
行政院國家科學委員會專題研究計畫  成果報告 

 

 

果蠅腦共軛焦顯微鏡影像分析及標準腦之研究(2/2) 

 

 
計畫類別：個別型計畫 

計畫編號： NSC93-2213-E-009-037- 

執行期間： 93 年 08 月 01 日至 94 年 09 月 30 日 

執行單位：國立交通大學資訊科學學系(所) 

 

 

 

 

計畫主持人：荊宇泰 

共同主持人：莊榮宏，江安世 

 

 

 

 

報告類型：完整報告 

報告附件：出席國際會議研究心得報告及發表論文 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 95 年 7月 31 日

 



ABSTRACT
In this report, we present some results obtained during the execution of the project. The results
include a software system, the IPToolBox, two examples that solved by using the software system,
and the on going work. The IPToolBox consists of many image processing algorithms reported in
the literatures. The two examples are respectively segmentation of the mushroom bodies using the
GVF snake method and neuron tracing using the Hessian Matrix and graph search method. The on
going work is to develop algorithms for fine structure segmentation including cell counting and
improving the neuron tracing algorithm.
Keywords: active contour, snake, gradient vector flow, segmentation, confocal microscopic image,
chain code encoding, Hessian Matrix, scale space, graph algorithm, shortest path.
1. FUNDAMENTAL IMAGE PROCESSING ALGORITHMS AND IPTOOLBOX
IPToolBox is a software system developed in my lab while the project was executed in the past
years. IPToolBox, that has nice user interface, consists of most of the image processing algorithms
reported in the literatures. We name some for examples.
File I/O: The system can read most of the image format. Not only the simple format such as BMP
or JPEG can be recognized, the complex format such as DICOM (used in medical images) and
some uncompressed TIFF format (used in confocal microscopy and multi-photon microscopy) can
be read.
Filter: There are operations form image enhancement such as the mean filter and median filter that
remove noises. The edge detection algorithms such as Sobel filtering and Canny edge detector are
implemented. One of the important filter we implemented was the matched filter. The matched filter
has been proved a useful tool in finding the vessel, neuron fiber, and neuron cells.
Binary Operation: This set of operations includes simple operation such as thresholding to the
more complicated operations such as morphological operation, connectivity analysis, and water
shed operations.
Geometric Operation: Some computational geometry algorithms such as convex hull, Delaunay
Triangulation, and Voronoi Diagram are included.
FFT: Fourier Transform from 1D to 4D are implemented. Different filters, such as the low-pass
filter, high-pass filter, and the band-pass filters are implemented.
Statistic: Simple texture analysis methods, such as variance, standard variation, and coefficient of
variance, were implemented.
Edit: Very often editing images are needed. We provide user interface to edit image such as
assigning a specification region a specific intensity.
Snake: A standard snake method and the GVF snake were implemented. We found this is very
useful in finding the boundary of region of interest. We also found that this could be useful in
finding the neuron fibers.
3D: Marching cube volume rendering algorithm is implemented. We deal with 3D volume data
most of the time. This tool helps to present the result obtained from the other tools in the
IPToolBox.
There are many other algorithms were developed and some of these are under development.
2. SEGMENTATION OF INSECT BRAIN NEUROPOLS IN THE CONFOCAL

