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於交通量指派之之重力式互動性馬可夫模式中 

放鬆獨立且無關選項限制之研究 

 
Shang-Hsing Hsieh1, Jan-Mou Li2 

 

中文摘要 

 

重力式互動性馬可夫鏈(Gravity-Type Interactive Markov model：GIM model)
為 Smith與 Hsieh(1994, 1997)所提出，將此模式用於隨機交通量指派問題中，可
建立隨機交通量指派問題之 GIM 模式(簡稱 GIMT 模式)。在方案為獨立且非相
關(IIA)的假設前提下，謝尚行與董珈汶(民國 87 年)證明了 GIMT 模式的穩定狀
態條件等同於路網之隨機使用者均衡(SUE)條件。但在真實路網中，各備選路徑
間多半都包含一些重覆路段(overlapping links)，這使得 GIMT模式的應用受到很
大的限制。 

 
文獻中探討放鬆羅吉特模式中 IIA 條件的研究非常豐富，本研究將參考

McFadden (1978)、Ben-Akiva and Lerman(1985)、Börsch-Supan(1990)等以巢式羅
吉特(Nested Logit)及 Chu(1981)、Koppelman, F.S. and Chieh-Hua Wen(1998, 2000)
等以配對組合羅吉特(Paired Combinatorial Logit, PCL)放鬆 IIA條件的理論，探討
於 GIM 模式中放鬆 IIA 條件的可行性及具體做法，從而建立放鬆 IIA 條件的
GIMT演算法，以求解路徑具重覆路段之路網的 SUE，並以範例說明之。 

 
關鍵詞：重力式互動性馬可夫鏈、隨機使用者均衡、巢式羅吉特、配對組合羅吉

特 
 

英文摘要 

 

Gravity-Type Interactive Markov model was introduced by Smith and Hsieh 
(1994, 1997). A model so called GIMT can be formulated as applying the GIM model 
to stochastic traffic assignment problems. Under the assumption of independent and 
irrelevant alternatives (IIA), Hsieh and Dong (1998) proved that the steady-state 
condition of a GIMT model is equivalent to the condition of stochastic user 
equilibrium (SUE) in a network. However, most paths in actual networks have some 
links overlapped. This makes great limitation to the application of GIMT model. 

 
Previous researches devote great efforts in relaxing the IIA assumption of logit 

choice model. One of them is nested logit which was introduced by McFadden(1978), 
Ben-Akiva and Lerman(1985) and Börsch-Supan(1990). Another is paired 
combinatorial logit (PCL) which was introduced by Chu(1981) and Koppelman, F.S. 
and Chieh-Hua Wen(1998, 2000). We attempt to employ these theories in relaxing the 
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IIA assumption of GIM model. Then we will try to establish an IIA-relaxed GIMT 
algorithm to solve the stochastic user equilibrium in networks having some paths 
overlapped. Illustrative examples will also be presented. 
 
Keywords: Gravity-Type Interactive Markov Model, Stochastic User 

Equilibrium (SUE), Nested Logit, Paired Combinatorial Logit 
 

1. Introduction 
Smith and Hsieh first introduced the gravity-type interactive Markov model 

(1994, 1997). It is an interactive Markov model. The class of interactive Markov 
models first introduced by Matras (1967) and Conlisk (1976) has been widely studied 
and applied in the social sciences ( as for example by Conlisk, 1982, 1992; 
Bartholomew, 1985; De Palma and Claude Lefevre, 1983, and Kulkarni and Kumar, 
1989). In modeling collective population behavior, De Palma and Claude Lefevre 
(1983) have shown that interactive Markov models follow directly from 
population-dependent choice behavior exhibited by individuals. With respect to traffic 
assignment problem in particular, such population dependencies can often be 
characterized in terms of those agglomeration effects (both positive and negative), 
which determine the relative attractiveness of a route to road users. 

Two stochastic models of the traffic assignment problem are of particular interest 
-- the logit model (Dial, 1971) and the Probit model (Dagonzo and Sheffi, 1977; 
Maher and Hughes, 1997). The Probit model is hardly practical because it involves 
only Monte-Carlo procedures, unless all paths can be identified. The logit model is 
endowed with both an extremely efficient fixed time assignment procedure (Dial’s 
STOCH algorithm) and a convex minimization formulation with a closed-form 
objective function (Fisk, 1980). The logit model has attracted much more attention 
because it has a simple structure and is easy to use (Dial, 1971; Fisk, 1980; Chen and 
Alfa, 1991; Bell, 1995; Akamatsu, 1996; Leurent, 1997). Nevertheless, computational 
difficulties have prevented the logit model from being more widely used. 

One considerable convenience of the logit model is its Markovian nature (Maher, 
1998): the spilt of traffic between paths from an origin to an intermediate point is 
independent of the spilt between paths from that point to the destination. A Markov 
chain is a stochastic process that takes on a finite or countable number of possible 
values. For a Markov chain, the conditional distribution of any future state is 
independent of the past states and depends only upon the present state. The traditional 
assumption of a Markov chain is the independence of choice behaviors of individuals 
in a system in which all transition probabilities are constants. It means that a road user 
does not consider an interaction with the population in each time period but just 
independently make his route choice with a constant probability. 
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Conlisk (1976) introduced an interactive Markov chain that relaxed the 
assumption of independence; that is, the system status affects an individual’s choice 
behavior. Conlisk defined the transition probabilities as the function of system 
distribution. Akamatsu (1996) proposed two theoretical approaches for solving the 
logit-type stochastic traffic assignment model. One is based on the theory of the 
absorbing Markov process (Markov chain), and the other is based on the equivalency 
of the maximum entropy principle and the logit model. 

