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成果報告 

符麥克 

計畫名稱：隨機樹狀之機率性質                

摘要： 

    在這個計畫中，我們研究隨機樹的機率性質。本質上，我們專注

在兩個種類的樹：遞迴樹和四分樹。我們設計一個一般性的方法並得

到遞迴樹的輪廓(profile)的極限法則。此外，我們給出一個可用於導

出四分樹的特徵參數如葉子的數目、總路徑長度等等隨機性質的一般

性構造。這個新的方法可讓我們重新得到大多數以前的結果和很多新

的結果。這兩種方法的共同之處在於他們依據 method of moments 和

漸進轉換定理。而且，他們都有一般性並且可預期地有著很多的應用。 



Project: Probabilistic properties of random trees

by

Michael Fuchs

Abstract

In this project, we investigated probabilistic properties of random trees. We essentially
focused on two types of trees: recursive trees and quadtrees. We devised a general method to
derive limit laws for the profile of recursive trees. Furthermore, we gave a general framework
to derive stochastic properties for a large class of characteristic parameters such as the number
of leaves, the total path lengths, etc. of quadtrees. This new approach allowed us to re-derive
most of the previous results and to add many new ones. What both methods have in common
is that they rest on the method of moments and on asymptotic transfer theorems. Moreover,
they are both of some generality and are expected to have many more applications.

1 General

This is the final report on the National Science Council project entitled “Probabilistic properties
of random trees” with number 93-2119-M-009-003 and term from November 1st, 2004 to October
31st, 2005.

Before presenting our results in more details, we give an overview of the main outcomes of
the project.

• Parts of the paper [4] were written within this project. The paper was submitted and is
accepted for publication in one of the forthcoming issues ofAlgorithmica.

• The paper [1] was written within this project. It was submitted and is currently under review.

• The results of the second paper were presented at the 12th International Conference on Ran-
dom Structures and Algorithms in Poznan, Poland (a report on the conference was already
handled in at an earlier stage).

2 Results

The aim of the project was to study the stochastic behavior of characteristic parameters of random
trees. In particular, we were interested in the so called profile which roughly speaking is the shape
of the tree. Subsequently, we briefly describe the main results of the to papers [4] and [1] which
were written within this project.

1. Profiles of random trees: Limit theorems for random recursive trees and binary search
trees. A manuscript of this paper existed already at the time of the proposal of the project. Ac-
tually, the results were already discussed when applying for the project (see the project proposal).
It was one of the original goals of the project to extend the results tom-ary search trees and
median-of-2t + 1 search trees.

As already discussed in the project proposal the main complications of such an extension
are arising from the more technical nature of the latter two families of random search trees. When
trying to extend the original method, we realized that it can be largely simplified. [4] is an improved
version of the earlier manuscript using a more simplified method of proof.
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In order to provide some details of where the simplifications occur, denote byXn,k the number
of external nodes at levelk of a random binary search tree onn nodes. An exemplary result of [4]
reads then as follows.

Theorem 1. Assume thatk = α log n + o(log n), whereα ∈ [1, 2]. Then,

Xn,k

EXn,k

d−→ Xα,

with convergence of all moments.

For the proof, we used the method of moments. Therefore, we had to study the transfer behav-
ior of the following recurrence

an,k =
2

n

n−1∑
j=0

aj,k−1 + bn,k,

which arises when studying the moments and central moments ofXn,k. Here,bn,k is a given
sequence. The transfer behavior of such and similar recurrences was already studied in previous
works. The new feature of the present study is the dependence on two indicesn, k which makes
the problem more involved.

From such transfer theorems the above result can then be obtained by proving the following
asymptotic expansions for all moments

EXm
n,k ∼ νm(α) (EXn,k)

m ,

wherek = α log n + o(log n) andνm(α) = EXm
α . The proof of the latter proceeds in two steps.

1. Obtain an upper bound forEXm
n,k uniformly valid for alln, k.

2. Fork = α log n + o(log n) refine the analysis of the previous step.

In our previous manuscript of [4], the first step above was technically involved. We succeeded
in finding a simpler approach, thereby greatly simplifying the original method.

This new approach is expected to work as well form-ary search trees and median-of-2t + 1
search trees. In particular, it will make the expected technical difficulties for these more compli-
cated random search tree structures easier to handle. This is work still in progress and might be
the topic of a forthcoming project.