MICROSCOPIC IMAGES USING GVF SNAKE



In this section, we present a result obtained by using the IPToolBox. We use the Gradient Vector
Flow (GVF) snake to segment the mushroom body in an insect brain of confocal microscopic
images. The GVF snake has advantage of capturing local cavity. This also means that the GVF
snake is sensitive to noises and needs good edge map. We employed the texture analysis and Canny
edge detector to calculate a good edge map before the GVF was calculated. In this article, a new
method based on the global shape of a snake to define a halting condition from moving a snake is
presented.
2.1 INTRODUCTION
Confocal microscopy is widely used in neuroscience research because of its unique features in
removing out-of-focus signals and volume visualization. This tool is particularly useful in studying
brain neural networks projecting to a large space. Using the newly developed FocusClearTM reagent
to clear biological tissues together with confocal microscopy, it is now possible to image the whole
insect brain of 500 micron thick without physical sectioning [1]. Mushroom bodies are neuropil
regions in the insect brain that have been implicated in associative learning and memory.
Recently, a standard Drosophila brain averaging from several individuals has been established for
comparing brain volumes between different wild types and mutants [2]. The so-called standard
brain provides a common 3D framework as the first step for building a brain database allowing
deposition of gene expression patterns from different laboratories. Consequently, averaged
neuropils for detail analysis of brain’s function are urgently needed. Automatic segmentation of
neuropils is the one of the most fundamental task to establish averaged neuropils.
In this section, we present an almost automatic method to segment the mushroom body in a stack of
confocal microscopic volume images of cockroach brain. Difficulty in this task is mostly due to the
vague boundary between the mushroom body and the background. The traditional low-level
techniques such as intensity thresholding or gradient based edge detecting methods which only
utilize local information could make mistakes during creating the boundary. To overcome this
problem, the active contour model, known as “snake”, which has been introduced by Kass, Witkin
and Terzopoulos in 1987 [3], integrates the image feature extraction and representation phase into a
single process. A snake is an energy-minimizing curve defined within an image domain that moves
under the influences of the internal forces coming from within the curve itself and the external
forces computed from image data. The internal and external forces are defined such that the snake
will be attracted to an object boundary or other features within an image. Snakes are widely used in
many applications, including edge detection [3], shape modeling [4], segmentation [5], and motion
tracking [6]. In this study, we adopted the active contour model using the gradient vector flow
(GVF) [7] as the external force to segment the mushroom body in the cockroach brain image.
As mentioned previously, the major difficulty to segment the mushroom body is due to the vague
boundary between the mushroom body and the background. Vague boundary implies weak external
force to attract the snake. To enhance the boundary of the mushroom body, we proposed to first
apply the texture analysis to the image. We then applied the Canny edge detection method to
calculate the boundary between the mushroom body and background. The gradient vector flow is
finally calculated using the edge map obtained from the Canny edge detector. In the next section,
we first state the proposed method. We then briefly describe the techniques involved in each step of
the method. We also present a new halting condition to test if the snake converged. In Section 2.3,
we demonstrate the result obtained using the proposed method. The conclusions are in Section 2.4.
2.2 METHOD



In this section, we first outline each step in the proposed method. We then describe the methods
employed in each step.
The outline of the steps is stated in the following.
1. Texture analysis: Since the mushroom body has different texture from the background, image

after texture analysis enhances the mushroom body as well as the boundary between the
mushroom body and the background. The mushroom body in the image after texture analysis
has low intensity in the image. Thus, the intensity thresholding can then be applied to segment
the mushroom body.

2. Edge detection: Canny edge detection algorithm is then applied. The edges of the mushroom
body have strong response. Applying the intensity thresholding can eliminate most of the
noises. The resulted image is the edge map.

3. Calculate the GVF based on the edge map obtained.
4. Applied the active contour method to segment the mushroom body.
2.1 TEXTURE ANALYSIS
Texture analysis helps to divide an image into regions according to the textures of the regions.
There are many ways to define the texture in a region. One of the ways is the “coefficientof
variance”, CV, that is defined as the following equation.
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Note that, a large CV means large deviation in the a region f(k). On the other hand, a region has
small CV implies that the region f(x) has uniform distributed intensity. In our application, the
mushroom body has small deviation of the intensity than the background, thus the coefficient of
variance analysis produces small CV in the mushroom body.
2.2 CANNY EDGE DETECTOR
Canny edge algorithm was proposed by Canny in 1986 [8]. Three issues regarding an edge detector
were addressed:
1. Correct Detection: The truth positive and the truth negative ratio should be high. And the false

positive and the false negative ratio should also be high.
2. Good Localization: Points detected by the operator should be as close to the real edge as

possible.
3. Good Response: Only one response to a single edge. If too many edges are detected, then