Smith and Hsieh (1997) classified those factors that influenced an individual’s 
choice behavior in a system, and introduced the Gravity-type Interactive Markov 
Models. The individual choice probability is defined as a function of population 
distribution of the system in each period. 

This study proposes a gravity-type interactive Markov model for the stochastic 
traffic assignment (STA) problem, named GIMT. Within this framework, the daily 
path choice of drivers in a network can be described, and it is similar to the choice 
behavior based on the logit model. In this model, the probability that a path be chosen 
by drivers in each period is a function of the flow distribution in the network. That is, 
the path choice does depend on the current flow distribution in the network. 
According to GIMT, we developed an algorithm for finding the SUE of the STA 
problem. Furthermore, some results of applying the algorithm to two examples are 
also presented. 

This paper is organized as follows. Section 2 briefly describes the GIM model, 
which underlies both the GIMT model and the GIM algorithm. Section 3 introduces 
the GIMT model to describe the interactive relationship between path choice and flow 
distribution in a network. The long-run evolution to the steady state of the process can 
be observed by interactively adjusting traffic flows among paths. Then, the 
steady-state conditions of the GIMT model are shown to be equivalent to the SUE 
conditions in a STA problem. Section 4 develops the GIM algorithm for finding the 
SUE in a network by determining the steady state of the GIMT model. Section 5 
presents two examples to explain the procedure of employing the GIM algorithm to 
search the SUE of a network. The advantages and disadvantages of the GIM 
algorithm are illustrated by comparing it to the Frank-Wolfe algorithm and the MSA 
algorithm. Section 6 provides a summary and some directions for future researches. 
 
2. The Gravity-Type Interactive Markov Models – the GIM Models 
2.1 Markov chain 

The Markov chain is a stochastic process that describes the evolution of the 
status of random variables in a system with time (stages). It was first introduced by A. 
A. Markov in 1907, to model and explain some sociological and economical 
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phenomena. A traditional assumption of the Markov chain is that neither other people 
nor the distribution of system states affects an individual’s choices. The transition 
probabilities are constant and the individuals do not interact. 

For any fixed population of N individuals (motorists or drivers) distributed over 
a finite set of states (routes or paths), },...,1{K, kji =∈ . M = [mij] is a k×k transition 
matrix. For each individual, the value mij denotes the conditional probability that a 

motorist will, when in state i, make a transition into state j. Let pt = ( tp1 , tp2 ,…, t
kp ) be 

the population distribution vector, and t
ip  denotes the population fraction in state i at 

time t. The population distribution in each period can be represented by a Markov 
chain with transition matrix, M: 

(1)   pt+1 = pt‧M  or  1+t
jp  = ∑ ⋅

=

K

i
ij

t
i mp

1
 for +∈∈ Z   tK,, ji  

The transition probability mij in a traditional Markov chain is assumed to be 
constant and does not change with time. An ergodic Markov chain will tend to the 
steady-state probability distribution after a large number of transitions, and this 
distribution is independent of the initial distribution. 
 
Definition 2-1: Steady State 

A steady state for a transition matrix, M, is a distribution, kPp ∈* , which 

remains invariant in (1), that is, which satisfies the fixed-point condition,  
(2)      p* = p*‧M 

The steady-state probability means that the fraction of population in every state 
keeps constant when the system reaches the steady state. It is important to note that 
the steady-state probability does not imply that the system settles down into one state. 
The process continues to make transitions from state to state, and the outflow rate 
equals the inflow rate for every state. 
 
2.2 Interactive Markov Chains 

The assumption of individual independence of Markov chains does not hold in 
many situations. For example, individual migration decisions will generally depend 
on the current population sizes in every region and the current popularity of various 
brands typically influences a consumer’s choice of brand. 

The class of interactive Markov models first introduced by Matras (1967) and 
Conlisk (1976) has been widely studied and applied in the social sciences. In this 
model, each individual’s decision as to her or his next state depends only on her or his 
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current state together with the current distribution of all other individuals. It means 
that individual’s decision is influenced by the population distribution. By doing so, 
the transition probability is defined as a function of the population distribution in a 
system. That is, M is a function of pt, and can be written as M(pt). Therefore, the 
interactive Markov chain can be represented in the form as, 

(3)    pt+1 = pt‧M(pt)   and  ∑
=

+ ⋅=
K

i

t
ij

t
i

t
j mpp

1

1 )(P  for +∈∈ Z   tK,, ji  

Several models of the interactive Markov chain were presented in previous 
researches; the basic one is the A-B model, introduced by Conlisk (1976). Analyzing 
interactive Markov chains is difficult since the transition probability can be defined in 
several ways. The formulations are so complex that conditions that support the 
uniqueness of the steady state are hard to be established. However, these conditions 
are very important for analyzing a system’s structural behavior. 
 
2.3 Gravity-Type Interactive Markov Models – GIM Models 

Smith and Hsieh (1994, 1997) introduced a class of interactive Markov migration 
models which is characterized by gravity-type transition kernels, in which migration 
flows in each time period are postulated to vary inversely with some symmetric 
measure of migration costs and directly with some population-dependent measure of 
attractiveness. This class of models is called gravity-type interactive Markov models. 

