
行政院國家科學委員會專題研究計畫 期中進度報告

護套型即時入侵偵測系統之研製(2/3)

計畫類別：個別型計畫

計畫編號： NSC93-2213-E-009-034-

執行期間： 93 年 08 月 01 日至 94 年 07 月 31 日

執行單位：國立交通大學資訊工程學系(所)

計畫主持人：蔡文能

計畫參與人員：蔡文能、鄭光宏、蔡宗易、汪益賢、陳積弘

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 94 年 12 月 27 日

1

1

行政院國家科學委員會補助專題研究計畫 期中報告

護套型即時入侵系統之研製(2/3)

計畫類別： 個別型計畫

計畫編號：NSC 93－2213－E－009－034－

執行期間： 93 年 08 月 01 日 至 94 年 07 月 31 日

計畫主持人：蔡文能

共同主持人：

計畫參與人員：蔡文能、鄭光宏、蔡宗易、汪益賢、陳積弘

成果報告類型(依經費核定清單規定繳交)： 精簡報告

處理方式：本計畫可公開查詢

執行單位： 國立交通大學資訊工程學系(所)

中 華 民 國 九十四 年 十一 月 三十 日

2

2

一、中文摘要

以攔截系統呼叫為基礎之入侵偵測系

統提供即時的入侵防禦能力，在攻擊尚未

造成損害之前即提供攔截制止以確保系統

安全。但是這類藉由特徵比對方式來偵測

攻擊的安全系統，在遭受刻意安排的攻擊

模式時，常面臨準確度下降的問題。

除了惡意攻擊外，外來的應用程式也

是一個安全上的隱憂。基於日益複雜的軟

體功能與架構，軟體開發人員常需要使用

現有的、他人已開發的模組來完成一個複

雜的新應用程式，這類模組一般稱為

Commercial Off-The-Shelf (COTS) 應用

程式。不管是 COTS 應用程式，還是龐大、

程式碼不公開的應用程式 (如微軟的

Word)，都會有一個安全上的疑慮：即這些

軟體是否有私底下執行不為人知的竊取行

為或破壞行為。

這類程式如有漏洞(通常都有)，入侵偵

測系統可能無法發揮效用，所以本計畫採取

攔截程式的系統呼叫以檢核應用程式是否

做的不該做的事。

關鍵詞：網路攻擊、系統呼叫攔截、即時入

侵偵測、擬態攻擊、人體免疫系統

Abstract

 There are many security systems,
such as firewalls, anti-virus engine and
Intrusion Detection System (IDS), can be
used to prevent the system from malicious
attacks on network. Those tools are
designed by experts and used to detect
and/or to prevent intrusion behavior.
However, no matter how powerful or
complicated they are, the intruders can
always sneak through and bypass the

security checking after analyzing these
tools from top to toe. Fortunately, the
experts always try to push forward new
defending technology as soon as possible
to resist new attack methods.

Based on system call interception
technique, we have developed a prototype
of real-time intrusion detection and
prevention system. In our prototype system,
we did intercept those important system
calls invoked by application and tries to
match any penetration scenarios. Once
there is an evidence showing some
penetration is undertaking, the system can
terminate the penetration process before
injury. This wrapper system can also
wrapping COTS (Commercial
Off-The-Shelf) component to provide
robustness and security.

Keywords: Network Attack, System call
interception, real-time IDS, Mimicry Attacks,
Human-immunity

二、緣由與目的

單一種入侵偵測系統並無法偵測出所

有的的入侵行為，所以電腦系統通常會結合

各種入侵偵測技術來確保其最大安全性。本

計畫的主要目的在護套型入侵偵測系統 (In
trusion Prevention System using Wrapper;
IPSW)。因為我們主要是把應用程式的系統

呼叫攔截下來，檢查後如果沒問題再幫忙完

成系統呼叫工作，有如應用程式被包裝起

來。為了防止外來攻擊者進行未授權的入侵

行為以及內部網路使用者濫用其權限，內部

網路節點通常可以採用 “入侵偵測系統 (I

3

3

ntrusion Detection System － IDS) ”
來加強其安全防護。

入侵偵測系統需要其寄生的系統所產

生的稽核記錄來作分析。因此大部分入侵偵

測系統最大的缺點，就是只能做到 “偵測

(Detection)”，而沒有達到 “預防 (Preven

tion)”。入侵偵測系統只能站在第二防線

上，做事後追蹤的工作，而沒有辦法達到即

時防護的作用。因此我們需要一個能夠在攻

擊行為發生時，即時發現並通知管理人員或

終止執行的 “入侵預防系統”。
除了惡意攻擊外，外來的應用程式也是一個

安全上的隱憂。基於日益複雜的軟體功能與

架構，軟體開發人員常需要藉助軟體再利用

以及軟體模組化的方式來完成一個複雜的

新應用程式。也許是自行開發模組，但比較

常見的是使用現有的、他人已開發的模組來

組合，這類模組一般稱為 Commercial Off

-The-Shelf (COTS) 應用程式。

 不管是 COTS 應用程式，還是龐大、程

式碼不公開的應用程式 (如微軟的Word)，

都會有一個安全上的疑慮：即這些軟體是否

只有單純地完成其任務，還是，私底下執行

不為人知的竊取行為或破壞行為。這樣的假

設對於政府組織或者是企業團體都是相當

重要的問題，因為一個軟體設計師很容易在

其研發的應用軟體中加入後門，就算在程式

碼公開的情形下，光是數十萬行的程式 (W

indows NT 號稱有一千多萬行的程式) 就

很難分析出是否留有潛在的後門，更別論一

向不公開程式碼的大型應用程式。

 除此之外，應用軟體在實作時必定有一

些程式上的疏失。如微軟的 IIS 網頁伺服

器，從早期的主程式 inetinfo.exe

具有暫存區溢位的問題外，還有後來的 Un

icode/Double decode的問題，這些都造成

惡意攻擊者能夠取得管理者權限甚至是後

來的 Code Red 病毒的大量擴散。雖然軟體

設計師不願見到這類的漏洞發生，但軟體終

究是人類所設計的產物，百密總有一疏，軟

體測試過程無法將所有可能的測試情境都

走過一次。所以一個適時偵測異常行為的系

統不僅可以保護本身的安全，還可作為強化

 COTS 應用程式的屏障。

 所有的攻擊行為均需要系統資源，而系

統資源則需要使用系統呼叫(system call)

