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An oracle procedure AMP is called semi-black-box hardness amplification from & to &’ if, for any
f with which any small circuit disagrees on at least o fraction, any small circuit must disagree
with AMP" on at least &' fraction where & <& ' and AMP only uses

f as a black-box not its internal structure. We show that semi-black-box hardness amplification
from 2™ to 1/poly(n) cannot be done in X" for every i unless there is a mildly hard function in =;°.
The same result is also applicable to sub-linear space SPACE(n®) for constant € <1. Moreover, our
method can be extended to prove some unconditional impossibility results.

keywords: Semi-black-box hardness amplification, hardness amplification



1 Introduction

We say that a boolean function f : {0,1}" — {0, 1} is d-hard against circuits of size s(n) if any such
circuit attempting to compute f fails on at least ¢ fraction in inputs. The parameter § plays an
important role in the hardness amplification. We often call f is worst-case hard, mildly hard and
average-case hard if § is 27", 1/poly(n) and (1/2 — 2" respectively. Hardness amplification is
to design a procedure which transforms a d-hard function f : {0,1}"™ — {0, 1} against circuits of size
s(n) into ¢’-hard function f: {0,1}"™ — {0, 1} against circuits of size s'(m) where § < §’ and s'(m)
is close to s(n). We usually would like f to be in the same class of f so as to establish the relation
between different hardness assumptions within the same complexity class. The ultimate goal of
hardness amplification is to establish the equivalence between worst-case hardness and average-
case hardness in some complexity classes. Normally, to build such an equivalence is required to
have exponential time complexity (e.g. E) or linear space complexity (e.g. SPACE(n)) [10, 15, 11].
However, in some complexity classes, it is unknown whether worst-case hardness is equivalent to
average-case hardness or not. For example, given a worst-case hard function in NP, is there any
procedure which can convert it into an average-case hard function in NP? Only for some range of
hardness (e.g. the initial function is mildly hard) is it possible to be done [18, 13, 10, 14, 8]. So
the gap is from worst-case hardness to mild hardness.

The above discussion prompts an attempt to prove that some hardness amplification is indeed
impossible. We must carefully clarify what type of hardness amplification we are talking about
especially when it is still possible that an mildly hard function may indeed exist. The one we concern
is called black-box hardness amplification. First we construct a new hard function f’ by using initial
function f as a black-box. Precisely there is an oracle Turing machine AMP such that Amp/ = f.
Note that AMP only uses f as an oracle. Secondly the hardness of f’ is proved via a black-box
approach. That is, there is an oracle Turing machine DEC such that, for any algorithm A computing
f! correctly on at least ¢’ fraction, DEC? computes f correctly on at least § fraction. Again DEC
only used A as an oracle. In particular, we call the amplification procedures that doesn’t use the
oracle decode function DEC and only use initial function as an oracle not its internal structure
as semi-black-box hardness amplification. Almost all previous hardness amplification results are
black-box-type [2, 6, 9, 10, 15, 11, 8]. Moreover the impossibility results for black-box type were
also studies by Viola [16], Bogdanov and Trevisan [3], and Lu et al. [12]. The impossibility result
of semi-black-box hardness amplification was first obtained by Viola [17]. Suppose that there is an
AMP in PH such that, for every f which is worst-case hard against circuits of size S(n), AMP/ has
constant hardness against circuits of size S’(n). Viola showed that the existence of such AMP is
equivalent to the existence of a function f’ in PH which has constant hardness against circuits of
size S’(n). In short, such AMP just memories a constant-hard function if it can be realized in PH.

1.1 Our Results

In this paper, we give the negative results similar to Viola’s except that we replace the complexity
class PH with NP, Zf , or sublinear space. Also, we generalize the ”fooled classes”, not just circuits
of certain size. More specifically, we give the definition and our main results as follows. Let C,
be the set {L. N {0,1}" : L € C}. Each element in C,, can be viewed as a function from {0,1}" to
{0, 1}, that is its characteristic function.

Definition 1. Let C be a complexity class. We say that a function f : {0,1}" — {0,1} has
hardness § against C if for any A : {0,1}" — {0,1} in Cy, Precy, [f(x) # A(x)] > 6. When 6



is 27", 1/poly(n) and 1/2 — 2% | f is called worst-case hard, mildly hard and average-case hard
respectively.