2. Phase changes in random point quadtrees.Apart from studying the profile ofm-ary search
trees and median-of-2t + 1 search trees, also the profile of quadtrees (yet another extension of bi-
nary search trees) is of great interest. The paper [1] is expected to provide the technical machinery
needed for such a study. However, the results of the paper are also of great interest on their own.

A future detailed study of the profile was only one driving motivation for the techniques de-
veloped in [1]. Another source of inspiration was a recent paper of Dean and Majumdar [2] were
they observed a phase transition in the random continuous fragmentation problem: the limit law
changes from normal which they could prove rigorously to non-normal which they just concluded
from experiments. Since their model is closely related to random quadtrees a similar behavior is
expected to hold for the number of leavesXn of a random point quadtree of dimensiond.

The number of leaves ford = 1 (this corresponds to the binary search tree) was well-studied
in literature and the situation is well-understood. However, for generald, only precise asymptotic
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expansions for the mean value were derived by Flajolet et al. [3] previous to our work. More
precisely, they proved that

EXn = n−
∑

2≤k≤n

(
n

k

)
(−1)k[k]!

∑
2≤j≤k

1

[j]!
,

where[k]! :=
∏

3≤j≤k

(
1− 2d/jd

)
for k ≥ 3 and[2]! := 1. From this explicit expression, asymp-

totic expansions can be quickly derived by using Rice’s integral method.
In [1] we devised a general method to obtain asymptotic expansions for all central moments.

Such results then quickly entail the following theorem confirming the results obtained heuristically
in [2].

Theorem 2. (i) If 1 ≤ d ≤ 8 then

Xn − µdn

σd

√
n

→ N(0, 1),

whereN(0, 1) denotes the standard normal law andµd, σd are suitable constants.

(ii) If d > 8 then(Xn − E(Xn))/
√

V(Xn) does not converge to a fixed limit law.

Moreover, we refined our method in order to get the following result which completely clarifies
the second phase change.

Theorem 3. Let

ᾱ :=

{
1/3, if 1 ≤ d ≤ 7;√

2− 1, if d = 8.

Then,

P
(
Xn = bE(Xn) + x

√
V(Xn)c

)
=

e−x2/2√
2πV(Xn)

(
1 +O

((
1 + |x|3

)
n−3(1/2−ᾱ)

))
and

sup
x∈R

∣∣∣∣∣P
(

Xn − E(Xn)√
V(Xn)

< x

)
− Φ(x)

∣∣∣∣∣ = O
(
n−3(1/2−ᾱ)

)
,

where the above rate is optimal. Here,Φ(x) denotes the distribution function of the standard
normal distribution.

The proofs of these two results again rest on the method of moments and its refinement. As al-
ready explained above, the main step is to study the asymptotic transfer behavior of the underlying
recurrence for the (centralized) moments which here has the form

an = 2d

n−1∑
j=0

πn,jaj + bn,

where

πn,j =

(
n− 1

j

)∫
[0,1]d

(x1 · · ·xd)
j(1− x1 · · ·xd)

n−1−jdx.

By introducing generating functions, the above recurrence can be translated into a differential
equation. Where in most previous studies the so obtained differential equations was of Cauchy-
Euler type, the present situation is complicated by the fact that the differential equation is not
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of Cauchy-Euler type anymore. However, the differential equation can be interpreted as a per-
turbed differential equation of Cauchy-Euler type. In [1], we developed the machinery to obtain
asymptotic transfer theorems for such differential equations which then also yield corresponding
asymptotic transfer theorems for the above recurrence. We omit stating detailed results here and
instead direct the interested reader to [1].

Our method is general enough to be applicable to a wide range of characteristic parameters
of quadtrees, thereby re-deriving most of the previous results and adding many new ones. Just
to give some more examples, in addition to the number of leaves discussed above, the methods
yields a variety of results such as precise asymptotic expansions of moments, first and second
phase change, etc. as well for

• Paging;

• Node sorts;

• Total path lengths;

• Expected profile;

and many more.
Moreover the method can be applied to derive similar results for Devroye’s random grid trees

which constitute a common extension of both quadtrees andm-ary search trees.
For more details and more results, the reader may directly consult the paper [1].
As already mentioned in the introduction, the techniques we developed for quadtrees are ex-

pected to be applicable as well to derive finer results (in the flavor of [4]) for the profile. Of
course, due to the more complicated nature of the profile, some further technical complications
are expected. This is work in progress and might be the topic of an another project.