來取得。因此透過攔截系統呼叫的方式來偵

測異常行為，不僅可以達到較高的準確度，

也可以將注意力集中在監督系統呼叫上，並

且具有執行效能上的優勢。我們將稱這套稽

核系統為 “wrapper”，因為它就像一個防護

罩圍繞在作業系統外圍，根據設定過濾每一

個存取系統資源的要求，讓攻擊者無所遁

形，達到 “non-bypassibility”。。

三、結果與討論
 本計畫在去年已經設計出一個以攔截

系統呼叫(system calls)為基礎的入侵偵

測系統雛型，證實這種方法是可行的。我們

並且將成果發表到去年的國際計算機會議

(ICS2004, Taipei) ： Tsung-Yi Tsai,
Kuang-Hung Cheng, Chi-Hung Chen, and
Wen-Nung Tsai, “An Intrusion Prevention
System using Wrapper,” Proc. Of ICS2004,
International Computer Symposium, Taipei,
December 2004, pp. 1218-1223.

今年，藉由攔截系統呼叫型之入侵系統

的基礎，我們加強了解決繞道攻擊所可能帶

來的問題，並且降低系統誤判率。根據自動

機理論，我們將攻擊樣版經過轉換後，除了

可偵測原先所定義的攻擊行為外，還能偵測

出相關的變種攻擊行為，這對於偵測入侵者

的詭變攻擊方式有極大幫助。
這項成果也已經發表在今年(2005 年)

的全國計算機會議上(NCS2005, Tainan) ：
Tsung-Yi Tsai, Kuang-Hung Cheng, and
Wen-Nung Tsai, “IPSdNA: an Intrusion
Prevention System disputing No-op Attacks,”
Proc. Of NCS2005, International Computer
Symposium, Tainam, December 2005, ISE1-1.

4

4

目前我們是以 Linux 系統為平台，系統

架構如下圖所示。

主要包括四大元件，使用 Linux 可

載入式核心模組 (Loadable kernel

module) 製作。分述如下：(1) Wrapper
Driver (WD). 為程式與 Wrapper Manager
之間的橋接程式(bridge)。(2) Wrapper
Manager (WM).負責接受指示以監控程

式的系統呼叫行為，此模組會用到

WIC(見下一項)的資訓。(3) Wrapper
Information Center (WIC).主要包括兩種

表，一為 penetration template table, 另一

為代表被監控之程式的狀態機(state
machine)之 penetration table.(4)
State-based Rule Configuration Interface
(SRCI).提供使用者把認為有問題的執行

流程(scenario)用有限狀態機(FSM) 表示

出來存於 WIC。

四、成果自評
本計畫在培育人才方面，去年和今年分

別有一位碩士班同學以此相關題目為研究

論文畢業服國防役，我們也將成果分別發表

於去年(2004)國際計算機會議以及 2005 年

的全國計算機會議。下表為我們系統與其他

三個類似系統(GSW, KLW, STAT 各系統參見

References)在功能上的比較表：

 Our

approach
GSW KLW STAT

Real-time

intrusion

YES YES YES NO

prevention

Graphical rule

configuration

YES NO NO YES

Customized

rule

configuration

YES YES NO YES

Transparency YES YES YES YES

Non-root usage

mode

YES NO NO NO

Partial

interception

YES NO NO N/A

Timmer support YES NO NO NO

 在程式效能方面，我們分別測試 I/O

bound 的和 CPU bound 的程式在有被監控

與沒被監控的效能比較。先列 I/O bound 的

再列 CPU bound 的：

 1000 times 10000 times 50000 times

No PVIW 75756 sµ 726339 sµ 3353957 sµ

PVIW

installed

81892 sµ 800281 sµ 3710352 sµ

Penalty 8.10 % 10.1% 10.6%

以上是 I/O bound 程式的結果；以下則為

測試 CPU bound 程式的結果。

 1000 times 10000 times 50000 times

No PVIW 192970 sµ 1922763 sµ 9620897 sµ

PVIW

installed

199106 sµ 1986736 sµ 9840510 sµ

Penalty 3.18% 3.32% 2.28%

以下附上今年(2005)發表於 NCS2005 之論

文。

5

IPSdNA: an Intrusion Prevention System disputing No-op Attacks

預防繞道攻擊之入侵偵測防禦系統*

Tsung-Yi Tsai , Kuang-Hung Cheng, Wen-Nung Tsai
Department of Computer Science and Information Engineering,

 National Chiao-Tung University
{ tytsai, chengkh, tsaiwn}@csie.nctu.edu.tw

Abstract*

In this paper, we present a real-time
Intrusion Prevention System named IPSdNA (an
Intrusion Prevention System disputing No-op
Attacks), which is based on system call
interception technique. In this system, users can
describe attacking models in forms of state
machine through a well-designed GUI interface.
This system intercepts every system call invoked
by application programs and tries to match any
penetration pattern. Once there is an evidence
showing some penetration is undertaking, the
system can terminate the penetration process
before injury. To improve detection accuracy, we
developed an inspection model based on
automata theorem and human-immunity concept.
With the help of this enhancement, IPSdNA can
solve several kinds of mimicry issues that are
destined for pattern-matching IDS.