A gravity-type interactive Markov chain can be briefly expressed as follows. The 

attractiveness of state j can be written as a function of t
jp , say )( t

jj pa . It may then 

be postulated that mij(pt) increases with )( t
jj pa . The distance-deterrence effects 

when moving from i to j are represented by a function, say )( ijcg , which is defined 

as a decreasing function of ijc . Then it may also postulated that mij(pt) increases with 

)( ijcg . The GIM model can be generalized by allowing M to depend on pt as follows: 

(4)      pt+1 = pt‧M(pt),  +∈ Zt  
In (4), the transition probabilities mij(pt) takes the explicit form 

(5)     mij(pt) =
∑

k
ik

t
kk

ij
t
jj

cgpa
cgpa

)()(
)()(

,  +∈∈ Z   tK,, ji  

Hence, the transition behavior of a system in each period can be represented as, 



 6

(6)    Kji
cgpa

cgpa
pmpp

i
k

ik
t
kk

ij
t
jjt

i
i

t
ij

t
i

t
j ∈∀∑

∑
=∑=+ ,,

)()(

)()(
)(1 p  

Smith and Hsieh (1997) established the conditions for the steady state of a GIM 
model and, showed that there exists a unique steady state for a GIM model if the 

attraction function )( jj pa  is strictly decreasing with jp  and the deterrence 

function )( ijcg  is symmetric. 

 
3. A GIM Model for Stochastic Traffic Assignment Problem – GIMT Model 

By employing an appropriate transformation, we can set up a GIM model for the 
stochastic traffic assignment problem, which is called the “GIMT model”. At first, 
let’s recall the following assumptions made in the stochastic traffic assignment (STA) 
problem. 

1. All travel demands on every O-D pair are known. 
2. The cost functions on every link are known and separable and the cost 

function for each link in a congested network is strictly increasing. For 
example, the U.S.B.P.R.-type volume-delay curves are of the form, 

4
iiii xbat += . 

3. The path choice probabilities for motorists are calculated according to 
multinomial logit model. 

4. All paths are non-overlapping, i.e., there is no link in common between two 
different paths. 

5. The notation used herein is as follows.  
Consider a transportation network G = (N, A), where 
N: set of nodes; 
A: set of links (arcs); 
R: set of origins, and R ⊆ N; 
S: set of destinations, and S ⊆ N; 
Krs: set of paths between r and s, r∈ R, s∈ S; 
xa: flow on link a, x = (…, xa ,…); 
ta: travel time on link a, t = (…, ta ,…); 

rs
kf : traffic flow on path k connecting O-D pair r-s, rsf = (…, rs

kf ,…); 

rs
kc : travel time on path k connecting O-D pair r-s, rsc = (…, rs

kc ,…); 
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rsq : travel demand from origin r to destination s; 

rs
ka,δ : indicator variable; rs

ka,δ =1, if link a is on path k between O-D pair r-s, 

rs
ka,δ =0, otherwise. 

Based on these assumptions, the condition for the steady state to be obtained 
according to a GIM model is equivalent to that for determining the SUE in a 
stochastic traffic assignment problem. By determining the steady state of the GIMT 
model, a new algorithm -- the GIM algorithm for determining SUE can be developed. 

If the attraction and deterrence functions are of exponential form, then the 
probability that a driver currently on path i will choose path j in next time period 
would have the following “logit” form:  

(7)     mij(pt)=
∑ +−

+−

k
ik

t
kk

ij
t
jj

cpa

cpa

]})([exp{

]})([exp{

θ
θ

  

The link costs increase with link flow, which can depict the effect of congestion in 
the stochastic traffic assignment problem. Therefore, the transition probability can 
have a simpler form as 

(8)      mij(pt)=
∑ −

−

k
ik

ij

c
c

]exp[
]exp[

θ
θ

 

From the viewpoint of behavior, the route choice probability, )( t
ijm p  of drivers in a 

STA problem can be briefly described as following: 

From current flow distribution pt = (…, t
jp ,…), we know flows on every path: 

rst
j

trs
j qpf ⋅=, , then we can have flows on each link: xa = ∑∑ ⋅

sr k

rs
ka

rs
kf

,
,δ , and hence 

the travel time on each link: ta(xa), and thus we can have the travel time on every path: 

∑ ⋅=
a

rs
jaa

rs
j tc ,δ , and then obtain the probability that path j is chosen by drivers: 

(9)     
∑ −

−
=

k

t
k

t
jt

j c

c
m

]exp[

]exp[
)(

θ
θ

p  

In this context, the transition probability mij can be simplified to mj in the STA 
problem, because a driver will choose path j in the next time period depends only 
upon the current flow distribution in the network, and is independent of her or his 
current state. Therefore, the GIMT model of a STA problem can be represented in the 



 8

same form as that of GIM model, pt+1 = pt‧M(pt). 
That is, 

(10)    ∑
∑ −

−
=∑=+

i
k

t
k

t
jt

i
i

t
j

t
i

t
j c

c
pmpp

]exp[

]exp[
)(1

θ
θ

p  

Equations (9) and (10) constitute the GIMT model of a STA problem. If the 
steady-state condition of the GIMT model can be proven equivalent to the SUE 
condition in the network, then the SUE can be determined by searching the steady 
state of the GIMT model. 
 