3 Summary

We shortly summarize the results of this project and indicate some future directions of research.

• A previous version of [4] was largely improved by greatly simplifying the method of proof.
The new manuscript was then submitted and is about to be published.

• We gave a general framework to study probabilistic properties of a huge class of character-
istic parameters of quadtrees and grid trees, thereby re-deriving most of the previous results
and adding many new ones.

• The two previous papers are expected to lay out the tools needed for a detailed study of the
profile of log-trees such asm-ary search trees, median-of-2t+1 search trees, quadtrees, etc.
This might be the topic of a forthcoming project.

• The method devised in [4] is expected to have many more applications such as in the study
of the number of subtrees of a given size in random search trees, the number of nodes of
fixed outdegree, etc. This might be the topic of yet another forthcoming project.
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Abstract

We show that a wide class of linear cost measures (such as the number of leaves) in randomd-
dimensional point quadtrees undergo a change in limit laws: if the dimensiond = 1, . . . , 8, then the
limit law is normal; ifd ≥ 9 then there is no convergence to a fixed limit law. Stronger approximation
results such as convergence rates and local limit theorems are also derived for the number of leaves,
additional phase changes being unveiled. Our approach is new and very general, and also applicable to
other classes of search trees. A brief discussion of Devroye’s grid-trees (coveringm-ary search trees
and quadtrees as special cases) is given. We also propose an efficient numeric procedure for computing
the constants involved to high precision.

1 Introduction

Phase transitions in random combinatorial objects issuingfrom computer algorithms have received much
recent attention by computer scientists, probabilists, and statistical physists, especially for NP-complete
problems. We address in this paper the change of the limit laws from normal to non-convergence of some
cost measures in random point quadtrees when the dimension varies. The phase change phenomena1, as
well as the asymptotic tools we develop (based mostly on linear operators), are of some generality. We will
discuss the corresponding phase changes in Devroye’s random grid-trees (see [12]) for which a complete
description of the phase changes will be given.

aPartially supported by National Science Council of ROC under the GrantNSC-93-2115-M-019-001.
bPartially supported by National Science Council of ROC under the GrantNSC-93-2119-M-009-003.
cPartially supported by a Research Award of the Alexander vonHumboldt Foundation.
1We use mostly “phase change” instead of “phase transition” because the dimension in our problem takes only positive

integers.
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Figure 1:A configuration of6 points in the unit square and the corresponding quadtree.

Point quadtrees. Point quadtrees, first introduced by Finkel and Bentley [16], are useful spatial and
indexing data structures in computational geometry and forlow-dimensional points in diverse applications
in practice; see de Berg et al. [9], Samet [43, 44] for more information. In this paper,we will say quadtrees
instead of point quadtreesfor simplicity.

Given a sequence of points inRd, the quadtree associated with this point sequence is constructed as
follows. The first point is placed at the root and then splits the underlying space into2d smaller regions
(or quadrants), each corresponding to one of the2d subtrees of the root. The remaining points are directed
to the quadrants (or the corresponding subtrees), and the subtrees are then constructed recursively by the
same procedure. See Figure1 for a plot of d = 2. Whend = 1, quadtrees are simply binary search
trees. Thus quadtrees can be viewed as one of the many different extensions of binary search trees; see
[7, 12, 37].

Random quadtrees. To study the typical shapes or cost measures of quadtrees, weassume that the given
points are uniformly and independently chosen from[0, 1]d, whered ≥ 1, and then construct the quadtree
associated with the random sequence; the resulting quadtree is called arandom quadtree.

Several shape parameters and cost measures in random quadtrees have been studied, reflecting in dif-
ferent levels certain typical complexity of algorithms on quadtrees.

• Depth (distance of a randomly chosen node to the root): [12, 13, 17, 19, 20];

• Total path length (sum of distances of all nodes to the root):[17, 19, 40];

• Cost of partial-match queries: [4, 17, 38, 41];

• Node types: [19, 26, 34, 35, 36];

• Height (distance of the longest path to the root): [10, 12].