obviously some of them must be false edges.
Based on the addressed issues, designing an optimal filter was modeled as an optimization problem.
Since the optimal solution was difficult to solve, Canny used an approximation method to design a
filter that is close to the optimal filter. The function is the derivative of a Gaussian as shown in Eq.
(4).
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The next step in the Canny edge detector is to find thin edges by using a “non-maximum
suppression”technique. In this step, pixels that are not local maximal are removed. The last step is
the hysteresis thresholding. Hysteresis thresholding sets a high threshold Th and a low threshold Tl.
Any pixel in the image that has a value greater than Th is presumed to be an edge pixel. Then any
pixel, that is connected to an edge pixel and has a value grater than Tl , is selected to be an edge
pixel.
2.3 ACTIVE CONTOUR METHOD AND GRADIENT VECTOR FLOW
An active contour model is a mapping: Ω = [0 , 1] → R2, and S → v(s) = (x(s) , y(s)). We define
the model as a space of admissible deformation A and a function E to be minimized. This function E
is written in the form
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where Eint represents the internal energy of a snake due to bending, and Eext the external force that is
derived from image features. Eint serves to impose smoothness constraint on the snake. Eext pushes
or pulls the snake toward desired features such as edges. As internal and external energy are
formulated, we deform the snake by minimizing Eq. ((5). The internal energy can be written as:
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whereα(s) andβ(s) are weighting parameters that control the snake’s elasticity and rigidity, )(' sv
and )('' sv denote the first and second derivatives of the curve v with respect to s. The energy
function that attracts snake to salient features in images is the external energy. External energy is
derived from the image.
Traditional active contour model suffers from the following three key difficulties: First, the active
contour model has narrow capture range. Second, active contour model lacks the ability to handle
boundary concavities. Third, snake has the tendency to become stagnant at a nearby local energy
minimum. For the third problem, the main difficulty is due to noise. Preprocessing of the image is
necessary. Texture analysis mentioned previously is employed to reduce noise. However, if the
noise is too strong, it still requires user assists to manually adjust the snake to escape from the local
minimum. For the first and second problem, Xu and Prince proposed a method called the Gradient
Vector Flow (GVF) in 1998 [7] to solve the problems.
The GVF field is defined to be a vector field p(x,y) = [g(x,y),h(x,y)] that minimize the energy
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When |▽f| is small, the energy is dominated by the sum of the squares of the partial derivatives of
the vector field, yielding a slowly varying field. On the other hand, when |▽f| is large, the second
term dominates the integrand, and is minimized by setting p = ▽f. This produces the desired
effect of keeping p nearly equal to the gradient of the edge map when it is large, but forcing the
field to be slowly-varying in homogeneous regions. Using calculus of variations [9], it can be
shown that the GVF field can be found by solving the following Euler equations:

0))(( 222  yxx fffgg , (8)
and
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where ▽2 is the Laplacian operator.
Using GVF to server as external forces, we can move the snake to minimize the energy of the
contour shown in Eq.(5). The solution can be solved by using the greedy approach [10] or the finite
difference method [3]. We used the finite difference method in our implementation.
2.4 IMPLEMENTATION DETAILS
Two issues are discussed in this section, the reparameterization of a contour and the halting
condition of a moving snake.
When a snake deforms, the distances between consecutive vertices on the snake change. It is
required to resample the snake along its path [11]. We resample the snake according to a user
pre-defined parameter ldes. The distance between the neighboring vertices is kept between 0.5ldes

and 1.5ldes. When the distance is less than 0.5ldes, we merge two adjacent vertices into a single
vertex. If the distance is larger than 1.5ldes, we insert a vertex between the vertices.
The next issue is the halting condition for a snake. One possible condition is to set a limit for the
number of iterations. Another approach is to monitor the improvement (change of energy) between
two consecutive iterations. The snake stops moving if the improvement is small enough. Due to the
following reason, we present a new method to determine the halting condition.
Since the external force is provided by the GVF, the vertices on the snake move toward“valley”of
the external force field when a snake converges. Since the bottom of the valley is not at the same
height, some points in the valley still move toward nearby local minimal even when the snake
converge to the boundary. In such cases, in order to reduce the energy of the snake, vertices of a
snake will have a strong tendency to pile up in the “deepest pocket”in the valley. To solve this
problem, we define the stopping criterion as the similarity of the shapes of contours. If the similarity
between two snakes is within a threshold, we consider these two snakes to be the same and confirm
that the snake is converged. To evaluate the similarity of the shapes of contours, we adopt a
modified chain code curve encoding method [12] and the longest common subsequence
techniques[13].
Chain code encoding method is first proposed by Freeman [12]. The concept is to divide a curve
into a fixed length segment and encode the curve according to the direction of segments along the
curve. In general, encoding method has 4-connectivity (Fig. 1) and 8-connectivity (Fig. 2). We
subdivide the plane into 4 (8 respectively) regions in 4-connectivity (8-connectivity respectively)
for encoding. Given a starting vertex on a curve, we compute the vector of adjacent vertices along
the curve. Then we encode the curve into a bit string according to the directions of the vectors.
We call the bit in a bit-string as direction bit. Fig. 3 shows an example in a 8-connectivity encoding
of a curve.

