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Abstract

With the scaling of gate oxide thickness into 1 nm
regime, the gate dielectric leakage current will
increase exponentially with reducing thickness.
Several different methods can be employed to
improve device performance and reliability. Among
them, high-k gate stack CMOS device is a good
choice. This project has extensively studied the
asymmetrical positive bias temperature instability,
and compared with conventional control oxide
devices. In order to overcome gate leakage tunneling
current during measuring ultra-thin gate oxide
devices, we will develop an effective method which
can remove gate leakage current and monitor the
profiling of interface traps. On the other hand, we
have developed a simple method to plot the spatial
distribution of oxide traps in the high-k gate
dielectric.

This first method is called Twin gated-diode method
(T-GD). A small forward drain bias can generate
junction depletion region. Sweeping gate bias has

been implemented for determining the profiling of



interface traps. Using small substrate bias can remove
the leakage current in the ultra-thin gate oxide. It can
be removed from the measured T-GD current, which
enables accurate determination of the interface traps.
This method has been demonstrated successfully for
characterizing the asymmetrical PBTI effects.

The second method is called Incremental Frequency
Charge Pumping (IFCP) method. By combing IFCP
method and trap-to-trap tunneling time constant, the
calculation of trap position in the HFSION has been
implemented. By using this technique, it was found
that the spatial distribution of oxide traps in the
high-k layer can be identified.

Keywords: ultra-thin gate oxide, gate leakage current,
oxide interface traps, PBTI, Twin Gated-Diode
method, V+ instability.
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Fig. 1 The recombined charge per cycle (Qgp) for
the high-k device.
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Fig. 3 Comparison of the interface trap density

in halo(1) for two different stress voltage.
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Fig. 5 The bulk trap in HfSION generation is

faster, during positive voltage stress.
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Fig. 2 Comparison of the trap density in HfSION

for two different halo implant species.
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Fig. 8 The gate to drain leakage current distribution
during the gated-diode measurement.
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