In particular, the asymptotic normality of the depth was first proved in Flajolet and Lafforgue [20] (see
also [12]), and the non-normal limit law for the total path length in Neininger and R̈uschendorf [40].

The number of leaves. For concreteness and simplicity, we present the phase change phenomena through
the number of leaves, denoted byXn = Xn,d, in random quadtrees ofn points. The extension to more
general cost measures will be discussed later.
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Whend = 1, it is known thatXn (the number of leaves in random binary search trees ofn nodes) is
asymptotically normally distributed with mean and variance asymptotic ton/3 and2n/45, respectively;
see [11, 18]. A local limit theorem is also given in [18].

For d ≥ 2, Flajolet et al. (see [19]) first derived the closed-form expression for the expectedvalue of
Xn

E(Xn) = n −
∑

2≤k≤n

(
n

k

)

(−1)k[k]!
∑

2≤j≤k

1

[j]!
(n ≥ 1), (1)

where[k]! :=
∏

3≤j≤k(1 − 2d/jd) for k ≥ 3 and[2]! := 1, and then showed that

E(Xn) ∼ µdn,

where

µd := 1 − 2

d

∏

ℓ≥3

1

1 −
(

2
ℓ

)d
+ 2d+1

∑

j≥2

1

[j]!

∑

h≥1

1

(h + j)((h + j)d − 2d)
; (2)

see (50) for an alternative expression. In particular,µ1 = 1/3 andµ2 = 4π2 − 39; see [26, 36].

The phase change. Our first result says that whend increases, there is a change of nature for the limit
distribution ofXn.

Theorem 1. (i) If 1 ≤ d ≤ 8, then
Xn − µdn

σd

√
n

M→ N(0, 1),

where
M→ denotes convergence of all moments andN(0, 1) is the standard normal random variable (zero

mean and unit variance). The constantsσd are given in (52).
(ii) If d ≥ 9, then the sequence of random variables(Xn − E(Xn))/

√

V(Xn) does not converge to a
fixed limit law.

In the first case, convergence in distribution of(Xn − µdn)/
√

σ2
dn is also implied.

Why phase change? One key (analytic) reason why the limiting behavior ofXn changes its nature for
d ≥ 9 is because of the second order term in the asymptotic expansion ofE(Xn)

E(Xn) = µdn + G1(β log n)nα + o(nα + nε) (d ≥ 2), (3)

whereα := 2 cos(2π/d) − 1, β := 2 sin(2π/d), andG1(x) is a bounded,1-periodic function; see (49) for
an explicit expression. Ifd ≤ 8, thenα < 1/2; andα ∈ (1/2, 1) if d ≥ 9; see Table1 for numeric values
of α.

d 2 3 4 5 6 7 8 9
α −3 −2 −1 −0.38 0 0.24 0.41 0.53

Table 1:Approximate numeric values ofα = 2 cos(2π/d) − 1 for d from2 to 9.
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From this expansion, we can derive the asymptotics of the variance

V(Xn) ∼
{

σ2
dn, if 1 ≤ d ≤ 8;

G2(β log n)n2α, if d ≥ 9,
(4)

whereG2(x) is a bounded,1-periodic function.
Intuitively, we see that the periodicity in (3) becomes more pronounced asd grows (see Figure2),

implying larger and larger variance in (4), so that in the end(Xn − E(Xn))/
√

V(Xn) does not converge
to a fixed limit law.

Phase changes in other search trees.The situation here is similar to several phase change phenomena
already studied in the literature in many varieties of random search trees and related algorithms:m-ary
search trees, fringe-balanced binary search trees, generalized quicksort, etc; see [2, 3, 7, 15, 28, 29].
See also Janson [33] for a very complete description of phase changes in urn models, which are closely
connected to many random search trees.

However, the analytic context here is much more involved than previously studied search trees because,
as we will see, the underlying differential equation is no more of Cauchy-Euler type, which demands more
delicate analysis.