Fig. 1 4-connectivity and 8-connectivity for chain code encoding



Fig. 2 An example of 8-connectivity chain code encoding in clockwise order
When two curves are encoded into two bit-strings, we find the longest common subsequence (LCS)
of these strings by the dynamic programming technique [13]. We define a similarity function as
follows:

)).2()1(/())2,1(2)2()1(()2,1( vLenvLenvvLCSvLenvLenvvS  (10)
In Eq. (10), S denotes the similarity function. v1 and v2 are curves to be matched. Len(v) denotes
the length of the curve v, and LCS(v1,v2) denotes the length of the longest common subsequence of
v1 and v2. Note that 1)2,1(0  vvS . If two curves are identical, S(v1,v2) = 0. A small S implies
two curves are identical. We set a threshold Ts that if S is smaller than Ts, we consider that the snake
has been converged.
A standard chain code has a problem. In figure 4, vector A and vector B are in different encoding
regions. Thus vector A and B is considered pointing in different direction and are encoded into
distinct direction bits. But if the angle in vector A and B is small, they should be considered
pointing in the same direction. Thus, we made a modification in defining the cost function in the
longest common subsequence algorithm to solve this problem. In the original longest common
subsequence algorithm, a string bit represents vector’s direction. Now we let each string bit to be
the vector itself. The comparison of string bits is replaced by the inner product of the vectors. If the
value of the inner product is larger than a given threshold valueθ, we consider these two string bits
are identical. According to our experiment, the modified method provides a reliable stopping
criterion.

Fig. 3 Vector A and B are similar. But they are considered very different in chain code encoding.
2.5 USER INTERFACE
Snakes can be trapped into local minimal or wrongly converged to a boundary due to noises or ill
initialization. When this happens, user assist is used to help the snake to escape from the trapped
configuration. The other situation that needs a user assist occurs when the topology of contour



changes. When a contour splits into two contours or two contours merge into one contour, we need
user assists to manually modify the snakes.
3. EXPERIMENTAL RESULT
We present the experimental results by using two images. The first image is shown in Fig. 4. In
this figure, the original image is in (a). In (b), the image after texture analysis is shown. (c) shows
the image after intensity thresholding of the image (b). Images (d) and (e) are obtained by first
applying the Canny edge detector and the intensity thresholding of the image after Canny edge
detection. The initial contour is shown in (f). (g) is the image consists of the initial contour and the
calculated GVF. Images in (h) and (i) are the converged snakes for both the left and right mushroom
bodies. The converged snakes for the mushroom bodies superimposed in the original images are
shown in (j) and (k). The second image has worse contrast than the previous one. We show that the
proposed method can still segment the mushroom body well. In the first row in Fig. 5, there are the
original image, the image after texture analysis, and the image after intensity thresholding of the
resulted image after texture analysis. The second row consists of the images that are obtained by the
Canny edge detection, intensity thresholding of the resulted image after Canny edge detection, and
the calculated GVF as well as the initial contour. In the third row, there are two images showing the
converged snakes. Even the contrast is much worse than the previous image, the proposed method
can still well segment the mushroom body.
4. DISCUSSION
We presented a method to segment the mushroom body in the confocal microscopic image. The
proposed method employed the texture analysis and the Canny edge detector method to compute the
edge map. The active contour method using GVF as the external force was then used to segment the
mushroom body. The proposed method worked well even when the boundary of the mushroom
body is not very sharp.
When we apply the method to segment the 3D mushroom body in a stack of volume images, the
final converged contour in one slice serves as the initial contour in the next slice. The user assists
are needed when the topology of the contour changes or there are unexpected noises. This method
helps to reduce the required of human intervene to process a whole stack of volume data.
The disadvantage of this approach is the computing time required in the preprocess step. To compute the GVF of a 256
by 256 image needs 5 seconds in an AMD 1.5G XP CPU PC. However, since it generally takes less than an hour to
process a set of volume data, and it does not need any human intervene in the preprocessing step, the proposed method
can save many man power in the task of segmentation of the mushroom body.

(a) (b) (c)



(d) (e) (f)

(g) (h) (i)
(j) (k)

Fig. 4 The first image. (a) is the original image. (b) and (c) The image after texture analysis and
intensity thresholding. (d) and (e) show the images after Canny edge detector and intensity
thresholding to obtain the edge map. (f) and (g) shows the initial contour. (h) and (i) are the

converged snakes for the left and right mushroom body. In (j) and (k), we draw the contours on the
original image.



