
(a) (b)

Figure 16: Effect of ring length on BlueRing.

Maximum Number of Slaves?7
Maximum Number of Slaves7

1000 2
- & 1.50
" -
2 900 - 2 _
M 800 = A -
= - 8 -
45) 700 g —1.00 -
2, S o
k= & 0
o 0
3 o =
2 o
g o o.s0
& S
H v
>
<
0.00
20 40 60 80 20 40 60 80
Bridge Buffer Threshold (%) Bridge Buffer Threshold (%)
(a) (b)

Figure 17: Effect of bridge buffer threshold on BlueRing.

performance metrics are observed: throughput and average packet delays. In Section 6.1, we first
study the impact of several BlueRing-related parameters. Then in Section 6.2 we present some

performance comparison results with other scatternet structures.
6.1 Tuning BlueRing-Related Parameters

In this subsection, we investigate three factors that may affect the performance of BlueRing: N
(network size), S (maximum number of slaves per piconet), and bridge buffer threshold.

Fig. 16 illustrates the throughput and average packet delays against S when N = 14, 21, 28, 35,
and 42. In all values of N, we observe that the throughput increases and the packet delay decreases

as S grows. When N is fixed, a larger S implies a shorter ring. So this indicates that a shorter

25

ring length can result in higher network throughput and lower packet delay.

The bridge buffer threshold affects when a bridge node should switch to its downstream piconet.
By setting the threshold to 20%, 40%, 60%, and 80% of the total buffer size, Fig. 17(a) shows that
the network throughput will increase slightly as the threshold goes up. This is because a smaller
threshold will incur more switches (and thus more switching overheads). On the other hand,
Fig. 17(b) also shows that the average packet delay will increase as the threshold grows, due to
longer queuing delays on bridges. Hence, the threshold value should be properly set to balance

both network throughput and packet delay.
6.2 Performance Comparison with Other Scatternet Structures

We compare BlueRing with two other scatternet structures. The first one is a simple single-piconet
structure. According to the Bluetooth specification, at most 7 active slaves can be supported in a
single piconet. To support more than 7 slaves, the extra slaves must enter the park mode. In our
implementation, we let the channel be shared by slaves in a round-robin manner. In other words,
communicating entities are parked/unparked periodically, taking turns to access the channel. So
many extra control packets exchanges will take place. The second structure is the star-shaped
scatternet proposed in [8]. One piconet is placed in the center. Each slave of the central piconet
may be connected to another master, and if so, will act as a bridge of the two piconets. Non-central
piconets do not extend to more piconet. So this can be regarded as a two-level hierarchy. All inter-
piconet traffic must go through the central piconet, and thus this may present a traffic bottleneck,
but the benefit is a less average number of hops that packets have to go through for inter-piconet
communications. Although the bridging policy is not specified in [8], here we adopt our threshold-
based policy in Section 4.2 by regarding the central piconet as upstream, and non-central piconets
as downstreams. When N = 20, Fig. 18 compares our BlueRing with the star-shaped scatternet.
Fig. 19 demonstrates the network throughput and packet delay under different traffic loads.
Here, load is reflected by the number of connections initiated. Each connection has a data rate of
256 Kbps, and could be an intra- or inter-piconet commuincation. Fig. 19(a) shows that BlueRing
saturates at the highest point compared to the other two structures. The saturated throughput
is about 415 Kbps, which is consistent with the prediction of our analysis. For the star-shaped
structure, its throughput outperforms that of the single-piconet model when the number of simul-
taneous connections exceeds 6. This is because multi-piconet has the advantage of using multiple

frequency-hopping channels at the same time. Fig. 19(b) demonstrates that, when the number

26

(a)

Figure 18: Two scatternet topologies with N = 20 hosts: (a) star-shaped structure and (b) BlueR-
ing (black nodes are masters).

Bridge Buffer Threshold = 8 ,= 7 X
Bridge Buffer Threshold = e® ,= 7

800

U;‘ 2.00
200k —&—BlueRing © —e—BlueRing
j9}
" ool —®— Star-shaped A 1ol —=—Star-shaped
. . D N
g - —»%—Single-piconet 9 —X—Single-piconet
o o, 500 S
g S o
o 4 g
5§ 2 400 02
e o
5 ©
300(H
1)
>
2007 < O
100
2 a 6 8 10 12 14 16 0
2 4 6 8 10 12 14 16
Number of Simultaneous Connections Number of Simultaneous Connections
(a) (b)

Figure 19: Performance comparison by varying the number of connections: (a) throughput and (b)
packet delay.

of simultaneous connections is below 10, both BlueRing and star scatternet suffer higher delays
compared to the single-piconet case due to bridging costs and larger network diameters. However,
when traffic load becomes higher, the packet delay of single-piconet structure raises dramatically.
The reason is that the throughput of single-piconet structure has reached a saturated point, which
leads to significant increase of packet delays.