3.1 Conditions for Stochastic User Equilibrium (SUE) in a network 

Given that the travel demand on an O-D pair is rsq , the SUE conditions are 
(Sheffi, 1985), 

(11)      rsrs
j

rs
j qpf ⋅= ,  srj ,,∀ , or 

(12)       rs

rs
jrs

j q
f

p =  

where rs
jp  is the probability that route j between r and s is chosen. When the 

network reaches SUE, rs
jp  is just equal to the fraction of the flow on route j. 

 
3.2 The steady-state conditions of the GIMT model are equivalent to the SUE 

conditions 
As defined in Definition 2-1, the steady state probability p* of the GIMT model 

satisfies 
(13)       p* = p* M(p*) 

The proportion of the flow on path j in time period t is rs

trs
jt

j q
f

p
,

=  in the GIMT 

model. Following (10), if all paths do not overlap between r and s, then the proportion 
of flow on path j in the next period will be 

(14)    ∑ ∑
∑ −

−
==+

i i
k

t
k

t
jt

i
t

j
t
i

t
j c

c
pmpp

]exp[

]exp[
)(1

θ
θ

p  

After a large number of transitions, the system will tend to the steady state. The 
steady-state probability will satisfy p* = p* M(p*), and the transition matrix is 
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(15)      





















=

j

j

j

mmm

mmm
mmm

Λ
ΜΟΜΜ

Λ
Λ

21

21

21

)M(p*  

The steady-state probability for any route Kj ∈  satisfies 

(16)      ∑ ⋅=
∈ rsKi

jij mpp )( *** p ,  Kj ∈∀  and 

      ∑ =
i

ip 1* . 

From (16), we have *
jp  = mj(p*).  

In the meantime, the steady-state conditions can be written as 

(17)    *
*

jrs

rs
j p

q

f
≡   j

rsrs
j mqf ⋅=⇒ * , Kj ∈∀  

Therefore, the steady-state condition of the GIMT model for a stochastic traffic 

assignment problem is rs
jjjrs

rs
j pmp

q

f
=== *

*

, which is same as the SUE condition of 

the logit-based STA problem, rsrs
j

rs
j qpf ⋅= .  

 
4. GIM algorithm for finding the SUE of a STA problem 

The gravity-type interactive Markov chains describe population-dependent 
choice behavior by individuals. It is assumed that individual’s decision is affected by 
the population distribution in a system. In STA problems, drivers’ transition choices 
are negatively influenced by the congestion effects on paths, which is quite similar to 
individual choice behavior in the GIM chains. Therefore, the GIM model would be 
good to be applied to the STA problem, the choice making process can be represented 
as follows. 

As mentioned before, it is assumed that drivers’ path choice is influenced by the 
flow distribution in a network. The path choice probability in each time period can be 
defined as a function of the flow distribution over paths. According to these 
assumptions, the road system will adjust itself to the SUE by iteratively updating the 
choice probabilities in each time period. 

GIMT models can be classified into two categories. For some reasons (e.g. habit), 
not every driver attempts to change her or his route in each time period. The first type 



 10

is the “whole-shifting GIM model”, in which all drivers are assumed to change their 
route in each time period. The other is the “partial-shifting GIM model” in which 
only part of drivers (say a proportion ]1,0(∈α ) attempt to change their routes 
according to the transition matrix in each time period. 
 
4.1 Whole-shifting GIMT model 

The whole-shifting GIMT model has the form as (14), in which all individuals 
are assumed to try to change their state in each time period. The equivalence shown in 
the preceding section allows the SUE to be obtained by determining the steady state 
by the following procedure. 

Step 1: Initialization. Arbitrarily assign an initial flow rs
kf (n =1) to each path 

between r-s. Let n denote the number of iteration (or time period). For 

example, assign equal flows to each path, 
K

qf
rs

rs
k =)1( , for k =1,…, K. ⇒ 

The fraction of the flow on path k is rs

rs
krs

k q
f

p =   ⇒ Calculate the flow on 

each link by ∑∑∑=
r s k

rs
ka

rs
ka fx ,δ , yielding xn=1 =(…, 1

ax ,…)  ⇒ Update 

the cost on each link according to n
at = n

at (xa)  ⇒ Calculate the cost on 

each path by rs
kc (n)=∑

a

rs
kaa

n
a xt ,)( δ , for k =1,…, K. 

Step 2: Based on the new path cost, crs(n)  ⇒ Update the choice probabilities 

for each path using 
∑

=

∈

−

−

rs

rs
i

rs
k

Ki

nc

nc
rs
k

e
enm

)(

)(
)(

θ

θ
  ⇒ Update the fraction of flow 

on each path using rs
kp (n+1)= rs

km (n)  ⇒ Update the flow on each path 

with rs
kf (n+1)= rs

kp (n+1)×qrs. 

Step 3: Check whether the tolerance of convergence is met. For example, set the 

tolerance ε≤−+ |)()1(| nfnf rs
k

rs
k , ∀ r, s, k. If the tolerance is satisfied 

then STOP, which means that the SUE is found. Otherwise, reset n = n+1, 
repeat Step 1, 2 and 3. 