(a) (b) (c)

(d) (e) (f)

(g) (h)
Fig. 5 The contrast of this image is worst than the one shown in Fig. 5. (a) The original image. (b)
The image after texture analysis. (c) Intensity thresholding of the image after texture analysis. (d)

and (e) are the images after Canny edge detector and intensity thresholding. (f) The initial contour.
(g) The converge snake for one of the mushroom body. (h) is the converged contours drown over

the original image.
3 NEURON TRACING
Finding the centerline of the tubular structure helps to segment or analyze the organs such as the
blood vessels or neuron fibers. This section described a semi-automatic method using the
minimum cost path finding and Hessian matrix analysis in scale space to calculate the centerline of
tubular structure organs. Unlike previous approaches, exhaustive search for line-like shapes in
every scale is prevent. Centerline pixels candidates and the width of the vessel are extracted by



analyzing the intensity profile along the gradient vectors in the image. A verification procedure
using Hassian matrix analysis with the scale obtained from the gradient analysis is applied to those
candidates. Results obtained from the Hessian matrix analysis are used to construct a weighted
graph. Finding the minimum cost path in the graph gives the centerline of the tubular structure.
The method is applied to find the centerline of the vessels in the 2D angiogram and the neuron
fibers in the 3D confocal microscopic images.
Many organs, such as blood vessel and neuron, inside human body are tubular shaped. knowing the
centerline of these organs help to obtain quantitative information, such as shape and size of the
organ, for further analysis. In this paper, we present a semi-automatic method to extract the
centerline of the tubular structure in 2D and 3D images. The method was applied to segment the 2D
vessel in angiogram and the 3D neuron in the confocal microscopic images.
Centerline of a tubular structure can be obtained by first segment the region of interest to establish a
binary image of the ROI. A further procedure can then be applied to calculate the centerline. A
problem with this approach is that the ROI could be difficult to segment. For example,
segmentation of the coronary arteries in the angiogram is a difficult problem.
Coronary arteries angiography is still the most common modality for physicians to assess the
severity of coronary narrowing or stenosis during percutaneous coronary intervention procedure.
Accurate analysis of coronary arteries in digital angiographic images is valuable and important to
clinical needs. The major difficulty in automatic extraction of coronary arterial structures in
angiogram lies in (1) low signal-to-noise ratio due to poor X-ray penetration, (2) vessel overlaps,
and (3) superimposition of other tissues such as ribs, spine, or cardiac chambers. Traditional
signal-based edge detection algorithms [錯誤! 找不到參照來源。6,17,18,19,20,21,22] were unable
to effectively or accurately detect the desired structures. The existing methods specific to vessel
extraction can be categorized into (i) model-based [23,24,25] (ii) tracking-based [26,27,28], (iii)
classifier-based [29], and (iv) filter-based [30, 31,32] techniques. In model-based methods, the
coronary arterial tree is produced based on a pre-defined coronary artery model in the form of a
“graph” structure. In tracking-based methods, the process proceeds with an initial start-of-search
location followed by an automatic tracking process by exploiting the spatial continuity of the
vessel’s centerline, orientation, diameter, and density. In classifier-based methods, a clustering
algorithm is employed with properly preprocessed data to differentiate vessel or non-vessel regions.
In filter-based methods, the coronary arteries are enhanced and located so that they can be
subsequently detected in the image. However, any of the above approaches cannot guarantee to
work well in all of the cases.
Another case studied in this paper is tracing neuron fibers in the confocal microscopic images. A
neuron consists of necleus, dendrite, axon, and terminal button. Knowing the centerline of the
neuron helps to analyze the shape of the neuron. Due to the low contrast of the image and the shape
of the neuron, segmentation of neuron fibers in confocal microscopic images is a much difficult task
than segmentation of the vessels in angiogram. To calculate the centerline by first segmentation of
the neuron fibers might not be an appropriate approach.
In this paper, we developed a method to calculate the centerline of tubular structure directly from
the image. The technique is developed based on the Hessian matrix analysis in scale space. The
Hessian matrix analysis evaluates the local curvatures to explore the second order structure
surrounding at a point such that results of analysis is independent of image properties, and is only
dependent to the local shape of the point. Hence, they generally are suitable for different types of
images. Combined with the Hessian matrix analysis, multi-scale technique is used to detect every