We also investigate the impact of different intra- to inter-piconet connection ratios on the
network performance. Note that with more inter-piconet connections, the traffic load is higher.
Fig. 20 compares the throughput and average packet delay of the three scatternet structures under
different traffic loads. Here the ratio of intra-picont to inter-piconet traffic is 3:1. The figure

shows that BlueRing yields the highest throughput with moderate packet delay. For the single-

27

Bridge Buffer ThresholN = e® = 7

A) Bridge Buffer ThresholN = e®&,= 7
More Intra-piconet Traffic

More Intra-piconet Traffic

1 2.00
) >
1100 —e—BlueRing it —e—BlueRing
o)
o —m— Star-shaped A | —#—Star-shaped
5 900 T] ; L 1.50
g. - —X—Single-piconet g —%—Single-piconet
9 2 700 ! 59
. peo
5 2 o 81
£ 5004 &
!]
L > 0.
300F s 3 &
100 : :
0.
2 4 6 8 10 12 14 16 2 4 5 s 10 12 14 16
Number of Simultaneous Connections Number of Simultaneous Connections
(a) (b)

Figure 20: Performance comparison by varying the number of connections (with more intra-piconet
traffic): (a) throughput and (b) packet delay.

piconet structure, the throughput saturates when the number of simultaneous connections reaches
6. This is because many time slots are wasted on exchanging control packets for park/unpark
procedures. Furthermore, a single piconet can only utilize one frequency-hopping sequence, and
thus the maximum frequency utilization is only 1/79. On the other hand, BlueRing may utilize
multiple FH sequences over the same space. This is what limits the capability of the single-piconet
structure. With more intra-piconet connections, the BlueRing structure allows more simultaneous
transmissions and shorter routing distances. For the star-shaped structure, the throughput is
between those of BlueRing and single-piconet structures. With more intra-piconet connections,
the bottleneck effect, incurred by the central piconet, of the star-shaped scatternet becomes less
significant.

Fig. 21 illustrates the case when there are more inter-piconet connections (with intra- to inter-
piconet connection ratio equal to 1:3). The performance of the star-shaped structure drops signif-
icantly due to more serious bottleneck effect. For BlueRing, the throughput also declines, but is
still superior to the star-shaped structure. The single-piconet structure remains unaffected since

all traffic is intra-piconet.

7 Conclusions

In this paper, we have designed the corresponding formation, routing, and topology maintenance
protocols for BlueRing. Due to BlueRing’s simplicity and regularity, routing on it is stateless, in

the sense that no routing table needs to be kept by any host (and thus no route discovery procedure

28

Bridge Buffer ThresholN = e® ,= 7

Bridge Buffer Threshold = e ,= 7
More Inter-piconet Traffic

More Inter-piconet Traffic

800 (’;‘ 2.00
200 —e—BlueRing it —e—BlueRing
j)
o —m—Star-shaped A —=—Star-shaped
5 600f , . o L.50F
g. —~ —X—Single-piconet jé . —X—Single-piconet
o @A 500 5 o
=1
o g
5 2 4001 o = 7
e} o
B | > ©
300 I g
0.
2007 =
L
100))))))
0.
2 4 6 8 10 12 14 16
2 4 6 8 10 12 14 16
Number of Simultaneous Connections Number of Simultaneous Connections
(a) (b)

Figure 21: Performance comparison by varying the number of connections (with more inter-piconet
traffic): (a) throughput and (b) packet delay.

needs to be conducted prior to sending any packet). A protocol-level remedy is developed to keep
the network alive when there is a single-point failure on the ring. To tolerate multi-point failure, a
recovery protocol is devised to reconnect the BlueRing. We believe that the important fault-tolerant
issue has not been properly addressed by existing proposed scatternet protocols. To demonstrate
the scalability of BlueRing with respect to network size, analyses and simulation experiments have
been conducted. The results do indicate that BlueRing outperforms other network structures,
such as single-piconet and star-shaped scatternet, with higher throughput and moderate packet
delay. To conclude, we believe that the BlueRing is an efficient topology in terms of both network
performance and fault-tolerant capability.

Our future works include analyzing the fault tolerance capability of BlueRing and devising
mechanisms to deal with more than one simultaneous failure on the ring. Moreover, a real imple-
mentation of BlueRing is also being planned in the National Chiao-Tung University and will be

reported in our future work.

References

[1] Bluetooth SIG Bluetooth Specification v1.1, http://www.bluetooth.com. February, 2001.
[2] AU-System Bluetooth Whitepaper 1.1, http://www.ausystem.com. January, 2000.

[3] P. Bhagwat and A. Segall. A Routing Vector Method (RVM) for Routing in Bluetooth Scat-
ternets. IEEE Int’l Workshop on Mobile Multimedia Communications (MoMuC), 1999.

29

[4]

D. Groten and J. Schmidt. Bluetooth-based Mobile Ad Hoc Networks: Opportunities and Chal-
lenges for a Telecommunications Operator. TEEE Vehicular Technology Conference (VTC),
2001.

P. Johansson, M. Kazantzidis, R. Kapoor, and M. Gerla. Bluetooth: An Enabler for Personal
Area Networking. IEEE Network, pages 28-37, September/October 2001.

M. Kalia, S. Garg, and R. Shorey. Scatternet Structure and Inter-Piconet Communication
in the Bluetooth System. IEEE National Conference on Communications, New Delhi, India,
2000.

C. Law, A. K. Mehta, and K.-Y. Siu. Performance of a New Bluetooth Scatternet Formation
Protocol . ACM Int’l Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),

2001.

W. Lilakiatsakun and A. Seneviratne. Wireless Home Networks based on a Hierarchical Blue-

tooth Scatternet Architecture. IEEE Int’l Conference on Networks (ICON), 2001.

G. Miklos, A. Racz, Z. Turanyi, A. Valko, and P. Johansson. Performance Aspects of Bluetooth
Scatternet Formation. ACM Int’l Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2000.

C. E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.

L. Ramachandran, M. Kapoor, A. Sarkar, and A. Aggarwal. Clustering Algorithms for Wireless
Ad Hoc Networks. ACM DIAL M Workshop, pages 54—63, 2000.

T. Salonidis, P. Bhagwat, and L. Tassiulas. Proximity Awareness and Fast Connection Estab-
lishment in Bluetooth. ACM Int’l Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2000.

T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Distributed Topology Construction
of Bluetooth Personal Area Networks. IEEE INFOCOM, 2001.

G. V. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees - Scatternet Formation to Enable
Bluetooth-Based Ad Hoc Networks. IEEE Int’l Conference on Communications (ICC), 2001.