 
4.2 Partial-shifting GIMT model 
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In the real world, not every driver attempts to alters her or his commuting route 
every day because habit or some other reasons. Assuming only part of drivers (say a 
proportion,α) attempt to change their routes, and the others to remain their present 
routes, then the GIMT model becomes  

(18)     1+n
jp =(1-α)× n

jp +∑ ××
i

n
j

n
i mpα  

Let us call it the “partial-shifting GIMT model”. It is clear that the 
partial-shifting GIMT model is same as the whole-shifting GIMT model whenα=1. 
Smith and Hsieh (1997) showed that if α is sufficiently small, then the GIMT model 
can surely converge on the steady state (which is the SUE of the network). 
 

Multiplying both sides of Eq. (20) by the travel demand qrs , yields 

(19)     1+n
jf =(1-α)× n

jf +α×qrs× n
jm  

Equation (19) states that the flow on route j in next period (n+1) equals the partial 
remaining flow on j plus that move to j.  

Based on Eq. (19), the procedures for implementing the partial-shifting GIMT 
algorithm are as follows. 

Step 1: Initialization. Arbitrarily assign to each path the initial flow rs
kf (n=1). The 

fraction of flow on path k is rs

rs
krs

k q
f

p = .  ⇒ Calculate the flow on each arc 

by ∑∑∑=
r s k

rs
ka

rs
ka fx ,δ , yielding xn=1  ⇒ Update the cost of each arc by 

n
at = n

at (xa)  ⇒ Calculate the cost associated with each path with 

rs
kc (n)=∑ ∈∀

a
rs

rs
kaa

n
a Kkxt ,)( ,δ . 

Step 2: Based on the new path cost, crs(n),  ⇒ Update the choice probability of 

each path by 
∑

=

∈

−

−

rs

rs
i

rs
k

Ki

nc

nc
rs
k

e
enm

)(

)(
)(

θ

θ
,  ⇒ Update the proportion of flow on 

each path by rs
kp (n+1)= (1-α)× rs

kp (n) + α× rs
km (n),  ⇒ Update the flow on 

each path by rs
kf (n+1)= rs

kp (n+1)×qrs。 

Step 3: Check whether the tolerance of convergence is met. For example, set the 

tolerance ε≤−+ |)()1(| nfnf rs
k

rs
k , ∀ r, s, k. If the tolerance is satisfied then 
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STOP, which means that the SUE is found. Otherwise, reset n = n+1, then 
return to Step 1 and repeat. 

 
5. Illustrative Examples 

Two examples are presented to explain how the GIM algorithm determines the 
steady state of the corresponding GIMT model. Based on the equivalence shown in 
Section 3, the steady state determined means that the SUE is obtained. Follows that, 
the advantages and disadvantages of the GIM algorithm are also discussed. 
 
Example 1: (Paths do not overlap) 

O D

Link 1

Link 2  
FIGURE 1: Two links (routes) example adopted from Sheffi (1985) 

 
This example is adopted from Sheffi (1985). Consider the simple network shown 

in Fig. 1. The network includes two links (non-overlapping paths) that connect one 
O-D pair. The link performance functions are given by, 
(20)      t1(x1) = 1.25[1 + (x1/800)4] 
(21)      t2(x2) = 2.50[1 + (x2/1200)4] 
where xa is measured in vehicles per hour and ta is measured in minutes. The O-D trip 
demand is q vehicles per hour (veh/hr).  

Given that q = 4000 veh/hr and θ = 1.0 min-1. Solved by using the GIM 
algorithm, a steady state is obtained after 32 iterations. The convergence pattern of 
flow on path 1 is shown in Figure 2. When this system reaches its steady state, the 
flows on path 1 and 2 are x1 =1781 veh/hr and x2 =2219 veh/hr, respectively, which 
are completely satisfy the SUE conditions in Eq. (11). From this point of view, the 
result is better than the SUE flows x1 =1845 veh/hr and x2 =2155 veh/hr, respectively, 
solved in Sheffi (1985). 
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FIGURE 2: Convergence pattern of the GIM algorithm for Example 1; the case of 
relatively large perception variance (θ =1.0) and relatively high congestion level (q = 
4000). 
 
Example 2: (Paths have some arcs in common) 

1 32 4

5 6 7 8

9 10 11 12

O

D  

FIGURE 3: 17 links (10 paths) example quoted from Chen and Alfa (1991) 
 

This example is quoted from Chen and Alfa (1991) There are 12 nodes and 17 
directed links (horizontally to the right and vertically downward) in the network as 
shown in Fig. 3. It is used to compare the results solved by GIM algorithm with that 
of Chen and Alfa. The performance function of each link (i, j) is the BPR curve (i.e., 
t(x(i,j)) = a(i,j)+b(i,j) (x(i,j))4 ) and Table 1 presents the corresponding values of a(i,j) and 
b(i,j). A link (i, j) connects the source node i and the sink node j. 