Phase changes in random fragmentation models.The same phase change phenomenon as leaves in
random quadtrees was first observed in Dean and Majumdar [8], where they proposedrandom continuous
fragmentation modelsto explain heuristicallythe phase changes in random search trees. Their continuous
model corresponding to quadtrees is as follows. Pick a pointin [0, x]d uniformly at random (x ≫ 1),
which then splits the space into2d smaller hyperrectangles. Continue the same procedure in thesub-
hyperrectangles whose volumes are larger than unity. The process stops when all sub-hyperrectangles
have volumes less than unity. They argue heuristically thatthe total number of splittings undergoes a
phase change: “While we can rigorously prove that the distribution is indeed Gaussian in the sub-critical
regime [d ≤ 8], we have not been able to calculate the full distribution inthe super-critical regime [d ≥ 9]”;
see [8].

Recently, Janson (private communication) showed that the same type of phase change can be con-
structed by considering the number of nodes at distanceℓ satisfyingℓ mod d ≡ j, 0 ≤ j < d, in random
binary search trees, or equivalently, the number of nodes using the(ℓ + 1)-st coordinate as discriminators
in randomk-d trees, whereℓ mod d ≡ j.

Recurrence. By the recursive nature of the problem proper,Xn satisfies the recurrence

Xn
D
= X

(1)
J1

+ · · · + X
(2d)
J
2d

+ δn,1 (n ≥ 1), (5)

with X0 = 0, where the symbol
D
= denotes equality in distribution, theJi’s and theX

(i)
n

D
= Xn’s are

independent,δn,1 denotes the Kronecker symbol, and

πn,j := P(J1 = j1, · · · J2d = j2d)

=

(
n − 1

j1, . . . , j2d

) ∫

[0,1]d
q1(x)j1 · · · q2d(x)j

2d dx,
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denotes the probability that the2d subtrees of the root are of sizesj1, . . . , j2d . Here dx = dx1 · · · dxd

amd theqi(x)’s denote the volumes of the hyperrectangles split by a random pointx = (x1, . . . , xd). We
can arrange theqi(x)’s as follows

qh(x) =
∏

1≤i≤d

((1 − bi)xi + bi(1 − xi)) (1 ≤ h ≤ 2d), (6)

where(b1, . . . , bd)2 stands for the binary representation ofh− 1 (the first few digits being completed with
zeros if⌊log2(h − 1)⌋ < d − 1, so that0 = (0, . . . , 0

︸ ︷︷ ︸

d

)2, 1 = (0, . . . , 0
︸ ︷︷ ︸

d−1

, 1)2, etc.).

The moment-transfer approach. By (5), all moments ofXn (centered or not) satisfy the same recur-
rences of the form

An = Bn + 2d
∑

0≤j<n

πn,jAj (n ≥ 1), (7)

with A0 and{Bn}n≥1 given, where

πn,j =

(
n − 1

j

) ∫

[0,1]d
(x1 · · ·xd)

j (1 − x1 · · ·xd)
n−1−j dx. (8)

Many different expressions forπn,j can be found in [19, 34]; see also [25].
To prove the limit distribution, we apply themoment-transfer approach, which has proved successful in

diverse problems of recursive nature. We have applied the approach to and developed the required asymp-
totic tools for many problems, includingm-ary search trees, generalized quicksort and most variations
of quicksort, bucket digital search trees, maximum-findingalgorithms in distributed networks, maxima in
right triangle; see the survey paper [29] for more references.

The basic idea of the approach is, because all moments satisfy the same recurrence (7), to incorporate
the analysis of the asymptotics of higher moments into developing the so-calledasymptotic transfer, which,
roughly speaking, infers asymptotics ofAn from that of Bn. Such an approach always reduces most
analysis to obtaining the first or second moments, the remaining part being more or less mechanical. It
also offers the possibility of refining the limit theorems bystronger approximation results like convergence
rates and local limit theorems, the new ingredients needed being developed in [28] for m-ary search trees;
see also [1].

Second phase change.The refined moment-transfer approach (see [28]) shows thatXn undergoes a
second phase change in convergence rate to normal limit law (often referred to as the Berry-Esseen bound).
Our result says that the convergence rate to normal law is of ordern−1/2 when1 ≤ d ≤ 7, but is of a poorer
ordern−3(3/2−

√
2) ≈ n−0.24 whend = 8. Both rates are optimal modulo the implied constants. We will

indeed derive local limit theorems forXn, which are more precise and informative than convergence in
distribution.