30

Analysis of Bluetooth Device Discovery and Some Speedup Mechanisms

Jehn-Ruey JiarigBing-Rong Lirl, and Yu-Chee Tserig

$Department of Computer Science and Information Engineering
National Central University, Taiwan

fDepartment of Computer Science and Information Engineering
National Chiao-Tung University, Taiwan

jrjiang@hcu.edu.tw, linnbiro@csie.nctu.edu.tw, yctseng@csie.nctu.edu.tw

Abstract

The device discovery time of Bluetooth is prohibitively long. This may significantly impact many mobile applica-
tions. In this work, we start by analyzing the frequency-matching delay of Bluetooth for both versions V1.1 and V1.2.
We then propose three schemes to speed up the device discovery procedure of Bluetooth. The result is a significa
reduction of average frequency-matching time from 23.55 seconds to 11.38 seconds.

Keywords: Bluetooth, device discovery, frequency-hopping spread spectrum (FHSS), inquiry and scan, wireless
network.

1 Introduction

Bluetooth [2] is a promising technology for short-range, low-power wireless communications. Operating in the
2.4GHz license-free ISM (Industrial, Scientific-Medical) band, Bluetooth adopts a 79-cliaagakncy Hopping
Spread Spectrum (FHSSechnology with a hopping rate of 1600 hops per second. In Bluetooth, before any two
devices can communicate with each other, they must go through a device discovery procedure which consists ¢
two steps,jnquiry andpaging The former is for devices to find each other, while the latter is to establish actual
connections. According to the specification [2], the inquiring procedure may take 10.24 seconds or longer, and the
paging, 7.68 seconds or longer. This long connection setup time is fine for static applications, but is intolerable
for mobile applications demanding quick and short connections, such as multi-media name card exchange [4] an
pedestrian surroundings information retrieval [9]. Consequently, many approaches [1, 4, 5, 6, 7, 8, 9] have beel
proposed to speed up the Bluetooth device discovery procedure.

One major component in the discovery delay is the lequency-matchingjme. Bluetooth adopts a master-
slave architecture. To establish a connection between two devices, a potential master should ingunirytetate

*Y. C. Tseng’s research is co-sponsored by the MOE Program for Promoting Academic Excellence of Universities under grant number 89-
E-FA04-1-4, by NSC of Taiwan under grant numbers NSC92-2213-E009-076 and NSC92-2219-E009-013, by the Institute for Information
Industry and MOEA, R.O.C, under the Handheld Device Embedded System Software Technology Development Project, and by the Lee anc
MTI Center of NCTU.

1The number of channels may be reduced to 23 in certain countries.

to periodically send consecuti¥® packets on some predefined 32 channels (or frequéciesl a potential slave
should be in thénquiry scanstate trying to catch alb packet from the right channel at the right time. Only when

a frequency-matching occurs, i.e., the slave correctly receives an ID packet, can the inquiry-paging procedure b
started.

A lot of works [3, 4, 6, 7, 8, 9, 10] have addressed the Bluetooth device discovery speedup problem. Some
[4, 6, 7, 9] suggest to modify the device discovery parameters, some [3, 10] suggest to use auxiliary devices, while
some [8] relies on device cooperation to assist device discovery. The recent Bluetooth specification V1.2 alsc
proposes a “faster connection” based on the concept of interlaced inquiry scan frequencies.

In this work, we start by analyzing the frequency-matching time of Bluetooth, the major component of delay in
its device discovery, for both versions V1.1 and V1.2. We show through analysis that the average delay is abou
23.55 seconds. This motivates us to search for schemes to shorten the frequency-matching time. In this paper, thr
schemes are proposed. The reduction is shown to be significant.

The rest of this paper is organized as follows. Section 2 presents some backgrounds. In Section 3, we analyze tf
frequency-matching delay of Bluetooth’s device discovery. Section 4 presents our schemes. Concluding remark
are drawn in Section 5.

2 Backgrounds
2.1 Inquiry and Paging Procedures of Bluetooth

The device discovery in Bluetooth involves two steipsjuiry andpaging The inquiry procedure is asymmetric.

A potential master must enter the INQUIRY state first, and a potential slave must enter the INQUIRY SCAN state.
The master will periodically broadcast ID packets in evegy,..,,, interval (refer to Fig. 1). These ID packets are
hopping on 32 common channels. These 32 channels are divided into two sets, each with 16 channels. ID packe
are grouped inte\ trains andB trains, each using one of the two sets of 16 channels exclusively. Tl &quiry

interval, Nipquiry A trains, followed byN;,quiry B trains, Nipquiry A trains, andV;,q.:-y B trains of ID packets are
sequentially transmitted, wher€;,,,.;», = 256. Each train consists of 16 slots (of lendth,;, = 10 ms). Two

ID packets on two different channels are placed in one @&2Slot. So there are 8 slots of ID packets interleaved

by 8 response slots reserved for slaves to reply. Consequéhtly,.i-, takes up to 10.24 seconds to complete

(4 x 256 of A/B trains, each of 10 ms), unless the master has collected endudR, {uiry responses) responses and
determines to abort the INQUIRY procedure earlier. For example, one commonly selected setting is that master:
enter the INQUIRY state every one minute, i8,,.:r,=60 Sec.

A potential slave should enter the INQUIRY SCAN state to listen to ID packets (refer to Fig. 1). It sequentially
hops on the aforementioned 32 channels, but at a much slower speed. iakg$sc.» Seconds to hop from one
channel to another. In each hop, it only enters the listening statls$,fef;.iryscan=10 ms. Note that it is necessary
that T, inquiryscan > Tirain SO as to guarantee that the slave can catch an ID packet from the master. The Bluetooth
specification suggests tha},,,uiryscan D€ NO longer than 2.56 seconds, which equals the lengf¥;,of,i., A/B
trains. Note that many vendors $€},quiryscan = 1.28 seconds, which will also be adopted in this paper. Table 1
summarizes all the above timing parameters.