For the nondeterministic classes, we obtain the following.

Theorem 1. Let A and B be two complezity classes with |A,| = 92" Suppose there is an oracle

machine AMP in NP (respectively, X.F) which converts every f : {0,1}" — {0,1} of worst-case
hardness against A into a function Amp/ : {0,1}™ — {0,1} of mild hardness against B. Then
there exists a function f': {0,1}™ x {0, 1}”b — {0,1} in NP (respectively, X¥ ) such that f'(z,t)
has mild hardness against B on at least (1 — 1/poly(n)) fraction of t € {0,1}"".

In addition to nondeterministic classes, we also have the impossibility results for deterministic
classes for time and space.

Theorem 2. Let A and B be two complezity classes with |A,| = 22°™ " For every constant €
with 0 < & < 1, suppose there is an oracle machine AMP in SPACE(nf) (respectively, DTIME(2"))
which converts every f : {0,1}™ — {0,1} of worst-case hardness against A into a function Amp/
{0,1}™ — {0,1} of mild hardness against B. Then there exists a function f':{0,1}™ — {0,1} in
SPACE(m?) (respectively, DTIME(2™)) that has mild hardness against B.

Note that Theorem 1 and 2 are incomparable since the relation between SUBEXP and NP is
not clear so far.

Our argument in the proof of the main theorems implies some impossibility results. For example,
let A = BPP and B = SUBEXP. We immediately obtain that there is a function in SUBEXP which
is hard against SUBEXP. That is a contradiction. Hence no semi-black-box hardness amplification
that can convert any function which is worst-case hard against BPP into another one which is
0-hard against SUBEXP can be realized in SUBEXP.

There is another interesting fact from our results. Consider the following question: Given a
class C and a value J < 1, how complex is it to build an operator GG such that, for all
f ¢, Gf is 5-hard against C? If § = 27", then it is trivial to make G the identity function.
So the complexity is low. Our results show that for some complexity classes, such as P, if § is
somewhat non-negligible, then such G cannot be constructed in P. We will give more discussion in
Section 5.

1.2 Organization of this paper

First, some preliminaries are given in Section 2. Then in Section 3 and Section 4, we prove
the impossibility results of semi-black-box hardness amplification in NP (XF) and sublinear space
respectively. In Section 5, we use the technique developed in this paper to show the unconditional
impossibility results for semi-black-box construction.

2 Preliminaries

Let F : {0,1}"™ — {0, 1} be a uniform random function. N denotes 2", unless mentioned otherwise.
Uy, is the uniform distribution on {0,1}" for each integer n. We will use the method of random
restriction. A restriction on a set of variables V' = {z; : i € {0,1}"} is a mapping p : V — {0, 1, %},
which either fixes the value of a variable x; with p(z;) € {0,1} or leaves x; free with p(x;) = *.



A boolean function f : {0,1}" — {0,1} is usually viewed as a N-bit string, i.e. its truth table.
Given a restriction p : {0,1}" — {0,1,%} and a function f : {0,1}" — {0,1}, f, is the N-
bit truth table obtained from p by substituing the *’s with the corresponding bits of f. For
any function B : {0,1} — {0,1}, let B,(f) = B(f|,) for each f : {0,1}" — {0,1} and let
BIAS [B] = max{Pr[B(Uy)=0],Pr[B(Uy) =1]}. Using this definition we can easily get the
following lemma.

Lemma 1. Let U'n be a distribution which is independently and identically distributed to Uy.
Suppose that Pry, v [B(UN) # B(U'N)] < n~¢. Then Bias[B] > 1 —n~¢ for any constant c.

Proof. Let n be Pry, [B(Uy) = 1]. Without loss of generality, suppose n > 1/2. So (1 —7n) <
2n(1 =n)) = Pruyvy [BUN) # BU'N)] <n”*. O

The circuits we consider consist of AND/OR/NOT gates, allowing unbounded fan-in for AND/OR
gates. The size of a circuit is the number of its gates and the depth of circuit is the number of
gates on the longest path from an input bit to the output gate. We call such circuits AC circuits.

Definition 2. Let AC(s) be the class of boolean functions computed by AC circuits of size s. Let
AC(d, s) denote the class of boolean functions computed by AC circuits of depth d and size s. If the
fan-in is bounded, let SIZE(s) be the class of boolean functions computed by bounded fanin circuits
of size s.