scale of feature and eliminates the effect of noise to construct a robust and feasible extraction
algorithm. By finding the centerline directly from the image, we could develop an easier method to
segment the tubular structure.
For completeness, we briefly state the background of the multi-scale technique. Lindeberg
[33,34,35] revealed the way to detect ridge lines in an 2D image for computer vision using analysis
of local directional derivatives to find the area at which the shape conform the ridge definition in
differential geometry. His algorithm calculates directional derivatives of every pixel in scale-space,
which represents different level of detail, from the coarse to the fine, of the image. The directional
derivatives of a pixel at some scale can be viewed as a kind of description of the local shape at that
scale. Evaluation and selection those descriptions in scale-space results the possible ridge, or say,
centerline of line structures. Sato et al. [36] present a generalized measure of similarity of line in 3D
space using calculation of eigenvalues of the Hessian matrix, which is equivalent to the directional
derivatives. They designed a delicate formula to estimate the likelihood of being line-shape from
eigenvalues of the Hessian matrix, and build a 3D line filter by it for vessel enhancement. Frangi et
al. [37] also propose another line filter based on analysis of the Hessian using their own formula. It
is shown by the experimental result that good noise and background suppression of this method. A
line extraction algorithm using the response of line filter mentioned above and the minimum cost
path finding is proposed by Wink et al. [38]. The response from the line filter is regarded as weights
of edges in a graph where image pixels are viewed as nodes and there are edges connected between
any two adjacent pixels in it. Hence, given two points as the beginning and ending of a vessel or
neuron, finding a minimum cost path (with highest weight) extracts the most possible centerline of
the vessel or neuron. Wink et al. improved their tracking algorithm by involving scale parameters
into minimum cost path finding [39]. In previous methods using minimum cost finding combined
with the line filter to obtain centerlines, the response using as weights of graph is generally taken
from the maximum response over the scales in scale-space. In this method, however, response in
every scale is reserved as a part of the weights in path finding, rather than discarding all except the
max one. This strategy improves the accuracy of the algorithm but need huge of memory. This
restricts the application of the algorithm to the case of handling 3D volume data.
In this section, we present a semi-automatic method to segment tubular structure in 2D image or 3D
volume data. The method reduces the memory required so processing large volume in a personal
computer is possible. In the next section, we describe some preliminaries. In Section 3.2, we present
our method. The results are shown in Section 3.3. We have conclusion and discussion in
Section 3.4.
3.1 PRELIMINARY
We briefly describe the 3D Hessian Matrix analysis. The 2D Hessian Matrix is the same but ignore
the third dimension. Hessian matrix for a point p under scalein 3D space can be written as the
following equation
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where Iab is the partial derivative of I in a, b direction baI  /2 . If I is continuous, Iab = Iba, H

can be written as a symmetric matrix





















zzzyzx

yzyyyx

xzxyxx

III
III
III

pH )( (12)

Let 1, 2, and 3 be the eigen values of )( pH , and 123. If (x,y,z) is on the centerline of

a neuron fiber, we have |1|0 and |2| and |3| are large. Furthermore, let v1, v2, and v3 are

respectively the eigen vectors corresponding to the eigen values 1, 2, and 3. We have v1
points along the direction of the medial axis, and v2 and v3 are normal to the medial axis.

Computing the second partial derivative of the volume data with scale  is implemented
in the frequency domain. Given a point p, the scale  defines a Gaussian function ),( pg
that the mean is at point p with variance . To compute the second partial derivative of the volume
data is equivalent to

1. Fourier transform the volume data into frequency domain.
2. Compute the second partial derivative of the Gaussian Function and transform it into the

frequency domain.
3. Multiply the two results in the frequency domain.
4. Inverse transforming the frequency domain back to the spatial domain.

The computation of the second partial derivatives are shown in Eqs. (13-18)
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The Hessian Matrix with at point p for scale , denoted )( pH , is established using the
following equation.
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3.2 METHOD
The method consists of three steps, the preprocessing step, Hessian Matrix analysis, and
constructing a weighted graph and find the shortest path in the graph. Each of the steps is described
in the following.
3.2.1 PREPROCESSING
Gradient in an image is generally used to compute the edge in the image. Using the Sobel operation,
we compute the gradients, Sx, Sy, Sz along x, y, and z directions at point (i,j,k). Let p=(i,j,k) be a