2In this paper, the word “channel” and the word “frequency” are used interchangeably.

potential
master

T inquiry

(inquiry)

TWJ nquiry

Twﬁi nquiry

v

delay(0~1023 slots)

Twﬁmquiw
A BEE| ERE EEE! E
Y Y
256 timi 256 times 256 times 256 times
S(0) ‘ S(1) ‘ F(0) ‘ F(1) ‘ ‘ S(14) ‘8(15) ’ F(14) ‘ F(15) S(16) ‘ S(17) ‘ F(16) ’ F(17) ‘ ‘ S(30) ‘5(31) ‘ F(30) ‘ F(31)
Tan (16 Sots=10ms) Tuan (16 Sots=10ms) 2
1 slot(6250s) 1 slot(6251s)
potential T nquiryeean
dave
(inquiry scan) >
&—— Tu_inquirysean (16 slots=10ms) Tw inquiryscan (16 slots=10ms) ——f
R() R(i+1)
S(i) stands for sending ID packet in inquiry hopping frequency chanel i, i=0..31.
R(i) stands for listening to ID packet in inquiry hopping frequencychanneli, i=0..31.
F(i) stands for listening to FHS packet in inquiry hopping frequencychanneli, i=0..31.
Figure 1. Bluetooth inquiry procedure.
Table 1. Timing parameters of inquiry and inquiry scan.
Parameter Description Recommended value
Tinquiry inquiry interval 60s
Tow_inguiry inquiry window length 10.24s
Tingquiryscan inquiry scan interval 1.28s
Tow_inquiryscan | INQUiry scan window length 10ms
Tirain length of a train 10ms
Ninguiry train repetition number > 256
é Twiinquiry(:2-563) 9
potential
master {1 B[.. Bl . [A[Be] 8]
(inquiry) & D packe] D packet
10ms /S(i+1) S(i+1)
potentia R0 Rex R peoke e
(inquiry scan)
inquiryscan random backoff

Figure 2. The backoff procedure for a slave to reply a FHS packet.

Upon receiving an ID packet from some channel, §ay slave should take a random backoff and then reply a
Frequency Hopping Synchronization (FH®cket via the same channel. The backoff value is between 0 to 1023
slots to avoid possible collisions with other slaves. After the backoff, the slave should continuously listen to channel
1 and reply a FHS immediately after the first ID packet (also on chalieheard. Fig. 2 illustrates this procedure.

Note that the average backoff value is 512 slots, which equals 32 trains. This explains why A/B trains need to be
repeated so many times.

2.2 Related Work

Several methods have been proposed to improve the Bluetooth device discovery procedure [3, 4, 6, 7, 8, 9, 10
Some schemes try to modify the device discovery parameters [4, 6, 7, 9]. Some schemes propose to use auxilial
devices [3, 10], while some relies on device cooperation to assist the discovery [8].

In [9], three methods are proposed. The first method tries to decrease or even eliminate the random backoff ir
INQUIRY SCAN, the second method uses one single 32-frequency train to replace the two 16-frequency trains in
INQUIRY, and the last method is a hybrid one to combine the first two methods. According to [9], these methods
can improve the connection setup time up to 75% without deteriorating the overall system performance. A hardware
empirical testbed is developed to verify these methods in [6]; the result suggests that a single train with no backoff
has the best performance. In [4, 7], each device is assumed to alternate between “potential master” and “potenti
slave” modes in a random fashion. Analysis and simulation results show that the connection establishment latenc
can be reduced to be 80 ms with a probability of 0.95. In [3, 10], it is suggested to use auxiliary devices, such as
IrDA interfaces or RFID transponders, to facilitate connection setup. In [8], a cooperative device discovery scheme
is proposed to allow devices to exchange their knowledge of nearby devices, such as BD addresses and clocks,
speed up device discovery. The recent Bluetooth specification V1.2 also proposes a mechanism which requires
device to perform inquiry scan with interlaced hopping frequency in A and B trains.

3 Analyses for Bluetooth Device Discovery

In this section, we analyze the frequency-matching time of Bluetooth V1.1 and V1.2, which is the major compo-
nent of delay in its device discovery. We start with the analysis for Bluetooth V1.1. Suppose that there is already
a master device performing the scan procedure. According to whether or not the master is Enpaugets, we
divide the time axis intinquiry windowsandnon-inquiry windowsNow suppose that there is a slave device tuning
to the inquiry scan procedure and starting with an inquiry scan window. We are interested in the frequency-matching
delay, denoted by, measured by the elapsed time from the time when the slave starts inquiry scan to the time when
it successfully receives alD packet from the master.

By investigating the timing diagram of Fig. 1, the slave may start its inquiry scan in an inquiry window with

probability%, and in a non-inquiry window with probabilit@”q"i;*_Tw*i"q’“'"y. So we have
MNquiTYy

inquiry

D= T’w,inquiry x X + T%nquiry - Tw,inquiry x (Tinquiry - Tw:mquiry + Enquiryscan + Y) (1)
Enquiry Tlmquiry 2 2 ’
where X is the expected delay after the slave starts its inquiry scarvaisdthe expected delay after the slave’s
first inquiry scan encounters the master’s first inquiry window. Note that in the second case, the slave has to wali

Casel Wsi| [Wsz| |[Wsg| [Wea| [Weg |Wsg |Ws7| (Weg |Wsg
Case 2 Wa| |Wso| |Wsg [Wsg [Wsg| [Weg| |Ws7 [Weg
Case 3 Wsl Wsz Wsa Ws4 Wss Wse Ws7
Case 8 We| |Wsy
Figure 3. Eight possible cases for slave to start its inquiry scan. Wi is the i-th inquiry window of the

master, and Ws; is the i-th inquiry scan window of the slave.