Note that the standard complexity class AC® corresponds to our class AC(O(1), poly(n)). We
also introduce the non-deterministic circuits. A non-deterministic circuit C has two kind of inputs:
the real input « and the witness input y. The Boolean function f computed by such a circuit C' is
defined as f(x) = 1 if and only if there exists a y such that C(z,y) = 1.

Definition 3. Let NSIZE(s) be the class of functions computed by non-deterministic circuits of size

s. In particular, we denote NSIZE(poly) = .., is 4 polynomialNSIZE(S)'

3 Proof of Theorem 1

In this section we carefully analyze Viola’s proof [17] to obtain a more elaborate result. First we
need a lemma proved by Viola.

Lemma 2. [17] For every constant ¢ > 0, there is a distribution R. on restrictions p : {0,1}" —
{0,1, %} such that

(1) Each p in support of R, can be generated by a polynomial time algorithm which outputs p,(z)
with input x € {0,1}" and poly(n)-bit random string t.

(2) Let ¥ : {0,1}" — {0, 1} be a random function which is independent and identically distributed
to F. For every N-bit circuit B in AC(c,2"™),

| 2 (-0,

/
R o) 5P < o

(3) With probability (1 — O(ncl/Q)) over p; € Re, py has at least 2"/3n" *s.



We use the notion of promise set [1] to rephrase a lemma proved by Nisan and Wigderson [13].

Lemma 3. [13] Suppose there is a promise set (A, B) such that there is an oracle machine M in

NP (respectively, ¥¥ ) with Prg [ Vee AUB,z€ As MF(z) = 1] > % Then there is a generator
G : {0,1}P°() — £0,1}2" such that

(1) given r and index i < 2", the i-th bit of G(r) can be computed in DTIME(poly(n)) and
(2) Pr, [Vz € AUB, z € A& M9 (z) =1] >1-27",

Note that, for any ~ € {0, 1}P°Y(™) MG is in NP (respectively, ¥P) while M is in NP (respec-
tively, Ef ). Now we use these two lemmas to prove our first main theorem.

Proof. (of Theorem 1) For each input z, AMP(2) can be simulated in AC(k, 20"")) with input f
where n* is the running time of AMP [5, 7]. By Lemma 2 (2), for each input z,

’ 1 1
F| F| < —>010-0(—=
ok, [FI;E/ [AMP ot (z) # AMpT e (x)} = nk:/2:| = (1= 05R))

By Lemma 1, this implies that, for each z,

P [Bixs [AnrFl ()] > (1 -0 #2)] > (1 - 0(#)).

We call p; is good for z if Bras [AMPF‘W (x)} > (1 —n~%/2) and bad otherwise. So we have

Pr [p; is good for 2] > (1 — O(—7)).
T,pt nk/2

By Markov argument,

Pr [Pr [p¢ is good for x] > 1 — O(n_k/4)] >1—0(n**.
pr L

Call p; good if Pr, [p; is good for z] > 1 — O(n=*/%).

With this definition, Pr[p; is bad] <
O(n=*/*). For each good p;, we define a promise set (

A,,, B,,) such that, for any z € A,, U B,,,
oz €Ay, if Prp |[AvpFle(z) = 1] = (1 - n7"2) and

o x¢ B, if Prp [AMPF\% (z) = o} > (1 - nk/2).
Note that [A,, U B,,| > 2" (1 — O(n~*%)). So if p; is good, then we have

Pr [\m € A, UB,, ,z€ A, < AMPFIt (z) = 1] —1-o(1).
By Lemma 3, there exists a generator G : {0,1}P°Y() — {0,1}¥ such that

Pr Ve € 4, UB,, .z € Ay & Aup@Obi() = 1] > 1

n’



Now we define .
f(z,t,r) “F AP0l ().
AMP is in NP (respectively, ¥F), so is f’.