Keywords: IPS, Wrapper, Mimicry Attacks,

human-immunity

中文摘要
以攔截系統呼叫為基礎之入侵偵測系統

提供即時的入侵防禦能力，在攻擊尚未造成損

害之前即提供攔截制止以確保系統安全。但是

這類藉由特徵比對方式來偵測攻擊的安全系

統，在遭受刻意安排的攻擊模式時，常面臨準

確度下降的問題。因此藉由攔截系統呼叫型之

入侵系統的基礎，我們加強了繞道攻擊所可能

帶來的問題，並且降低誤判率，進而提出本系

統。根據自動機理論，我們將攻擊樣版經過轉

換後，仍能提供相同特徵的防禦能力。除了原

先所定義的攻擊行為外，還能偵測出相關的變

種攻擊行為，這對於偵測入侵者的詭變攻擊方

* This work was supported in part by National
Science Council, Contract No.
NSC93-2213-E-009-034.

式有極大幫助。

關鍵字: 入侵防禦、擬態攻擊、人體免疫系統

1. Introduction

There are many security systems, such as
firewalls, anti-virus engine and Intrusion
Detection System (IDS), can be used to prevent
the system from malicious attacks on network.
Those tools are designed by experts and used to
detect and/or to prevent intrusion behavior.
However, no matter how powerful or
complicated they are, the intruders can always
sneak through and bypass the security checking
after analyzing these tools from top to toe.
Fortunately, the experts always try to push
forward new defending technology as soon as
possible to resist new attack methods.

IDS can be divided into two categories
according to their detection methods, including
the Anomaly IDS and the Misuse IDS. The
Misuse IDS is the prevalence one and it will use
given and occurred attacking scenarios to build
up an intrusion characteristics database. So, the
Misuse IDS is also called the Signature-based
IDS. When the monitored behavior is compared
and matched against some intrusion pattern, this
action will be judged as an intrusion. In this
manner, the Misuse IDS has the benefits of low
false alarm rate. But it will also suffer from the
drawbacks of low detection rate to new kinds of
intrusions, since it does not have the patterns of
new attacking scenario in its signature database.

The Anomaly IDS has a database which is
used to store templates of normal program
behaviors. The Anomaly IDS will compare the
monitored action with normal models in
database and identify it as abnormal when it has
lots of divergence comparison result. Although
the Anomaly IDS can detect new attacking
methods, it also has to bear high erroneous
judgments rate. That is because it is quite hard

5

6

and uncertain to exactly define what the normal
behaviors are in this complicated computing
world.

Exactly as mentioned in the design goal and
principals of STBIPW (State-Transition-Based
Intrusion Prevention using Wrapper)[1] , only
when the intruder have accessing privilege to
system resource can he cause certain degree of
damage to victim system, and the only possible
way to access system resource is via system call
interface provided by OS. Therefore, system call
interface is an area of strategic importance. With
the help of wrapper-based IPS, we can intercept
and analyze the system call sequence invoked by
process to detect intrusions.

In recent years, most of the researches
regarding IDS are mainly focused on the
improvements of detection rate and erroneous
judgments rate. However, there are also some
articles trying to give a warning to the potential
attacks of IDS, such as Mimicry Attacks [5] .

In order to reduce the possibility of false
positive rate and to enhance the capability of
wrapper-based IDS, we proposed the IPSdNA
(Intrusion Prevention System disputing No-op
Attacks) based on the STBIPW which we built
before. In STBIPW, user can define intrusion
templates in the form of finite state machine
(FSM) and those templates are similar to the
patterns in traditional signature-based IDS,
which can be used to detect intrusion actions and
stop its execution before damage occurred.
However, STBIPW is a signature-based IPS and
it also has to resolve the problem of low
detection rate caused by new kinds of attacking
scenarios. Therefore, against STBIPW, there are
two major improvements in IPSdNA. First, we
analyze and transform user-defined intrusion
templates according to Automaton theorems.
After transformation, these modified templates
will assist IPSdNA to detect not only original
intrusion behaviors, but also the No-op attacks.
Seconds, we adopted the concept of
Human-Immunity in our system. We use
negative selection mechanism to test
user-defined templates and filter out improper
ones to lower down false alarm rate.

In this paper, we will first introduce several
related works regarding intrusion detection
systems (IDS), and then give an overview of
human-immunity system in section 2. Then, we
will talk about mimicry attacks that give several
challenges to signature-based IDS. In section 3,
we describe how the IPSdNA conquers several
issues that are destined in signature-based IDS,
followed by the detail architecture of IPSdNA in
section 4. In section 5, we use plenty of
experiments results to show the intrusion
detecting capability and to evaluate the system
efficiency of IPSdNA. Afterwards, we will give

a brief discussion and conclusion in the last
section.

2. Related Works

In this section, we first introduce two
intrusion detection systems related to this paper.
One is the system-call-based IDS that intercepts
and monitors the sequence to detection intrusion.
And the other is the state-based IDS that use
states and state transitions mechanisms to find
out the evidence of intrusions. Afterwards, we
present the human immunity concepts and
introduce one intrusion detection system
designed and implements based on this concept.
Finally, we talk about some possible attacks to
host-based IDS and ways to pass by its
detection.