Wml Wm2
Master / /\ \
A. .AlB. .BIJA. .AlB. .B | A... -y time

Slave

Casel.1 |A * (with prob. 0.5 and delay 0)

Case 1.2 B A A (with prob. 332 and delayTingiryscan)

Case 1.3 B B A A A A (with prob. 3% and delay Finquiryscan)

. 14
Case 1.4 B B B * (with prob. » and delay Zinqiryscan)

WS 1 W52 Wss WS4 WS5

Figure 4. lllustration of Eq. (2), which contains four subcases of case 1 for frequency-matching between
a master and a slave. A "*" means a "Don’t Care" frequency, because a matching has already appeared
in the previous inquiry scan window.

Ti"q“"”TZT winguiry 4 Ti"q“gy““” time in average before its first inquiry scan window encounters the master’s first
inquiry window.

In the following analysis, we follow the recommended values of Bluetooth that the length of one inquiry scan in-
terval is one half of a sequence of 256 A/B trains. Therefore, the slave has two chances to match with the frequencie
on which the master sends ID packets. Now, to calculate the expected valyenaf have to consider all possible
locations where the first inquiry scan window of the slave (denoted’y) appears in the first inquiry window of
the master (denoted B3¥,,,1). Basically, we evenly divide the windoW,,,; into 8 partitions, as illustrated in Fig. 3.

There are 8 cases to consider, which are discussed in the following.

Case 1: (V4 inthe first% window ofiW,,,1) In this case, the delay will depend on the frequencies on which the
slave is waiting for the master’s ID packets. Recall that the slave will repeatedly scan all frequencies of train A in
16 consecutive inquiry scan windows, followed by all frequencies of train B in 16 consecutive inuiry scan windows.
So there are 32 possibilities where the slave can catch an ID packet on the right frequency from the master. Thes

Wm 1 Wm2

A
Master / \ .
A. ..AB. .BJA. .AB. .B | A.. o« _»tlme

Slave
Case 2.1 A * (with prob. 0.5 and delay 0)
Case 2.2 B A A A A (with prob. % and delay Finguiryscan)
. 15
Case 2.3 B B * (with prob. » and delayTingiryscan)

W1 Ws2 W3 Wes

Figure 5. lllustration of Eq. (3), which contains three subcases of case 2 for frequency-matching
between a master and a slave.

possibilities can be classified into 4 subcases, as illustrated in Fig. 4. So the expected yindlus case can be
approximated by

1 1 14
Xl — 372 X Tlmquiryscan + 372 X (4 X Enquiryscan) + 33 X (2 X T:inquiryscan)- (2)

Note that there is no delay for case 1.1 in Fig. 4. For case 1.2, the delay is one inquiry scan interval, as reflecte
in the first term of Eq. (2). Similarly, there are four and two inquiry scan intervals of delays for cases 1.3 and 1.4,
respectively.

Case 2: (V5 in the secondé» window of W,,,;) As described in case 1, the slave hops on 32 frequencies
repeatedly. Similarly, there are also 32 possibilities where the slave can catch an ID packet on the right frequenc
from the master. These possibilities can be classified into 3 subcases, as illustrated in Fig. 5 So the expected valt
of X in this case can be approximated by

1 15
Xo = 5 X (3 X Tz’nquiryscan) + @ % Ti”qmwscan‘ (3)

Note that there is no delay for case 2.1 in Fig. 5. For cases 2.2 and 2.3, the delays are three and one inquiry sce
interval, respectively.

The next two cases are similar to the above two cases. So we omit the explanations.

Case 3: ¥, in the third ; window ofiW,,,;)

1 1 14
XS = 372 X Enquiryscan + 372 X (4 X Tinquiryscan) + 372 X (2 X Tz’nquiryscan)- (4)
Case 4: (V51 inthe fourth% window ofiV,,,1)
1 15
X4 — 372 X (3 X Tinquiryscan) + 372 X Tinquz’ryscan- (5)

Case 5: Vs inthe fifth% window ofi¥,,,;) The 32 frequency-matching possibilities of case 5 can be classified
into four subcases, as shown in Fig. 6. All subcases are similar to earlier discussions, except subcase 5.3, where t
frequency-matching will occur in next inquiry windoWw,,,. The slave thus has to waﬁ?i”q“"y*n”q“’*y““”Xﬁ X

inquiryscan

Tinguiryscan fOr window Wp,,» to appear. In the following analysis, we assume that..., is a multiple of

Wml sz

AN
Master 7 ™ ¢
.. .AlB.. .BJA. .AlB. .B | A... - time

with prob. 0.5 and delay 0
Slave Case 5.1 A * (P y0)

(with prob. % and delaylingiryscan)

B
>
E2

Case 5.2 B A A
Case 5.3 B JELM " -J_L e
Tinquiry _Tinquirygcan x4 (W|th prob. 5)
. 14
Case 5.4 ’a E ’E‘ H (with prob. 2 and delay Zingiryscan)

Wsl WsZ WsS Ws4 W55

Figure 6. lllustration of Eq. (6), which contains four subcases of case 5. The frequency-matching of
case 5.3 will occur in window W,

Tinguiryscan fOr simplicity. So the waiting time is simplified to b&{,quiry — Tinguiryscan x 4). After the wait-
ing, it will take X time more for frequency-matching. So the expected valug of this case can be approximated
by
1 1 14
X5 = 372 X Tinquir‘yscan + @ X (Tinquiry —4x 71inquiryscan + Xl) + 372 X (2 X Enquiryscan)~ (6)
The next three cases are similar to case 5. So we omit the explanations.