Next we analyze the hardness of f’. We bound the following probability:

/ F|,,
zEEF fi(z,t,r) # Amprle (x)]
Pr[p; is bad] + Pr [AMPG(TNW (z) # AMPYlec () | py is good}
O(n~ M%) 427" + O(n~M*)

O(n=F%),

IN

IN

Pr [Pr {f’(fvjt, r) # AMpF e (m)] > n_k/g} < O(n~M?).

tor, ' L x

By Lemma 2 (3), we know that there is a constant ¢; such that with probability (1 — O(=3))

ne/2

over p; € R., by a counting argument
1;‘1" [F|,, is worst-case hard against A] > (1 —272"").
So, by the assumption of Theorem 1, there is some constant d,
P];r [AMPF‘% has hardness n~¢ against B] > (1272,

Let C be any algorithm with input (z,¢,r). Suppose that C(z,t,r) is in B, for any ¢ and r. Then
there is a constant e such that

Pr [f’(x,t,r) = C(x,t,r)]

x,t,r

< Prp; is bad] + Pr [AMPG(T”% (x) = Cl(x,t,r) | pt is good}

< O(n~** 4 Pr [AMPFL% (x) = C(z,t,r) | pt is good} +27"

< Pr [AMPF“’t doesn’t have hardness nfd} +(1—=n"Y 4 0mn k"
< l1—n"¢

By Markov argument,

]t?r [Pr [f'(z,t,r) =Cla,t,r)] <1— n*€/2] <1l-n"¢/2.
\T x
Therefore f'(x,t,r) is mildly hard against B on at least (1 — n~¢/2) fraction (¢, 7).
O
Observing the proof of Theorem 1, we can extend the condition that |A,| = 22" for some

constant d < 1. The theorem still holds. Let A = SIZE(2°") and B = SIZE(29"). Clearly We obtain
the following corollary.



Corollary 1. Suppose there is an oracle machine AMP in NP (respectively, Ef) which converts ev-
ery f:{0,1}™ — {0,1} of worst-case hardness against SIZE(2°") into a function Amp/ : {0,1}™ —
{0,1} of mild hardness against SIZE(29™). Then there exists a function f': {0,1}™ x {0,1}"" —
{0,1} in NP (respectively, XF) such that f'(z,t) has mild hardness against SIZE(24™) for some
constant ¢ and d.

4 Proof of Theorem 2

In this section, we prove the second main result.

Proof. (of Theorem 2) Unlike the method used in the previous section, we want to claim that if

AMP satisfies the condition of Theorem 2, then AMPY is a constant-hard function where 0 is the
zero boolean function. We use a probabilistic argument to prove it. Suppose our AMP can be
realized in SPACE(log T) (respectively, DTIME(T)) where T = O(2""). Note that every algorithm
in SPACE(logT") can be computed by a algorithm in DTIME(T). So we only consider DTIME(T).
Let § = T—2. Define the following random function g: for any = € {0, 1}",

() = U; with probability ¢
8=\ 0 with probability 1 — 4 .

We claim that such a random function g satisfies the following properties.

Claim 1. W.h.p. over g, g is worst-case hard against A. Therefore AMP® is mildly hard against
B.

Proof. Let #g be the number of inputs whose outputs are random bits. On average, #g is about
0 - 2™, In fact, by Chernoff bound,

n

Pr#g<0-2"'] <Prlj#g—06-2">0- 2" <2e7% =227

Therefore, with probability (1 — 2_29(71))’ #g > 6271 = 22" Again, by a counting argument,
w.h.p. g is worst-case hard against .A. Hence w.h.p. AMP# is mildly hard against B. O

Claim 2. For any x € {0,1}", w.h.p. over g, AMPE(z) = AMPG(I').

Proof. For every input z, the running time of AMP is at most 7. So it queries at most 7' times.
Therefore, for any input =z,

Pr [ AMpE(z) = AMpﬁ(x)] >1-60">1-6-T=1-T"L
g

By Claim 2, we know that

Pr [AMPg(a;) # AMPF)(a:)} <7

g7x

By Markov argument,

Pgr [F;r [AMPg(:n) # AMPa(x)] > T_I/Z} <712



So with probability 1 — 71/2 over g, we have
Pr [AMPg(x) £ AmpPl(z)| < 7712,

Therefore, by Claim 1, we can fix a particular g such that AMPY has mild hardness against B and
Pr, [AMPg(.r) # AMPO(:L')] < T71/2. Tt follows that AMPY has hardness T~1/2 against B. It is easy

to get AmpY is in SPACE(n?) (respectively, DTIME(2"")). This proves Theorem 2. O

Under the same condition of Corollary 1, we can obtain the corollary similar to Corollary 1.