 
TABLE 1: The value of parameters in Chen and Alfa’s example  

(i, j) a(i, j) b(i, j) (i, j) a(i, j) b(i, j) 
(1,2) 20.0 0.008 (1,5) 18.0 0.008 
(2,3) 23.0 0.008 (2,6) 19.0 0.008 
(3,4) 17.0 0.008 (3,7) 16.0 0.008 
(4,8) 22.0 0.008 (5,6) 14.0 0.008 
(5,9) 24.0 0.008 (6,7) 17.0 0.008 
(6,10) 20.0 0.008 (7,8) 13.0 0.008 
(7,11) 26.0 0.008 (8,12) 19.0 0.008 
(9,10) 7.0 0.008 (10,11) 18.0 0.008 
(11,12) 17.0 0.008 -- -- -- 
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FIGURE 4: Convergence pattern of the flow on path 1 
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FIGURE 5: Convergence pattern of the total cost 

 
There is only one origin-destination pair in the network, and hence, there are ten 

paths go from node 1 to node 12. Suppose that the travel demand q = 100 veh/hr. The 
steady state is determined by using the partial-shifting GIM algorithm with α=0.01. 
Figure 4 shows the convergence pattern of the flow on path 1(connecting nodes 
1-2-3-4-8-12), solved by the software package, MATHEMATICA 4.0. Figure 5 
presents the convergence pattern for the total travel cost of the system. The 
calculation results at iteration #99 are briefly presented as follows (details see in 
Appendix 2). 

 
Iteration=99 
Path Flows: pd1=22.9709; pd2=6.04499; pd3=4.61081; pd4=9.43069; pd5=3.6973 
Link Flows: x1=50.452; x2=49.548; x3=33.6267; x4=16.8253; x5=22.9709; 

x6=10.6558 
Total travel Time=1142547.942 
Percentage on Path 1 = 0.229709, Percentage on Path 2 = 0.0604499 
Probability for Path 1 = 0.227412, Probability for Path 2 = 0.0598454 
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The system will converge to the SUE if the shifting proportion is sufficiently 
small (e.g., α= 0.01), although the convergence speed is quite slow. The computation 
time needs up to 40 seconds on a personal computer. As shown in Figures 4 and 5, the 
system clearly converges toward its SUE after 65 iterations. The results of iteration 
#99 show that the SUE found by the GIM algorithm is very close to the SUE 
conditions in (11). 

Chen and Alfa (1991) solved this problem by improving the MSA algorithm, 
based on Fisk’s optimization model. They ran a Fortran-77 program on a mainframe 
(AMDAHL-5870) to obtain the SUE. Their result of total travel cost converged to 
1.286×107, which is obviously higher than the value of 1.145×107 solved by the GIM 
algorithm. 
 
6. Discussions and conclusions 
 

The GIMT model is a new way for analyzing the SUE in a SAT problem. The 
results of previous examples show that the GIM algorithm is efficient in finding the 
SUE of a STA problem. In addition, the GIM algorithm can be implemented by a 
simple program (see Appendix 1 and 2) in MATHEMATICA 4.0 and all the 
calculations can be completed on a personal computer within few seconds. As regards 
the method of successive averages (MSA), because of the re-calculation about the 
flows on each link with STOCH (Dial, 1971) it involves a heavy calculation in each 
step. In the case of the Frank-Wolfe algorithm, it involves a minimization program for 
the optimal searching direction and move size in each step (Sheffi & Powell, 1981), 
heavy calculation work is also involved. 

The logit-based choice model assumes that the system exhibits the independence 
of irrelevant alternatives (IIA). Therefore, no overlapping paths are allowed when the 
model is applied to solve the stochastic traffic assignment problem. This limitation 
severely restricts the implementation of the logit-based models. A lot of methods have 
been proposed to relax the IIA limitation, for example, the nested logit model 
(Koppelman and Wen, 1998; Wen and Koppelman, 2001; Hensher and Greene, 2002) 
and the paired combinatorial logit (PCL) model (Koppelman and Wen, 2000). It 
would be a promising research direction to combine these methods with the GIMT 
models. It seems that the nested logit model or PCL model can help the GIMT model 
to deal with a network with overlapping paths. 

The GIMT model proposed in this paper is a new approach for analyzing the 
SUE in a STA problem. In this paper, the steady-state conditions of the GIMT model 
are shown to be equivalent to the SUE conditions in a STA problem. Within this 
framework, the dynamics of the daily path choices of commuters in a network can be 
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depicted. 
Although the mathematical formulation is similar to the logit model, the GIM 

algorithm is shown more efficient for finding the SUE in non-overlapping cases than 
the MSA or the Frank-Wolfe algorithm. In addition, example 2 shows that the GIM 
algorithm still can converge to the steady state of a GIMT model with a better result 
than that of Chen and Alfa (1991), even though the IIA property is violated. 
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Appendix 1. The program of example 1 
k=40 
Array[n,k] 
r=0.01 
td=4000 
a=1000 
n[1]=a 
b=td-a 
aq=a/td 
bq=b/td 
 
t1[x1_]:=1.25*(1+(x1 / 800)^4) 
t2[x2_]:=2.50*(1+(x2 / 1200)^4) 
 
p1[t1_, t2_]:=N[ 1/(1+ Exp[t1 - t2]) ] 
p2[t1_, t2_]:=N[ 1/(1+ Exp[t2 - t1]) ] 
 
q1[r_,q_,p_]:=(1-r)*q + r*p 
q2[r_,q_,p_]:=(1-r)*q + r*p 
 
iter=1 
While[iter<k, 
at=t1[a]; 
bt=t2[b]; 
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Print["==============================="]; 
Print["iteration #", iter]; 
Print["x1(", iter, ")=", N[a], ";  x2(", iter, ")=", N[b]]; 
Print["p1=", N[ap], ";  p2=", N[bp]]; 
Print["q1=", N[aq], ";  q2=", N[bq]]; 
Print["t1=", N[at], ";  t2=", N[bt]]; 
iter=iter + 1; 
ap=p1[at, bt]; 
bp=p2[at, bt]; 
aq=q1[r,aq,ap]; 
bq=q2[r,bq,bp]; 
a=aq * td; 
b=bq * td; 
n[iter]=a; 
] 
Print["=================================="] 
Print[Array[n,iter]] 
ListPlot[ Array[n,iter], PlotRange -> {800,2000},  
AxesLabel ->{"iteration", "x1"}] 
ListPlot[ Array[n,iter], PlotRange -> {800,2000},  
PlotJoined -> True, AxesLabel ->{"iteration", "x1"}] 
 