Case 6: {V,; in the sixth} window ofi¥,,,1)

1

15
X6 = @ X (Tinquiry —H X Tinquiryscan + Xl) + 33 X Tinquiryscan' (7)

Case 7: {V,1 in the seventt} window ofiV,,,)

1 15

X7 = @ X T’inquiryscan + 33 X (T%nquiry —6x Enquiryscan + Xl) (8)

Case 8: [V, in the eighthl window ofi¥,1)

1

Xg = §(Tinquiry — 7 X Tinquiryscan + X1). ©

We can now get the expected valueXofas follows:

8
1
x=-Y X, 10
8; (10)

Next, we derive the value df. It is not hard to see that the calculation is similar to the caseX.ofherefore,
the expected value df is

1 1 14

Y = 39 X Tinquiryscan + 32 x (4 x Tinquiryscan) + 32

2 X (2 S Tinquiryscan)- (ll)

Below, we analyze the frequency-matching delay for the interlaced inquiry scan which is proposed in Bluetooth
V1.2. Bluetooth V1.2 tries to interlace the inquiry scan hopping sequence of V1.1. Specificafly, fet..., f31

A
Master 7 N ¢
A. .AlB. .BJA. _AlB. .B | A... -y time

Slave
Casel1l |A * (with prob. 0.5 and delay 0)
. 15
Case 1.2 B A * (with prob. > and delaylinquiryscan)
Case 1.3 B B A B A (with prob. 3% and delay Finquiryscan)

Ws 1 W52 W53 W54 WSS

Figure 7. Three subcases of case 1 for Bluetooth V1.2.

be the hopping sequence in V1.1. Then the hopping sequence in V1.2 will replémeeach odd by f/ =
fit16(mod 32)- Therefore, the Eq. (1) can still be applied to Bluetooth V1.2. We only need to recalculate the values
of X andY'.

There are also 8 cases for analyzikigas discussed below.

Case 1. W, in the first% window ofW,,,;) The analysis is similar to the case 1 &fin Bluetooth V1.1.
There are also 32 possibilities where the slave can catch an ID packet on the right frequency from the master. Thes
possibilities can be classified into 4 subcases, as illustrated in Fig. 7. Note that in Fig. 7, a frequgngy,in, fis
is denoted by an “A”, and a frequency fiy, f17, ..., f31 IS denoted by a “B”. Also note that case 3.1 happens when
frequenciesfsy, fi6, f1, fis and fs appear in windows$Vy, W, W3, Wy andWys, respectively. So the expected
value of X in this case can be approximated by

15 1
X1 = @ X quuz’rysezm + ﬁ X (3 x TZ‘”QUW?JSC“”)' (12)

Case 2: ¥, in the secom% window of¥,,,;) This case is shown in Fig. 8.

1 14 1
X2 = 372 X Enquiryscan + 372 X (2 X Tinquiryscan) + 372 X (4 X quuiryscan)- (13)

Case 3: (Vs inthe third% window of¥,,,1) This case is similar to case 1.

15 1
X3 = 33 X quuz’rysaan + @ X (3 x qumrysc‘m)' (14)

Case 4: (V4 inthe fourth% window of¥,,1) This case is similar to case 2.

1 14
Xy = 32 X Tinquiryscan + 55 X (2 % quuz’ryscan> +

1
32 o X (4 X quuiryscan)- (15)

32
Case 5: V4 inthe fifth% window ofi¥,,,1) This case is similar to case 1.

15 1
X5 = 372 X Tinquirysczm + ﬁ X (3 X Ti”qu”yscan)' (16)

Case 6: (V5 inthe sixth% window ofWW,,,1) This case is similar to case 5 in V1.1. The slave may need to wait
(Tinguiry — Tinquiryscan x 5) for window W,,» to appear.

1 14
XG ==X Tinquiryscan + @ X (2 X T%nquiryscan) +

1
2 — X (Enquiry — 5 X Tinguiryscan + X1). 17)

32

Wm 1 Wm2

A
Master / \ .
A. ..AB. .BJA. .AB. .B | A.. o« _»tlme

Slave
Case 2.1 A * (with prob. 0.5 and delay 0)
Case 2.2 B B A (with prob. % and delayTinguiryscan)
. 14
Case 2.3 B A B * (with prob. » and delay Zingiryscan)

. 1
Case 2.4 B A A B A B| (with prob. » and delay Finqiryscan)

Ws 1 Wsz W53 Ws4 W55

Figure 8. Four subcases of case 2 for Bluetooth V1.2.

The next two cases are similar to the above cases. So we omit the details.
Case 7: WV in the seventd window ofi¥;,1)

15 1
X7 = @ X T’inquiryscan + 33 X (T’inquiry —6x ,Tinquiryscan + Xl) (18)
Case 8: (V1 inthe eighth% window ofi¥,,,1)
1
X8 = 5 X (ﬂnquiry —7X Enquiryscan + Xl) (19)

We can now get the expected valuelofas follows:

x=1 > X (20)

Next, we want to calculat®. It is not hard to see that the calculation is similar to the caseX..dfherefore, the
expected value of is
15

1
Y = 33 X Tinquiryswn + 372 X (3 X TianiTySC‘m)' (21)

If we setT},quiry = 60 andTy, ;nquiry = 10.24 seconds according to Table 1, we get the frequency-matching time
D = 23.55 and 22.53 for Bluetooth V1.1 and V1.2, respectively. If we look in further details, we findthat7.58
and 4.47 and” = 1.32 and 0.72 for V1.1 and V1.2, respectively. The interlaced inquiry scan indeed speeds up the
frequency-matching but overall the improvement does not seem to be significant. The reason is because the value
Tinquiry 1S t00 large. Thus, in Section 4 we propose some methods to speed up the bluetooth device discovery.