2.1 System-call based Detection Methods

In modern operating systems, user process
has to use system calls to access system resource
through kernel. In this way, kernel can schedule
each request and ensure fairness among multi
processes. To provide security checking, it is
quite practical to do examination on system calls
invoked by suspected process. There are many
IDS systems designed with this concept, such as
STBIPW[1] and N-Gram [18] [23] .

N-gram was proposed by Stephanie Forrest
and other team members in 1996. They used
system call tracing technology to build their IDS
system and finally presented the pH-IDS[2]
(process Homeostasis IDS) in year 2000.
pH-IDS will verify each system call invoked by
process and determine its status. It builds a “self
database” for each privileged process which is
used to represent this process’s normal behavior
under specific hardware architecture, software
version and configuration.

The “N” in N-gram represents that it will
examine N continuous system calls. For example,
when N = 3, N-gram will observe each system
call and check their relationship with the
following three system calls. It will compare
each fragment of system call sequence against
database to detect intrusion. In this way, N-gram
is simple and efficient, but the detection rate will
depend on the window size N. When window
size N is larger, it will be more precise to the
comparison result since it has more evidence to
prove it is an attack. However, it will decrease
the detection rate with too large N. Therefore,
choosing N is an important and tough job when
using N-gram since every process has different
adapted window size. The other drawback of
N-gram is that it checks only system call
sequence. It does not inspect the system call

6

7

parameters. There are some attacks that are
carried out with valid system call sequence but
harmful arguments to achieve the purpose of
attacking. Furthermore, we can choose some
valid system call fragment from normal database
and insert it into intrusion sequence. In this way,
the intrusion system calls are scattered into each
fragments and beyond the scope of window size,
thus successfully escaping the N-gram’s check.

2.2 FSM based Detection Methods

The finite state machine (FSM) is
composed of states and transitions. Each state is
used to record status of certain task and related
to each other with transitions. Each transition
will be triggered to make switch when some
event happened. We can view each intrusion
behavior as a sequence of states that each state
represents some key action has been done. For
example, Figure 1 represents the behavior of
virus infection.

Figure 1 FSM of Virus Infection

The STAT (State Transition Analysis Tool)

[15] [20] is one well-known IDS system that
uses FSM to analyze intrusion. STAT is a log
investigation system. It uses FSM to describe
attack scenarios and then feeds system logs into
intrusion detection engine to find whether the
system has been attacked. However, attackers
can make a detour to go on the offensive and
leave without being aware of.

There are many researches that use the
concept of STAT, such as STBIPW[1] . In that
work, it decomposes a penetration into many
states linked with critical system call transition.
It uses graphical interface to describe intrusion
behaviors. It would be more intuitive and easy to
depict attacks, especially for complicated rules.
Therefore, the STBIPW can provide real-time
intrusion prevention, and the graphical models
will not only decrease the complexity of rule
maintenance but also raise the accuracy of
detection rate.

2.3 Immunity based Detection Methods

Human body is always being in touch with
external materials, such as water and air. All
these outside materials may contain harmfulness

invaders to human bodies. It might be bacteria,
virus, even the parasite. Fortunately, we have
biological immune system that would detect and
eliminate those foreign intruders. The major
character of immune system is the lymphocyte,
which is known as antibody. It is like a sentry
that patrols around and ferrets out pernicious
materials.

To produce antibodies, the immune system
will first pick up a random segment from gene
pool. This randomness is the main reason why
human bodies can resist unknown diseases.
However, not every gene segment is able to be
used as lymphocyte. They have to be tested with
both positive selection and negative selection.
The positive selection will leave behind those
abnormal lymphocytes that can not cooperate
with other human cells. On the other hand,
negative selection will let lymphocytes contact
with human cells and filters out those active
ones since these lymphocytes misjudge normal
cells as enemies, producing the phenomenon of
autoimmunity. The lymphocytes that pass both
positive and negative selections are said to be
mature and be able to shoulder the important
duty of epidemic prevention.

There are many researches that proposed
and designed IDS systems with the concept of
human immunity [24] [25] [26] . The basic idea
is to map certain computer characteristics as
antibody, and then cultivate random-chosen
antibody to be a mature one. For example, we
can represent a network connection to be a byte
stream in length L based on some basic
information, such as IP addresses and port
numbers. We also define the sentries of IDS
system as byte stream with length L. Those
sentries are corresponding to lymphocytes in
immune system and responsible for the jobs of
intrusion detection. When the representative byte
stream of certain network connection matches
some detectors, it means that this connection
might be a dangerous one.

Another kind of immunity detector is
described as a state machine, such as the work in
IGSTAM [26] . In IGSTAM, it represents each
kind of intrusion as sequence of states alternated
with transitions. Consequently, it defines the
antibody as state machine and calls it vaccine in
the following format:

Vac = (S1, A1, S2, A2, …, Sn).

Those vaccines also have to pass negative
selection. They will be trained against normal
database to see whether they are active to normal
behaviors. If there is no match, those vaccines
are said to be mature and can be spread to detect
whether system is being attacked.

7

8

2.4 Weakness of Host-based IDS

To detect intrusions, signature-based IDS
has to detect and match certain pattern exactly,
and then it can judge it as an attack. For that
reason, we can insert some useless operations
(no-op) into penetration sequence to confuse the
detectors. This kind of attack is called “no-op
attack＂. Take N-gram discussed above as an
example, N-gram will inspect several continuous
system calls to detect intrusions. If we know the
trained database it uses and insert some normal
system calls into detector pattern purposely, we
can get away from detection since the attack
sequence has been out of the window size. In the
same way, we can disperse attacking steps to
normal patters and accomplish invasion slowly
and stealthily. These kinds of attacks are called
Mimicry Attacks [5] and the no-op attack is
one typical type of them.