Resolution of the recurrence (7). Exact solutionsof the recurrence (7) were first investigated by Flajolet
et al. in [19] (see also [36, 39]), based mainly on the crucial introduction of the Euler transform.Asymptotic
propertiesof (7) were also thoroughly examined in [19], using powerful complex-analytic tools. Their
approach is very efficient in deriving the asymptotic expansions, but requires stronger information on the
given “toll sequence”Bn.
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In this paper, we show that the exact solution given via Eulertransform in [19] (see (19)) can also be
obtained by using the usual Poisson generating functions. Although this approach is essentially the same
as the Euler transform on ordinary generating functions, itoffers an operational advantage in simplifying
the calculation of the exact variance; see Section3.2.

Asymptotic transfer of the recurrence (7). We will develop the asymptotic transfer needed for deriving
asymptotics of moments. Most proofs of previously known phase changes in random search trees and
quicksort algorithms rely more or less on developing the asymptotic transfer for Cauchy-Euler differential
equations (abbreviated as DEs) of the form

Polynomial(ϑ)ξ(z) = η(z), (9)

whereη is independent ofξ andϑ := (1 − z)(d/dz). The main transfer problem under this framework is
to derive asymptotics of[zn]ξ(z) when that of[zn]η(z) is known, where[zn]ξ(z) denotes the coefficient of
zn in the Taylor expansion off . A very general, elementary asymptotic theory for such DEs with a large
number of applications is given in [7], the origin of such a development being traceable to Sedgewick’s
analysis on quicksort (see [45]).

For quadtrees, the DE satisfied by the generating functionA(z) :=
∑

n Anz
n is given by

ϑ(zϑ)d−1(A(z) − B(z)) = 2dA(z), (10)

which is not of the type (9) but can be rewritten in the extended form

P0(ϑ)A(z) = ϑ(zϑ)d−1B(z) +
∑

1≤j<d

(1 − z)jPj(ϑ)A(z), (11)

whereP0(x) = xd − 2d and thePj(x)’s are polynomials of degreed; see (23).
We then extend the iterative operator approach introduced in [5] to analyzing the expected cost of

partial match queries in randomk-d trees. The approach turns out to be very useful for extended Cauchy-
Euler DEs of the form (11); see [6] for another application to consecutive records in random sequences.

The main differences of the current application from the previous ones are:(i) we consider general
non-homogeneous part (or toll functions) rather than specific ones;(ii) the method of Frobenius (and the
method of annihilators) used in our previous papers is avoided and replaced by a more uniform elementary
argument, the resulting proof being completely elementaryand requiring almost no knowledge on DE;
(iii) we give not only necessary but also sufficient conditions forall transfers we developed; the same
proof for the sufficiency part also easily modified for proving the necessity in all cases, keeping uniformity
of the approach;(iv) the proof we give in its current form is easily amended for more general DEs with
polynomial coefficients;(v) we put forth means of simplifying the expressions for the constants involved;
the resulting expressions are in some cases simpler than those derived in [19]; also our expressions are
easily amended for numeric purposes.

A universal condition for asymptotic linearity? One main result our approach can achieve states that
An is asymptotically linearAn ∼ Kn if and only if Bn = o(n) and the series

∑

n Bnn
−2 is convergent,

whereK is explicitly given in terms of theBn’s; see (16). It is interesting to see that exactly the same con-
dition for the asymptotic linearity ofAn holds for other recurrences appearing in quicksort,m-ary search
trees, generalized quicksort, and many others; see [7]. Note that the expression for the linearity constant
K differs from one case to another. The series condition|∑n Bnn

−2| < ∞ also arises in many other
problems such as generalized subadditive inequalities, divide-and-conquer algorithms, large deviations,
etc.; see [31] and the references therein. Is there a deeper reason why theseries condition is so universal?
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Organization of the paper. In the next Section2, we develop general asymptotic transfer results, which
can be applied to more general shape characteristics and cost measures. In Sections3 and4, we study
the phase change phenomena exhibited by the number of leavesand discuss the extension to general cost
measures. Effective numerical procedures will also be given of computing the limiting mean and variance
constants forXn. The extension of our consideration to Devroye’s grid-trees (see [12]) is given in the final
section.