4 Speedup Schemes for Bluetooth Device Discovery
In this section, we propose three methods for speeding up the Bluetooth device discovery.
4.1 Half Inquiry Interval (HII)

From the analysis in Section 3, especially in Eg. (1), we note that the frequency-matching time is dominated
bY Tinguiry- Thus, we recommend thdt,,,..-, be halved. In order to keep the same ratio of inquiry time, we

9

Wml Wm2

A
Master /7 ™ ¢
A. .AlB. .BIJA. _AlB. .B A... -+ 3 time

Slave

Case 1.1 A * (with prob. 0.5 and delay 0)
) 1

Case 1.2 B m A (with prob. o and delay Zinquiryscan)
) 15

Case 1.3 B !B_‘ * (with prob. o and delayTinguiryscan)

Ws 1 Wsz Wss

Figure 9. The case 1 of the HIl method.

also recommend thal,, ;,4uiry b€ halved. As a result of this, the slave has only one chance to match with the
frequencies on which the master sends ID packets during a sequence of 256 A/B trains. Note that here we do nc
use the interlacing technique in V1.2.

Below, we analyze the new frequency-matching time due to these changes. Eq. (1) is still applicable. However,
there are only four cases &f, as discussed below.

Case 1. (V51 inthe first% window oflV,,,1) There are 32 possibilities, which can be classified into 3 subcases as
illustrated in Fig. 9. Note that there is only one chance for frequency matching during a sequence of 256 A/B trains.

The delay is:
15
= 372 X (2 X T%nquiryscan) + 372 X ,I%nquiryscan- (22)

Case 2: (V51 inthe secon(% window ofl¥,,,;) This case is similar to case 1.

X1

Xo = % X (2 X Tinquiryscan) + g X Tinquiryscan- (23)

Case 3: V41 in the third% window ofWW,,,1) The 32 frequency-matching possibilities can be classified into
three subcases, as shown in Fig. 10. All subcases are similar to earlier discussions, except subcase 3.2, where |
frequency-matching will occur in next inquiry windoW,,,». Recall that we assume tha}, .., iS a multiple of
Tinguiryscan, SO the waiting time isTquiry — Tinquiryscan % 2). The expected value ok in this case can be
approximated by

1 15
X3 = § X (Tinquiry —2x Enquiryscan + Xl) + 33 X EaniTySC‘ln' (24)

Case 4. (V51 inthe fourthi window ofI¥,,,1) This case is similar to case 3.

1
Xy = 2 X <Tinquiry — 3 X Tinquiryscan + X1)- (@3)

We can now get the expected valueXofas follows:

4
1
X=7 Z X;. (26)
=1
The calculation ol is similar to the case 1 oX. The expected value &f is
Y—lx(2><T» ;)+15><T' ; (27)
- 32 mquaryscan 32 mquairyscan -

10

Wml Wm2

AN
Master / \ ﬁ
A.. .AB. .BIA. .AB. ..B A +e- fime

Slave Case 3.1 A * (with prob. 0.5 and delay 0)
Case 3.2
(W|th prob. —)
mqulry mqulryscan
Case 3.3 (with prob — and delayTinguiryscan)
Wsl Wsz Ws3

Figure 10. The case 3 of the HIl method.

T inquiryscan 1

potential
save
(inquiry scan),

v

&—— Twingiysean (16 I0t5=10MS) ————t& Ty inguiryscan (16 Slots=10ms) ——
R(i) R(i+16)

R(i) stands for listening to ID packet in inquiry hopping frequencychanneli, i=0..31.

Figure 11. The proposed DIS scheme.

For example, if we s€l’,quiry = 30 andT, inquiry = 5.12 seconds, then we get the frequency-matching time
D =12.11 seconds. The reduction is significant. In this casés 4.06 seconds and is 0.68 seconds. So the

reduction is mainly contributed by the reductionfof .-

4.2 Dual Inquiry Scan (DIS)

In this scheme, we hope that once an inquiry scan window of a slave encounters an inquiry window of a master,
a frequency matching will occur as long as there is sufficient overlapping between these two windows. Toward this
goal, theDual Inquiry ScanDIS) scheme requires the slave to perform inquiry scan on dual frequencies, one in A
train and the other in B train. To be more precise, for eVEryiryscan PEriod, the slave should perform inquiry
scan on two frequencieg; and f; 1, €ach for a duration df, ;nquiryscan (r€fer to Fig. 11). Note that the value of
i is increased by 1 (with modulo 32) after each inquiry scan window. As a result, frequency-matching will occur on
either f; or f; 116 with a high probability. In order to keep the same ratio of inquiry scan time, we recommend that
Tinguiryscan b€ doubled.

Below, we analyze the frequency-matching delay for@mh® scheme. Eq. (1) can also be applied to the analysis

except thal” is replaced byX. That is, we have

D— M x X + T%nquiry - Tw,mquiry x (Enquiry - ijnquiry + Enquiryscan + X), (28)

Tinqm’ry Tinquz’ry 2 2

where X is the expected delay after the slave starts an inquiry scan window during an inquiry window. When

11

the master is sending an A/B trains which is sufficiently covered by the slave’s inquiry scan window, frequency-
matching will occur with no delay with a probability of abo%mnd WithT},4in (= 0.01) delay with a probability of
about%. Thus, we haveX ~ 0.005, which givesD =~ 21.71 seconds.