Another kind of mimicry attacks is called
the collaborative attack. In order to escape from
examination, malicious process can fork another
child process to carry out invasion. Most IDS
systems will monitor fork related actions and
apply equal inspections for child processes to
prevent such attacks. However, if both the parent
and child processes finished parts of intrusion
steps and exchange their results through IPC, it
will be undetectable by original methods. For
example, if we define the following sequence of
system calls as a simple intrusion patter:

open("/etc/passwd");
write("/etc/passwd");
close();

It will be undetectable by general IDS systems if
we let parent process do the open system call
and let child process finish the write, as shown
in Figure 2. Currently we will focus on detecting
the No-operation attacks. To disputing the
collaborative attacks would be our future work.

Figure 2 Collaborate Attacks

3. IPSdNA System Requirements and
Design Issues

Detection rate and false positive rate have
been challenges to intrusion detection systems
all the time. Therefore, a well-designed IDS
system should pay attention to both requirements.
In this section, we first introduce how to use
negative selection mechanism to inspire from
immune system to filter out unsuitable detectors,
and thus reduces the chance of false positive. In
additions, we proposed solutions to against
mimicry attacks.

3.1 Examination of Improper templates

In this paper, the system architecture we
proposed can be classified as a Misuse IPS. It
can let users customize their own penetration
templates so that it can be used to detect
intrusions as required. In order to lower down
the false positive rate, we collect normal system
call sequences on a clean system and use this
data to examine user-defined templates. There
are two phases in this procedure, one is the
training phase and the other is the testing phase.

In training phase, we collect system call
sequences of normal actions to build the Normal
Database. During this phase, it should be
guaranteed that the testing environment is clear
and there would be no any intrusion at all. This
is much like the way used in Anomaly IDS.
However, the normal database built in Anomaly
IDS is used for intrusion detection. On the
contrast, normal database is used to inspect
user-defined patterns (as shown in Figure 3), just
as lymphocytes and negative selection
mechanism in the immune system.

Figure 3 Procedure of Negative Selection

8

9

In testing phase, if the comparison gets
positive reactions, it means that this template
might misinterpret normal behavior as abnormal
one. The system will make a warning prompt to
user. In this way, users will have the opportunity
to modify just-defined templates or let it be used
in system even though it got positive result.
Based on the testing procedure inspired from
immune system, we can diminish lost caused by
improper template detectors.

3.2 Prevention the No-op attacks

In traditional signature-based IDS, it is easy
to circumvent intrusion examination by inserting
lots of useless system calls. However, those
systems that specify intrusion as state machines
have certain degrees of resistance against no-op
attacks in nature. This is because the finite state
machine would stay remained when it faces an
unrelated event. However, it is not enough to
defend no-op attacks with only such inborn gifts.

For example, we can define an intrusion
template as shown in Figure 4 and suppose all
those labels on arcs are system call numbers.
This machine is a DFA (Deterministic Finite
Automaton) and thus it must make a state
transition when the current state and current
system call satisfied its definition of transition
function. To attack this template, we can make a
system call sequence “a, c, e” and this sequence
won’t be detected by this machine. That is
because the attacker can escape the inspection of
“c, e” sequence by executing “a” first. We call
this kind of attack as Evasion attack. It is one
kind of no-op attacks since the system call “a”
behaves like a no-op operation used to disturb
detection.

Figure 4 Original Template

In order to solve evasion problem, we have

to reorganize the FSM. First, we decompose the
complex parts of original FSM into several
sub-FSMs as shown in Figure 5. Every two
crotched paths that join before final state would
be separated. Formally, we will do DFS search
on original graph and take apart the graph into
individual subgraphs represented by the paths
from initial state to final state when we find a
back edge.

Figure 5 Template after first transformation

In this way, attackers can not insert evasion

operation (unrelated but influenced) to escape
inspection. For example, it would be
undetectable for sequence “c, f, e＂ and
become a suspect one after transformation. This
algorithm is listed as follows:

In second step, we add an ε-transition for
each non-final state back to previous fork state
that has more than two possible transitions. It
will become anε-NFA (Nondeterministic Finite
Automaton), as shown in Figure 6. In this way,
no matter how far this machine has been to, it
can go back to previous fork state and trace
another path to the destination.

9

10

Figure 6 Template after second transformation

After this transformation, the enhanced

FSM can detect any kind of no-op attacks, no
matter how much the useless operations are and
how dispersed those key events are. This
algorithm is listed as follows:

Finally, we transform the ε-NFA into an

equivalent DFA as shown in Figure 7. We do this
transformation for the reason of simplicity and
efficiency. In DFA, the system only has to pay
attention to relative system calls that are critical
to current state. However, inε-NFA, it needs to
guest all possible paths against happened events
and search whether there is one path that reaches

the final state. Therefore, it would be much
simpler and efficient in real-time execution when
we use DFA to specify the intrusion. Even so,
the transformed FSM does not lose its detection
capability since they are equivalent according to
automaton theorem. It can detect several variants
of no-op attacks, including evasion attack.

Figure 7 Final Template

4. IPSdNA System Architecture

Based on STBIPW, our system is divided
into two segments; one is the user level
components and the other is the kernel-level
components. We use a device driver to connect
these two parts. The device driver acts as a
bridge between these two segments. In one side,
it will help to pass commands and data to
underlying core engine for user configuration.
And in the other side, it will also help to return
execution information back to users. The
architecture of the complete system is shown in
Figure 8. We use the Kernel-Level Wrapper
technique to build all the kernel components in
the form of LKM (Loadable Kernel Module) and
plug it into the Linux kernel in the run time.