 
===============================  
iteration #1  
x1H1L=1000.; x2H1L=3000.  
p1=ap; p2=bp  
q1=0.25; q2=0.75  
t1=4.30176; t2=100.156  
===============================  
… 
===============================  
iteration #33  
x1H33L=1780.82; x2H33L=2219.18  
p1=0.423761; p2=0.576239  
q1=0.445205; q2=0.554795  
t1=31.9424; t2=31.7405  
===============================  
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iteration #34  
x1H34L=1781.; x2H34L=2219.  
p1=0.449686; p2=0.550314  
q1=0.44525; q2=0.55475  
t1=31.9548; t2=31.731  
===============================  
iteration #35  
x1H35L=1780.96; x2H35L=2219.04  
p1=0.444296; p2=0.555704  
q1=0.445241; q2=0.554759  
t1=31.9521; t2=31.733  
 
 

Appendix 2. The program of example 2 
 
alpha=0.01;iteration=100;Array[ttt,iteration];Array[tto,iteration] 
q=100;fathom=0.0001;tmp=99999;i=0 
(* Probability on each Path *) 
p1=1/10;    (* Path 1  1-2-3-4-8-12 *) 
p2=1/10;    (* Path 2 -> 1-2-3-7-8-12 *) 
p3=1/10;    (* Path 3 -> 1-2-3-7-11-12 *) 
p4=1/10;    (* Path 4 -> 1-2-6-7-8-12 *) 
p5=1/10;    (* Path 5 -> 1-2-6-7-11-12 *) 
p6=1/10;    (* Path 6 -> 1-2-6-10-11-12 *) 
p7=1/10;    (* Path 7 -> 1-5-6-7-8-12 *) 
p8=1/10;    (* Path 8 -> 1-5-6-7-11-12 *) 
p9=1/10;    (* Path 9 -> 1-5-6-10-11-12 *) 
p10=1/10  (* Path 10-> 1-5-9-10-11-12 *) 
 
While[  i<iteration , 
  (* Flow Distribution on each Path pd_ *) 
  pd1=q*p1 ; 
  pd2=q*p2; 
  pd3=q*p3; 
  pd4=q*p4; 
  pd5=q*p5; 
  pd6=q*p6 ; 
  pd7=q*p7; 
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  pd8=q*p8; 
  pd9=q*p9; 
  pd10=q*p10; 
  (* Flow on each Link x_ *) 
  x1=pd1+pd2+pd3+pd4+pd5+pd6; 
  x2=pd7+pd8+pd9+pd10; 
  x3=pd1+pd2+pd3; 
  x4=pd4+pd5+pd6; 
  x5=pd1; 
  x6=pd2+pd3; 
  x7=pd1; 
  x8=pd7+pd8+pd9; 
  x9=pd10; 
  x10=pd4+pd5+pd7+pd8; 
  x11=pd6+pd9; 
  x12=pd2+pd4+pd7; 
  x13=pd3+pd5+pd8; 
  x14=pd1+pd2+pd4+pd7; 
  x15=pd10; 
  x16=pd6+pd9+pd10; 
  x17=pd3+pd5+pd6+pd8+pd9+pd10; 
  (* Travel time(cost) on each Link *) 
  t1=20.0+0.008*(x1^4);  (* link: 1-2 *) 
  t2=18.0+0.008*(x2^4);  (* link: 1-5 *) 
  t3=23.0+0.008*(x3^4);  (* link: 2-3 *) 
  t4=19.0+0.008*(x4^4);  (* link: 2-6 *) 
  t5=17.0+0.008*(x5^4);  (* link: 3-4 *) 
  t6=16.0+0.008*(x6^4);  (* link: 3-7 *) 
  t7=22.0+0.008*(x7^4);  (* link: 4-8 *) 
  t8=14.0+0.008*(x8^4);  (* link: 5-6 *) 
  t9=24.0+0.008*(x9^4);  (* link: 5-9 *) 
  t10=17.0+0.008*(x10^4);  (* link: 6-7 *) 
  t11=20.0+0.008*(x11^4);  (* link: 6-10 *) 
  t12=13.0+0.008*(x12^4);  (* link: 7-8 *) 
  t13=26.0+0.008*(x13^4);  (* link: 7-11 *) 
  t14=19.0+0.008*(x14^4);  (* link: 8-12 *) 
  t15=7.0+0.008*(x15^4);  (* link: 9-10 *) 
  t16=18.0+0.008*(x16^4);  (* link: 10-11 *) 
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  t17=17.0+0.008*(x17^4);  (* link: 11-12 *) 
  (* Travel time(cost) on each Path *) 
  pt1=t1+t3+t5+t7+t14; 
  pt2=t1+t3+t6+t12+t14; 
  pt3=t1+t3+t6+t13+t17; 
  pt4=t1+t4+t10+t12+t14; 
  pt5=t1+t4+t10+t13+t17; 
  pt6=t1+t4+t11+t16+t17; 
  pt7=t2+t8+t10+t12+t14; 
  pt8=t2+t8+t10+t13+t17; 
  pt9=t2+t8+t11+t16+t17; 
  pt10=t2+t9+t15+t16+t17; 
  (* The chosen probability on each Path *) 
  mx=Exp[-pt1]+Exp[-pt2]+Exp[-pt3]+Exp[-pt4]+Exp[-pt5]+Exp[-pt6]+Exp[-pt7]+ 
      Exp[-pt8]+Exp[-pt9]+Exp[-pt10]; 
  m1=Exp[-pt1]/mx; 
  m2=Exp[-pt2]/mx; 
  m3=Exp[-pt3]/mx; 
  m4=Exp[-pt4]/mx; 
  m5=Exp[-pt5]/mx; 
  m6=Exp[-pt6]/mx; 
  m7=Exp[-pt7]/mx; 
  m8=Exp[-pt8]/mx; 
  m9=Exp[-pt9]/mx; 
  m10=Exp[-pt10]/mx; 
   