point, ))(),(),(( pSpSpS zyx , describes the direction that the intensity changes the most and
|Sx|+|Sy|+|Sz| gives the magnitudes that the intensity changes. If p is a boundary point, |Sx|+|Sy|+|Sz|

tends to be large and ))(),(),(( pSpSpS zyx approximately points to the center of the tubular
structure. Based on this observation, we shall look at the points that have the magnitude of the
gradient greater than a given threshold Tg. And along the direction of the gradient, we shall

determine the approximate boundaries and the estimated center point of the tubular structure. The
estimated boundary points and center points are presented as the triple <p,c,q> where p and q are
the estimated boundary points and c is the estimated center point.
The preprocessing step is different for finding centerline for vessel (2D case) and neuron (3D case).
We separate the discussion in two parts.
2D Vessel Case
The triple is obtained by analyzing the intensity distribution along the direction of the gradient
vector. Let p be a boundary point obtained from the Sobel filtering. Let v be a directed line that has
one end point anchor at p and emitting along the direction of the gradient. Along v, the intensity
distribution can be roughly divided into five intervals, namely, flat interval, upward interval, ridge
interval, downward interval, and flat interval. The five intervals along v indicate that the ray
shooting into the vessel, passing the center of the vessel on the ridge interval, and exiting the vessel.
The entering point, a point on the ridge interval, and the exiting points are respectively the points p,
c, and q. The algorithm to determine the five intervals and the triple is described in the following.
Along v, we discretize the directed line to a set of points, },...,0,|{ niipss ii  u , where u is
the unit vector along v. The intensity of each of the sampled point si is denoted )( isI . If si does

not have integer coordinates, )( isI is obtained using the bilinear interpolation from the four
neighboring points. Each pair of )( isI , )( 1isI , i=1,...,n-1 defines a slope mi


isi

i

IsI
m


 )( 1 . (20)

Depending on the slope, we classify the intervals into four categories, namely, flat, upward,
downward, and ridge. Given a threshold, Tflat, the ith interval is

• flat, if |mi|<Tflat,

• upward, if mi3Tflat,

• downward, if mi-Tflat, and

• ridge, if |mi|<Tflat, and this interval is between an upward interval and a downward interval.



With these four intervals, for a given point p, c and q are determine if they meet one of the
following two conditions,
• q is in a downward interval and I(p)=I(q). In this case, the centerline of the neuron, c, is

(p+q)/2.
• c is the center of the ridge interval or at the boundary of the upward and downward intervals

(ridge is empty). In this case, q locates at c+|pc|.
For each computed p, q, and c, we have a triple <p,c,q> which is a possible cross section of a vessel
and c is a candidate for a point on the centerline. Note that, for each point p, there could be a pair of
triples calculated. Figure 錯誤 ! 找不到參照來源。 show the triples (cross section) found
according to the rules stated above. According to the rules, we find the set possible candidates for
the centerline. The best possible result shall be determined by the shortest path finding algorithm.
The set of points C={c|c is a candidate for a point on the centerline} will be used for creating the
weighted graph.
3D Neuron Case:
When the gradient analysis is applied to 3D volume case, the steps performed are the same as that
in the 2D case. Since the directed line determined by the gradient may not pass through the true
center of a neuron fiber, the candidates for the points on the centerline are determined differently.
Let C' be the set of points of all points c found in gradient analysis and C be the set of points
obtained by applying the dilation operation of C'. C contains most of the points on the centerline.
3.2.2 HESSIAN MATRIX ANALYSIS
The points in C is the set of candidate point for the centerline of the tubular structure. Note that the
point in C is obtained through the gradient analysis that the magnitude of the gradient is greater than
a given threshold. Noises can also produce points in C. To verify whether a point in C is truly on the
centerline, we apply the Hessian Matrix analysis.
For each triple <p,c,q> in C, || qp is the estimated width of the vessel. Let, 2/|| pqw we expect
that there is a tubular structure with radius equal to the half width of the cross section, W, passing
through c. By using a Hessian Matrix with scale W , there should be a detected tubular structure.
2D Vessel Case
For each point c in C, we compute the Hessian Matrix )(cH  .
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Note that, the  used in obtained from the previous step. The two eigen values 1 and 2
(1<2) are calculated. We define w1 and w2,
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where v2 is the eigen vector corresponding to 2. Recall that, if c is indeed on the centerline of

the vessel of width W, |1|0 and |1|<<|2|. That means w1 should be very small. Secondly, if



qp


is truly orthogonal to the centerline of the vessel, v2 should have same direction as qp