Figure 8 System Architecture of IPSdNA

10

11

4.1 User Level Modules

The main function of the user level module
is to pre-set the attack templates. This includes
providing the interface for users to formulate
attack templates, and analyzing the attack
templates the users have defined. This can not
only prevent no-op attacks, but can also verify
the user-defined templates. The purpose is to
make sure there are no inappropriate attack
template monitoring programs that may cause a
high false positive alarm rate.

First, we must analyze and verify the attack
template defined by the user. Therefore, we
might alert the user when he/she defines an
inappropriate attack template to eliminate
recognition errors, and also prevent hackers from
inserting no-op system calls to avoid detection.
These functions are accomplished by the
Template Analysis Module and the Template
Testing Module.

The Template Analysis Module first
analyzes the original attack templates, divides
them into several sub-FSMs according to the
condition, transforms each sub-FSM into a ε

-NFA, and last, transforms them into real attack
templates that can actually be used to detect
attacks. As in Figure 9, the upper part reveals the
original attack template that the user has defined;
after going through analysis and transformation
via the Template Analysis Module, it will
become the final attack template as revealed in
the lower part.

Figure 9 Template Transformation

After analyzed, the attack templates must

be tested before being inserted into the kernel.
The Template Testing Module will first select the
normal system call sequence from the Normal
Behavior Database, and then test to see if it
could transform the attack template to the
template’s ultimate condition. The flow is shown
in the figure below.

The template will be inserted into the
Wrapper Driver after it is verified. Then the
kernel level modules will execute the monitoring

program according to the user defined template,
and detect attack behaviors which match with
those ones that the users have defined.

Figure 10 Template Analysis and Verification

module

4.2 Kernel Level Modules

The main function of the
Kernel level module is to detect
real-time attacks. This includes
generating an FSM object,
intercepting system calls, and
executing the state-transition of
the attack FSM object. Training
the Normal Behavior Database
is also a function of the Kernel
level module.

The Normal Behavior Database used by the
Template Testing Modules is constructed by the
Normal Behavior Collector. The Normal
Behavior Collector records the system call
sequence while normally and securely used by a
user. This training method could be used on any
application program. Via the Wrapper Driver, a
user could set up the requirements in the
Wrapper Manager to record normal system calls.
The Wrapper Manager could then call the
Normal Behavior Collector according to the
requirements, and train an exclusive Normal
Behavior Database for any application program.
The user could decide both the time of training
and the size of the database. The longer the time,
or the lager the size, the more accurate the attack
template test would be, resulting in reduced false
positive alarm rate.

11

12

5. Experimental Results

In this section, we will use the experimental
results to illustrate the efficiency and
practicability of the IPSdNA system we
proposed. First, we will discuss the run-time
performance overhead of our system; then we
will show the results of the experiment on
detecting improper attack templates by
implementing the user-trained Normal Behavior
Database. We use attack behaviors that can
purposely avoid detection for the mimicry
attacks to verify that our system can catch these
attack behaviors, and detect the attacks more
accurately.

5.1 Runtime Overhead

The runtime overhead of our system is
mainly caused by state-transition. We designed
the first testing program as a copying program,
which opens a text file and copies it to another
file. All the read and write system calls will
cause state-transition in the FSM object of the
supervising program while it is executed. The
result is shown in Figure 11. No matter how
large the size of the copied file is, the
state-transition time is a stable constant around
1300μs. Therefore, the lager the file is, the
longer the time is used on the I/O operation, and
relatively, the smaller the system’s runtime
overhead will be. This is shown in Table 1.

0

10000

20000

30000

40000

50000

512k 1M 2M 3M 4M 5M
file size

ru
nt

im
e(

μ
 s

ec
on

d)
.

without monitor

with monitor

Figure 11 Program size vs. elapsed time

File Size (MB) 0.5 1 2 3 4 5

Overhead Rate 36% 18% 11% 8% 6% 4%

Table 1 Program size vs. System overheads

However, the combination of the first
program and the attack template results in the
worst state. That is, when a user formulates an
attack template, the key system calls on the
template seldom occurs. This is because
comparing to the rate of normal behaviors, the

rate of attack behaviors is much lower while
executing a program. Therefore, in the second
testing program, our program copies a 2M file in
the experiment, modifies its behavior conditions
and attack templates, and reduces the rate of the
system calls that causes the state-transition in
attack templates. The result is shown in Figure
12. From the figure, we can claim that the
runtime overhead is approximately 0 while the
rate of the system calls that causes the
state-transition in attack templates is below 8%.

Figure 12 Overhead in State Transition

The experiences above merely show the

state of a single attack template monitored by a
single program. Next, we will use the program
that copies a 2M file to experience the condition
with attack templates and several monitor
programs executed concurrently. Figure 13
reveals the relationship chart of one program
being monitored by different numbers of attack
templates. From the chart we can see that even if
the program meets the monitoring conditions of
several different attack templates, the executing
efficiency will not reduce as long as the program
is still normally running. Therefore, the runtime
overhead can remain in a stable status. This is
because even though the program is affected by
being monitored under many monitoring
conditions, it will not cause a lot of templates to
do state-transitions constantly if normally
executed. Hence, it will be able to stably retain a
low runtime overhead.

Figure 13 Number of Monitored Templates vs.