Notation. Throughout this paper, the notation[zn]f(z) denotes the coefficient ofzn in the Taylor ex-
pansion off . The generic symbolε always represents some small quantity whose value may vary from
one occurrence to another; similarly, the generic symbolc stands for a suitable constant. We define two
operatorsDz := d/dz andϑ := (1 − z)Dz. The same set of symbols{Bn, B(z), B∗(s)} is used for
the sequenceBn, its generating functionB(z) =

∑

n Bnz
n, and its factorial series or Mellin transform

B∗(s) =
∫ 1

0
(1 − x)s−1B(x) dx, respectively.

2 Asymptotic transfer of the quadtree recurrence

We develop the asymptotic tools in this section by proving the different types of asymptotic transfer needed
for later uses. A salient feature of our transfers is that theasymptotic condition in each case is not only
sufficient but also proved to be necessary.

Three types of asymptotic transfer. For simplicity, we assumeA0 = 0 since otherwise the difference
is given explicitly byA0(2

d − 1)n + A0; see (19).

Theorem 2. LetAn be defined by the recurrence (7) with A0 and{Bn}n≥1 given. Then

(i) (Small toll functions)

An ∼ KBn iff Bn = o(n) and
∣
∣
∣

∑

n

Bnn
−2

∣
∣
∣ < ∞, (12)

where the constantKB is given in (16);

(ii) (Linear toll functions) Assume thatBn = cn + un, wherec ∈ C andun is a sequence of complex
numbers. Then

An ∼ 2

d
cn log n + K1n iff un = o(n) and

∣
∣
∣

∑

n

unn
−2

∣
∣
∣ < ∞, (13)

whereK1 := cK2 + Ku with Ku defined by replacing the sequenceBn by un in (16) andK2 given
explicitly by

K2 := −1 − 2

d
+ 2γ +

2

d

∑

1≤j<d

ψ(2 − 2e2jπi/d), (14)

ψ being the logarithmic derivative of the Gamma function (see[14]);

(iii) (Large toll functions) Assume thatℜ(υ) > 1 andc ∈ C. Then

Bn ∼ cnυ iff An ∼ c(υ + 1)d

(υ + 1)d − 2d
nυ. (15)

More refinements to (12) under stronger assumptions onBn will be proved below.
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The linearity constant. Given a sequenceBn, define the constantKB by the series

KB =
2

d

∑

k≥0

VkB
∗(k + 2), (16)

which is absolutely convergent under the condition (12) onBn, whereVk is defined recursively byVk = 0
whenk < 0, V0 = 1, and

Vk =
∑

1≤ℓ<d

Pℓ(k + 2)

P0(k + 2)
Vk−ℓ (k ≥ 1), (17)

and the functionB∗ is given by

B∗(s) :=

∫ 1

0

B(x)(1 − x)s−1 dx =
∑

j≥1

Bjj!

s(s + 1) · · · (s + j)
, (18)

when the integral and series converge. Here the polynomialsPj(x)’s are given in (23). Note that when
d = 1, Vk = δk,0, so thatKB = 2B∗(2); see [30].

2.1 Euler transform and Poissonization

Euler transform. Flajolet et al. proposed in [19] an approach via Euler transform for solving the recur-
rence (7); their result is

An = A0 + n
(
(2d − 1)A0 + B1

)
+

∑

2≤k≤n

(
n

k

)

(−1)k
∑

2≤j≤k

(
B⋆

j − B⋆
j−1

) ∏

j<ℓ≤k

(

1 − 2d

ℓd

)

, (19)

for n ≥ 0, whereB⋆
n denotes the Euler transform of the sequenceBn

B⋆
n :=

∑

1≤j≤n

(
n

j

)

(−1)jBj.

As one can see from (19), the appearance ofB⋆
n and the power of−1 makes the asymptotics ofAn less

transparent.