  ttt[i]=pd1; 
  (* Note ! The Total Cost means every one spent on their path. *) 
  tto[i]=(pt1*p1+pt2*p2+pt3*p3+pt4*p4+pt5*p5+pt6*p6+pt7*p7+pt8*p8+pt9*p9+ 
          pt10*p10)*q; 
  Print["Iteration=",i]; 
  Print["Path Flows : pd1=",pd1,"; pd2=",pd2,"; pd3=",pd3, 
    "; pd4=",pd4, "; pd5=",pd5]; 
  Print["Link Flows: x1=",x1,"; x2=",x2,"; x3=",x3,"; x4=",x4,"; x5=",x5, 
    "; x6=",x6]; 
  Print["Total travel Time=",pt1+pt2+pt3+pt4+pt5+pt6+pt7+pt8+pt9+pt10]; 
  i=i+1; 
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  p1=(1-alpha)*p1+alpha*m1; 
  p2=(1-alpha)*p2+alpha*m2; 
  p3=(1-alpha)*p3+alpha*m3; 
  p4=(1-alpha)*p4+alpha*m4; 
  p5=(1-alpha)*p5+alpha*m5; 
  p6=(1-alpha)*p6+alpha*m6; 
  p7=(1-alpha)*p7+alpha*m7; 
  p8=(1-alpha)*p8+alpha*m8; 
  p9=(1-alpha)*p9+alpha*m9; 
  p10=(1-alpha)*p10+alpha*m10; 
 
Print["Percentage on Path 1 = ", pd1 / q, "  Percentage on Path 2 = ",  
    pd2 / q]; 
Print["Probability for Path 1 = ", p1, "  Probability for Path 2 = ", p2]; 
 
 
Iteration=0 
Path Flows : pd1=10; pd2=10; pd3=10; pd4=10; pd5=10 
Link Flows: x1=60; x2=40; x3=30; x4=30; x5=10; x6=20 
Total travel Time=1612919.0 
Percentage on Path 1 = 1/10, Percentage on Path 2 = 1/10 
Probability for Path 1 = 0.099, Probability for Path 2 = 0.099 
Iteration=1 
Path Flows : pd1=9.9; pd2=9.9; pd3=9.9; pd4=9.9; pd5=9.9 
Link Flows: x1=59.4; x2=40.6; x3=29.7; x4=29.7; x5=9.9; x6=19.8 
Total travel Time=1579454.2212399996 
Percentage on Path 1 = 0.099, Percentage on Path 2 = 0.099 
Probability for Path 1 = 0.09801, Probability for Path 2 = 0.09801 
….. 
Iteration=97 
Path Flows : pd1=22.417; pd2=6.16772; pd3=4.70443; pd4=9.62217; pd5=3.77237 
Link Flows: x1=50.4561; x2=49.5439; x3=33.2892; x4=17.1669; x5=22.417; 
x6=10.8722 
Total travel Time=1143836.9774758574 
Percentage on Path 1 = 0.22417, Percentage on Path 2 = 0.0616772 
Probability for Path 1 = 0.221928, Probability for Path 2 = 0.0610605 
Iteration=98 
Path Flows : pd1=22.1928; pd2=6.10605; pd3=4.65739; pd4=9.52594; pd5=3.73464 
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Link Flows: x1=49.9515; x2=50.0485; x3=32.9563; x4=16.9952; x5=22.1928; 
x6=10.7634 
Total travel Time=1144083.6063089329 
Percentage on Path 1 = 0.221928, Percentage on Path 2 = 0.0610605 
Probability for Path 1 = 0.229709, Probability for Path 2 = 0.0604499 
Iteration=99 
Path Flows : pd1=22.9709; pd2=6.04499; pd3=4.61081; pd4=9.43069; pd5=3.6973 
Link Flows: x1=50.452; x2=49.548; x3=33.6267; x4=16.8253; x5=22.9709; 
x6=10.6558 
Total travel Time=1142547.942689541 
Percentage on Path 1 = 0.229709, Percentage on Path 2 = 0.0604499 
Probability for Path 1 = 0.227412, Probability for Path 2 = 0.0598454 