Overheads

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10 20 30 40 50
number of monitor template

ru
n
ti
m

e
o
v
er

h
ea

d

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 10 20 40 60 80 100

state transition percentage(%)
ru

nt
im

e
ov

er
h
ea

d
N

12

13

Figure 14 shows the overhead when many
programs that require being monitored are
executing. We can see that while running many
monitored programs at a time, the runtime
overhead can also retain stable. This is because
while a system call of a program is intercepted,
the hash method is used to search for the FSM
object of the monitoring programs. Therefore,
running many programs concurrently would only
increase the searching time, which is relatively
little. This can retain a stable runtime overhead.

Figure 14 Number of Process vs. Overheads

Afterwards, we experienced running
multiple programs at once, each program being
monitored by many attack templates, as shown
in Figure 15. In the figure, each line represents
the number of programs that are executed at the
same time. This shows that even under such a
sophisticated monitoring condition, our system
can still retain a low stable runtime overhead,
and not be affected by the increased numbers of
programs and templates.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

10 20 30 40 50
number of monitor template

ru
nt

im
e

ov
er

he
ad

.

5 processes
10 processes

Figure 15 Runtime overheads

5.2 The Attack-Detection Expeirments

First, we assume that the sequence of an
attacking system call is as follows:

setreuid(0,0)
open("/etc/passwd")
write("/etc/passwd")

 In the pH-IDS detection method, say that
the window size is 3; we would only have to

insert a no-op system call, such as read, to make
the sequence of the attack system call as below:

setreuid(0,0)
open("/etc/passwd")
read("/etc/passwd")
write("/etc/passwd")

in order to avoid the pH-DS detection.

Based on the characteristic of STAT, our
system assumes that the attacker already knows
the attack template the user will define, as in
Figure 16. However, our FSM would only do
state-transition when a key system call occurs.
Therefore, inserting unrelated no-op system calls
would not affect our detection. As in the
example above, while going through the setreuid
system call and the open system call, the FSM
will stay in state 3; if read, an unrelated system
call, is inserted at this moment, it will not affect
our detection. Our FSM will remain in state 3
until write, another system call, is intercepted; it
then moves to the final state and the attack is
caught.

Figure 16 Original testing template

Besides, experienced attackers may use the

weaknesses of STAT and try to insert onto the
other system calls of the attack template to find
another route to attack. The attacking system
calls are as below:

setreuid(0,0)
open("/etc/passwd")
chroot("\")

The “open” is a no-op system call which
attempts to use open as other-routed attacks. It
first executes system calls setreuid and open to
put the FSM in state 3; because FSM could not
intercept chroot in state 3, it could avoid the
detection. Yet, in our system, our Template
Analysis Modules will first transform the
original attack templates into no-op
attack-evading attack templates, as shown in the
figure below.

13

14

Figure 17 Testing template after transformed

We can detect the inserted No-op system

call’s rerouted attack, as shown in Figure 18. No
matter how many no-op system calls the attacker
inserts into the original attack template, or how
many attacking routes it tries, we will be able to
successfully detect it.

5.3 Warning Test of Improper Templates

If we want to monitor the sftp-server
program, we use the Normal Behavior Collector
for two days of normal behavior trainings to
generate a 2M sized Normal Behavior Database.
This can prevent errors from occurring in the
future, and also prevent high false positive rate
templates.

Figure 18 No-op attacks detected

During the training phase, we only need to

use the intranet to login and operate, in case of
attack behaviors. Then we try to define an attack
template, as in Figure 19, to prevent attackers
from using the loophole of the sftp-server to get
the root authority and leave some programs that
would cause to the system.

The attack template we defined is to
prevent attackers from using loopholes to get the
root authority. They may create new file folders,
modify authorities, write invading programs, etc.
However, after going through Template Testing
Modules, it will still move to the final state
under a normally used condition. Because the
system calls sequence shown in Figure 19, it

may still happen under another file with the
same authority. This shows that the attack
template is not accurate enough, casing false
positive rate to enhance. Thus our system tests
the templates first once they are defined, and
report them to the users.

6. Discussion and Conclusion

In this paper, based on the result of
STBIPW[1] [1] we developed an intrusion
prevention system, IPSdNA, which has the
following four advantages:

(1) It has the advantage of a kernel wrapper, and

the monitoring job is done in the kernel. The
runtime overhead is relative low. Our system
can intercept all the system calls. Any
application programs that requests services
from the system will be monitored. Thus,
before the system being harmed, malicious
behaviors will be blocked in real-time.

(2) It has the state-transition statement advantage

of STAT. IPSdNA can use state-transition
statement to generate graphical statement
interface, so that the user may use direct
sense to understand sophisticated behaviors.

(3) Low false positive rate. We use the negative

selection inspired from the concept of human
immunity system to train a Normal Behavior
Database to detect attack templates, in order
to prevent users from defining inappropriate,
easily mistaken attack templates. Therefore,
the false positive rate will reduce.

(4) It is able to go through the tricks of

purposely avoiding IDS detects. To dispute
the No-op attacks, we first analyze the
original attack template that the user has
defined, and then add an ε-transition for
each non-final state that has more than two
possible transitions. After that, we use the
FSM transformation algorithm to transform
the ε -NFA (Nondeterministic Finite
Automaton) to an equivalent DFA so that
every path can be traced, and thus can
prevent no-op attacks.

In the near future, we will try to improve

the IPSdNA to fight the collaborative attacks.

14

15

15

Figure 19 improper sftp-server attack template

Reference

[1] Tsung-Yi Tsai, Kuang-Hung Cheng, Chi-Hung
Chen, Wen-Nung Tsai, “An Intrusion Prevention
System using Wrapper,”in Proceedings of
International Computer Symposium,
pp.1218-1223, 2004.