, thus

w2 should be close to 1. Combining w1 and w2, we define the weight w
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w is in the range [0,1]. If w is large, there is significant line structure with width W and c is on the
centerline.
3D Neuron Case
We compute the 3D Hessian Matrix as show in Eq. (19). Again, the three eigen values, 1, 2 and

3, are computed. Recall that if c is indeed on the centerline of a tubular structure, we have

1<<2, 1<<3, and 23. In this case, we define the weight w,

122  w . (25)
If w is large then c is likely on the centerline of a neuron fiber.
3.2.3 GRAPH CPNSTRUCTION AND THE SHORTEST PATH CALCULATION
Neuron structure extraction is carried out through finding the shortest path in a weighted graph
G=(V,E). Each vertex in V corresponds to a point in C. Let u, v be two vertices in E. There is an
edge between u and v if the points corresponding to u, v are 8-neighbor connected in 2D case or
26-neighbor connected in a 3D volume. There are costs associated with the edges in E. We used
different way to define the weight of an edge.
2D Vessel Case
The weight between two connected vertices u and v is denoted C(u,v).

),(direction),()),(),((),( distancewidthweight jiCjiCjiCjiCvuC  , (26)
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3D Neuron Case
For an edge e connecting u and v, we define

distance1),( CwvuC  , (31)
where ),(),(distance ji vuDvuC  .
The weights are designed so that the centerline of a piece of vessel or neuron fiber occur on the
shortest path between a pair of vertices on the neuron. Given the weighted graph, G=(V,E), we
calculate the all pairs shortest paths using the Dijkstra Algorithm. The structure extraction algorithm
is obtained by a graphics user interface system. The user provides a pair of points on the centerline
as the input. The shortest path between the pair of points are calculated that corresponds to the
centerline between the points. The process iterates until the whole tubular structure is extracted.



3.3 RESULTS
In Figure 6, a computer generated phantom test data is shown. The centerline obtained by the
proposed method is shown on the right side.

Figure 6: A computer generated phantom data set. The original image is shown on the left and
the center line obtained is show on the right.

In order to test the robustness of the proposed method, we used computer to generate low contrast
phantom image. We also generated the condition that the background intensity changes gradually
(Figure 7). The image containing noises were also generated by computer for testing robustness
reason(Figure 8). In Figure 7, since the background intensity changes, the centerline shift to the
right of the true centerline. But the centerline falls in the interior of the vessel. That means the
centerline can still serve as a reference to find the boundary of vessel. In the noisy image shown in
Figure 8, the proposed method can still accurately calculate the centerline.

Figure 7: The test data containing low contrast image and the background intensity change
gradually. The original image is shown on the left and the center line obtained is show on the right.



Figure 8: Image containing noises. The original image on the left and the result shown on the
right.

In Figure 9, the retinal images is shown. The centerlines for the vessels in the low contrast area
could still be well identified.

Figure 9: The result obtained for the retinal image. The original image is shown on the left and
the centerlines found is shown on the right.

The experiments using the coronary artery angiogram was also performed (Figure 10). The arterial
tree can be extracted fairly complete.



Figure 10: Center lines identification for the coronary artery in the angiogram. The image on the
right shows the extracted centerlines.

Figure 11: Two examples show the results of tracing neuron fibers. The images are 3D confocal
microscopic images.

In Figure 11, we present the result obtained by tracing neuron in 3D confocal microscopic volume
data. The image on the right was obtained by tracing neuron fibers in a volume data of size



512512120. This problem can be fitted into a personnel computer with 2G memory. The
preprocessing time took about two hours.
3.4 CONCLUSION AND DISCUSSION
We presented a semi-automatic method to find the centerline of tubular structure in 2D or 3D
volume images. A problem with this approach is the long preprocessing time. However, the method
worked well even for 3D neuron tracing case in confocal microscopic images. The future work will
be segmentation of vessels or neuron fibers based on the centerline extracted.
4 ON GOING AND FUTURE WORK
Based on the previous mentioned result, we shall develop algorithms and software system to extract
and analysis the fine structures in the Drosophila confocal microscopic images. The goal is to
employ computer methods to solve important biological problems. We try to extract useful
quantitative or geometric information from the segmented fine structures such as the neural fibers,
bouton and cell bodies. We expect that using the developed software system can obtain important
information that is not available by using commercially available software system such as Amira.
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