Corollary 2. For every constant ¢ with 0 < € < 1, suppose there is an oracle machine AMP in
SPACE(n?) (respectively, DTIME(2™") ) which converts every f : {0,1}" — {0,1} of worst-case hard-
ness against SIZE(2°™) into a function AMp7 : {0,1}™ — {0,1} of mild hardness against SIZE(29™).
Then there exists a function f':{0,1}™ — {0,1} in SPACE(m®) (respectively, DTIME(2™")) that
has mild hardness against SIZE(29™).

5 Some Impossibility Results for Semi-Black-Box Hardness Am-
plification

From the observation of Theorem 1 and 2, we can generalize the semi-black-box hardness ampli-
fication problem as follows: for complexity classes A,B and C, is there an AMP constructed in C
with the following property:

for any f which is d-hard against B A:I\>/IP AMP/ has hardness ¢’ against C?

For A = X (respectively SPACE(n®)), B = SIZE(20™), ¢ = SIZE(2°(™), § = 27" and §' =
1/poly(n), we already gave some results that the above construction is impossible to be realized
unless there is a mildly hard function in class C. These are conditional results. In fact, we can
achieve some unconditional results. For example, under the same above setting except A = BPP,
such semi-black-box hardness amplification is impossible since we can obtain a contradiction that
there is a function in BPP, indeed f'(z,t,7) = AMPY(r)|,, (x), which is hard against circuits of size
2°Un) but BPP C SIZE(29(n)) [4]. So we have the following result of Theorem 1.

Corollary 3. Under the same setting of Corollary 1, such semi-black-box hardness amplification
cannot be done in SIZE(2°") for some constant c.

Indeed, we rule out the possibility that the hardness amplification machine can simulate a hard
function in some class. We would like to give a general result to illustrate these impossibility results.
First of all, we need to estimate the size of class PSPACE.

Lemma 4. |PSPACE,| = 22"".

Proof. Each language L in PSPACE can be determined by nondeterministic polynomial-time Turing
machine B and a polynomial p. That is, for every x of length n,

r €L & (Quy, |y1| < p(n))(Qay2, |y2| < p(n)) - (QuYms [ym| < p(n)) (2,91, -+, ym) € B,

where each @; is either 3 or V, and m < p(n). For the proof, we refer the reader to Du and Ko [4].
The lemma follows that there are at most 22" polynomial-time Turing machines. O



We restate the question we mentioned in Introduction. Given a class C and a value 6 < 1,
how complex is it to build an operator G such that, for all f ¢ C, G/ is é-hard against
C? If § = 27", i.e. worst-case hard, then we just trivially make G the identity function. Clearly the
complexity is low. From the argument of Theorem 2, we can answer some impossibility results for
this problem. Back to the condition of Theorem 1 and 2, we have A,, < 22°" for every subclass A C
PSPACE. Consider the class DTIME(n*) where k is any constant. Since DTIME(n*) ¢ PSPACE, it
follows from the proof of Theorem 2 that no AMP which can convert any function f ¢ DTIME(n*)
into AMP/ slightly hard against DTIME(n*) can be done in DTIME(n¥). If not, then we can get
a function AMP0 which is clearly in DTIME(n*) is slightly hard against DTIME(n¥). This is a
contradiction. It is indeed interesting. One can easily obtain an operator which maps any function
not in DTIME(n*) into another one not in DTIME(n*), that is, let the operator be identity function.
However, if we require that such an operator must map them into those function which is slightly
hard against DTIME(n*), then this is impossible to be done in DTIME(n*). There is a complexity
gap between these two requirements. The same argument can apply to P, SUBEXP and SPACE(n?)
where ¢ is a constant less than 1. Formally we have the following theorem.

Theorem 3. Given any complexity class A C DTIME(2™") for some constant € < 1, no operator
G that maps any function f against A into another 27" /2-hard GI against A can be done in A.

Above argument is based on the low deterministic computational complexity. Is there a similar
result for non-deterministic complexity? The answer is unknown since our proof in Theorem 1 may
lose some parameter. However, we can obtain a non-uniform results as follows.

Theorem 4. No operator G that maps any function f against NSIZE(poly) inot another mildly
hard GY against NSIZE(poly) can be realized in NSIZE(poly).

Proof. First of all, observe that the cardinality of NSIZE(poly),, is at most 22" Then applying
the same argument of Theorem 1, we can obtain the theorem. O
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