[2] A. Somayaji, S. Forrest, “Automated Response
Using System-Call Delays,＂in Proceding of 9th
Usenix Security Symposium, pp.185, 2000.

[3] Bai, Y., Kobayashi, H., “Intrusion Detection
Systems: technology and development,” in
Proceding of 17th International Conference, pp.
710-715, 2003.

[4] Caberera, J.B.D., Ravichandran, B., Mehra, R.K.,
and Sci. Syst. Co., Woburn, “Statistical traffic
modeling for network intrusion detection,” in
Proceedings of the 8th International Symposium
on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pp.
466-473, 2003.

[5] D. Wagner and P. Soto ., “ Mimicry Attacks on
Host-Based Intrusion Detection Systems,” in
Proceding of the ACM Conference on Computer
and Communications Security, pp. 255-264, 2002.

[6] Dozier, G.,Brown, D., Hurley, J., Cain, K,
“Vulnerability analysis of AIS-based intrusion
detection systems via genetic and particle swarm
red teams,” Evolutionary Computation, Vol1, pp.
111-116, 2004.

[7] Eskin, E., Wenke Lee, Stolfo, S.J., “Modeling
system calls for intrusion detection with dynamic
window sizes,” in Proceding of DARPA
Information Survivability Conference &
Exposition II, Vol 1, pp.165-175, 2001.

[8] F. Besson, T. Jensen, D. L. Metayer, and T. Thorn.,
“Model checking security properties of control
flow graphs,” Journal of Computer Security,
pp.217-250, 2001.

[9] F Gonzalez and D Dasgupta, “Anomaly detection
using real-valued negative selection,” Journal of
Genetic Programming and Evolvable Machines,
p.383-403, 2003.

[10] Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee,W.,
Gong, W., “Anomaly Detection Using Call Stack

Information,” in Proceedings of the 2003 IEEE
Symposium on Security and Privacy,Berkeley, pp.
62, 2003.

[11] Ghosh, A.K., Wanken, J., Charron, F.,
“Detecting anomalous and unknown intrusions
against programs,＂ in Proceedings of the 14th
Annual Computer Security Applications
Conference, pp. 259-267, 1998.

[12] Iguchi, M., Goto, S., “Network surveillance for
detecting intrusions,＂Internet Workshop ISW99,
pp.99-106, 1999.

[13] Joseph, M. McAlerne and Stuart Staniford, James
A. Hoagland, “Practical Automated Detection of
Stealthy Portscans,” Silicon Defense Publications,
http://downloads.securityfocus.com/library/spice-c
cs2000.pdf

[14] K.M.C. Tan, K.S. Killourhy, R.A. Maxion,
“Undermining an Anomaly-Based Intrusion
Detection System Using Common Exploits,” to
appear at RAID 2002 pp.54-73, 2002.

[15] Koral Ilgun, Richard A. Kemmerer, and Phillip A.
Porras, “State Transition Analysis: A Rule-Based
Intrusion Detection Approach,”IEEE Transaction
on Software Engineering, Vol.21 No.3,
pp.181-199, 1995.

[16] Phillip A. Porras, “Detecting Computer and
Network Misuse Through the Production-Based
Expert System Toolset (P-BEST)*,”in
Proceedings of the 1999 IEEE Symposium on
Security and Privacy, Oakland, California,
pp.146-161, 1999.

[17] Rapaka, A., Novokhodko, A., Wunsch,
D.,“Intrusion detection using radial basis function
network on sequences of system calls,” in
Proceedings of the International Joint Conference,
Vol3, pp. 1820-1825, 2003.

[18] S. A. Hofmeyr , S. Forrest , and A. Somayaji,
“Intrusion detection using sequences of system
calls,” Journal of Computer Security, pp.151-180,
1998.

[19] Snort Homepage. http://www.snort.org/

[20] STAT Homepage.
http://www.cs.ucsb.edu/~rsg/STAT/

[21] T. Garfinkel, “Traps and pitfalls: Practical
problems in system call interposition based
security tools,” in Proceedings of Network and

http://downloads.securityfocus.com/library/spice-ccs2000.pdf
http://downloads.securityfocus.com/library/spice-ccs2000.pdf
http://www.snort.org/
http://www.cs.ucsb.edu/~rsg/STAT/

16

16

Distributed Systems Security Symposium,
pp.163-176, 2003.

[22] Tal Garfinkel, Ben Pfaff, Mendel Rosenblum,
“Ostia: A Delegating Architecture for Secure
System Call Interposition,” in Proceedings of the
Internet Society's 2004 Symposium on Network
and Distributed System Security, pp.187-201,
2004.

[23] Warrender, C., Forrest, S., Pearlmutter,
B.,“Detecting intrusions using system calls:
alternative data models,”in Proceedings of the
1999 IEEE Symposium on Security and Privacy,
pp.133-145, 1999.

[24] Zhang Yanchao , Que Xirong , Wang Wendong ,
Cheng Shiduan , “ An immunity-based model for
network intrusion detection,” in Proceedings of

ICII 2001 - Beijing, Vol 5, pp.24-29, 2001.

[25] Zhao Junzhong, Huang Houkuan, “An evolving
intrusion detection system based on natural
immune system,” in Proceedings of 2002 IEEE
Region 10 Conference on Computers,
Communications, Control and Power Engineering,
Vol1, pp.28-31, 2002.

[26] Zhou-Jun Xu , Ji-Zhou Sun , Xiao-Jun Wu , “An
immune genetic model in rule-based state action
IDS,” in Proceedings of International Conference
on Machine Learning and Cybernetics, Vol4,
pp.2472-2475, 2003.