4.3 Combination of HIl and DIS

If we combine the above two strategies by adoptitigfor the master and adoptiig) S for the slave, then further
reduction ofD can be obtained. The analysis is similar and can be obtained from Eq. (28). By $&iting, = 30
andTy,_inquiry = 5.12 secondsp can be reduced to e .38 seconds.

5 Conclusions

In this paper, we have analyzed the frequency-matching time of Bluetooth V1.1 and V1.2. The main component
of delay in its long device discovery is the long waiting time for the appearance of inquiry windows from the
master. The proposedll scheme can reduce the aforementioned waiting time.DIBescheme can further reduce
the frequency-matching delay by scanning two frequencies back to back. If we combine these two schemes, th
expected frequency-matching delay can be reduced from 23.55 seconds to 11.38 seconds. The ratio of time fc
performing inquiry and inquiry scan does not increased.

6 Acknowledgement

Y. C. Tseng’s research is co-sponsored by the NSC Program for Promoting Academic Excellence of Universities
under grant number 93-2752-E-007-001-PAE, by Computer and Communications Research Labs., ITRI, Taiwan
by Intel Inc., by the Institute for Information Industry and MOEA, R.O.C, under the Handheld Device Embedded
System Software Technology Development Project and the Communications Software Technology Project, and b
Chung-Shan Institute of Science and Technology under contract number BC93B12P.

References

[1] S. Basagni, R. Bruno, and C. Petrioli. "Device Discovery in Bluetooth Networks: A Scatternet Perspective,”
Proc. of the Second IFIP-TC6 Networking Conference,Networking, 262, Italy, May 2002, pp. 1087-1092.

[2] Bluetooth Special Interest Group. Bluetooth specification version 1.1 anktip2/www.bluetooth.con2001.

[3] A.Busboom, I. Herwono, M. Schuba, and G. Zavagli. "Unambiguous Device Identification and Fast Connec-
tion Setup in Bluetooth,Proc. of the European Wireless 2Q0®l. 0, Florence, Italy, Feb 2002.

[4] K. Cheolgi, M. Joongsoo, L. Joonwon. "A Random Inquiry Procedure using Bluetdetbg. of International
Conference on Communication in Computing (GIGs Vegas, USA, Jun 2001.

[5] I. Maric. "Connection Establishment in the Bluetooth System,” Masters Thesis, the State University of New
Jersey, 2000.

12

[6] P. Murphy, E. Welsh, and J. P. Frantz. "Using Bluetooth for Short-Term Ad-Hoc Connections Between Moving
Vehicles: A Fesability Study,IEEE Vehicular Technology Conferena®l. 1, no. 55, Birmingham, AL, May
2002, pp. 414-418.

[7] T. Salonidis, P. Bhagwat, and L. Tassiulas. "Proximity awareness and fast connection establishment in Blue-
tooth,” Proc. of Mobile and Ad Hoc Networking and Computing, 2000 (MobiHOG'BB¥ton, Massachusetts,
Aug. 2000, pp. 141-142.

[8] F. Siegemund and M. Rohs. "Rendezvous Layer Protocols for Bluetooth-Enabled Smart Devioes,1st
International Conference on Architecture of Computing Systeois2299, Karlsruhe, Germany, pp. 256-273,
Apr. 2002.

[9] E. Welsh, P. Murphy, and J. P. Frantz. Improving Connection Times for Bluetooth Devices in Mobile Envi-
ronmentsProc. of International Conference on Fundamentals of Electronics, Communications and Computer
Sciences (ICFS$Mar. 2002.

[10] R. Woodings, D. Joos, T. Clifton, and C. D. Knutson. "Rapid Heterogeneous Connection Establishment:
Accelerating Bluetooth Inquiry Using IrDA,Proc. of the Third Annual IEEE Wireless Communications and
Networking Conference (WCNC) 2Q02l. 1, Orlando, Florida, Mar. 2002, pp. 342-349.

Biographies

Jehn-Ruey Jiangreceived his Ph. D. degree in Computer Science in 1995 from National Tsing-Hua University,
Taiwan. He joined Chung-Yuan Christian University and Hsuan-Chuang University as an Associate Professor in
1995 and 1998, respectively. He is currently with the Department of Computer Science and Information Engineering,
National Central University. He is a recipient of the Best Paper Award in Int'l Conf. on Parallel Processing, 2003.
His research interests include distributed computing, mobile computing, peer-to-peer computing, distributed fault-
tolerance, protocols for mobile ad hoc networks and wireless sensor networks.

Bing-Rong Lin received his B.S. degree in Computer Science from the National Chiao-Tung University, Taiwan,
in 2002. His research interests include wireless network, sensor network and Bluetooth.

Yu-Chee Tsengeceived his B.S. and M.S. degrees in Computer Science from the National Taiwan University and
the National Tsing-Hua University in 1985 and 1987, respectively. He worked for the D-LINK Inc. as an engineer
in 1990. He obtained his Ph.D. in Computer and Information Science from the Ohio State University in January
of 1994. He was an Associate Professor at the Chung-Hua University (1994 1996) and at the National Centra
University (1996 1999), and a Full Professor at the National Central University (1999 2000). Since 2000, he has
been a Full Professor at the Department of Computer Science and Information Engineering, National Chiao-Tunc
University, Taiwan.

He is a two-time recipient of the Outstanding Research Award, National Science Council, ROC, in 2001-2002
and 2003-2005, and a recipient of the Best Paper Award in Int'l Conf. on Parallel Processing, 2003. Several of
his papers have been chosen as Selected/Distinguished Papers in international conferences. He has guided stude
to participate in several national programming contests and received several awards. His research interests incluc
mobile computing, wireless communication, network security, and parallel and distributed computing. Dr. Tseng is
a member of ACM and a Senior Member of IEEE.

13