Poissonization. An alternative way of deriving (19) is as follows. Consider the Poisson generating
functions of both sequences:̃A(z) := e−z

∑

n≥0 Anz
n/n! and B̃(z) := e−z

∑

n≥1 Bnz
n/n!. Then (7)

translates into

Ã′(z) + Ã(z) = B̃′(z) + B̃(z) + 2d

∫

[0,1]d
Ã(x1 · · · xdz) dx,

with the initial conditionÃ(0) = A0. Let Ãn := n![zn]Ã(z) andB̃n := n![zn]B̃(z). Then

Ãn + Ãn−1 = B̃n + B̃n−1 +
2d

nd
Ãn−1 (n ≥ 1), (20)

(for convenience, definingB0 = B̃0 = 0). Observe that

Ãn = (−1)nA⋆
n = (−1)n

∑

0≤k≤n

(
n

k

)

(−1)kAk,
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andB̃n = (−1)nB⋆
n. By iterating the recurrence (20) and by taking into account the initial values, we

obtain (19).
Although the approach is essentially the same as that via Euler transform, it is helpful in deriving a

dimension-free expression for, say the variance ofXn; see Section3.2. It also offers the possibility of
obtaining the asymptotics ofAn by the usual Mellin transform techniques.

Asymptotics of the recurrence (7). A very powerful complex-analytic approach is proposed in [19]
to the asymptotics of (7). The main idea is to apply singularity analysis (see [21]); so one needs the
asymptotics of the generating function

∑

n Anz
n for z ∼ 1, which, by the Euler transform, leads to the

study of the generating functionA⋆(t) :=
∑

n A⋆
nt

n for t near−∞. For that purpose, they apply integral
representation forA⋆(−t) of the form

A⋆(−t) =
1

2πi

∫ c+i∞

c−i∞

πts

sin πs
ϕ(s) ds,

for suitably chosenc andϕ(s) satisfyingϕ(k) = A⋆
k for k ≥ 2. The determination of such an “analytic

extrapolation” ofA⋆
k to complexs is crucial.

The major limitation of this approach is that when the given sequenceBn is, say only known up to
O(nα) or ∼ nα for someα, it is not obvious how to find an analytic extrapolation and then to deduce
the right order ofAn because of the underlying “exponential cancellations of order”: roughly,

(
n
k

)
has

its largest term of order2nn−1/2, but most of our sequences grow only polynomially inn; see [23] for
asymptotics on alternating binomial sums.

Alternatively, one might try the usual Mellin analysis forÃ(z) (or its truncated functions); again ana-
lytic properties of the involved function atσ ± i∞ may be very challenging.

Note that the valueA0 and the sequence{Bn}n≥1 are enough to completely determine the sequence
An. This property will be useful in our numeric procedure; see Section3.2.

2.2 Asymptotic transfer I. Small toll functions

We prove the first case of Theorem2 in this section by extending the approach we proposed beforefor the
analysis ofk-d trees. The main idea is to write the underlying DE in the form of certain “perturbed” DE
of Cauchy-Euler type, and then to use some iterative operatorarguments.

The DE. Let A(z) =
∑

n≥0 Anz
n andB(z) =

∑

n≥1 Bnzn. Then the recurrence (7) translates into the
DE (10), which becomes simpler by consideringf := A − B:

(
ϑ(zϑ)d−1 − 2d

)
f(z) = 2dB(z). (21)

This DE can be re-written as the “perturbed” Cauchy-Euler DE
{

P0(ϑ)f(z) = g(z) + 2dB(z);
g(z) :=

∑

1≤j<d(1 − z)jPj(ϑ)f(z),
(22)

whereP0(x) = xd − 2d, and by induction

Pj(x) = (−1)j−1[zd−1−j]
∏

0≤r≤j

x − r

1 − z(x − r)
(1 ≤ j < d). (23)
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Note that allPj ’s are polynomials of degreed; they can also be computed recursively as follows. Write

ϑ(zϑ)d−1f(z) =
∑

0≤j<d

(1 − z)jP̃d,j(ϑ)f(z).

ThenPj(x) = −P̃d,j(x) for 1 ≤ j < d. Here P̃d,j(x) = (x − j)(P̃d−1,j(x) − P̃d−1,j−1(x)) with the
boundary conditions̃P1,0(x) = x, P̃d,j(x) = 0 if j < 0 or j ≥ d.

Let λj ’s denote the zeroes ofP0(x) = 0, namely,λj = 2e2jπi/d for 0 ≤ j < d. In particular,λ0 = 2.

All initial conditions zero. For convenience, we assume temporarily that all initial values are zeros
f (j)(0) = 0 for 0 ≤ j < d. This implies thatϑjf(0) = 0 for 0 ≤ j < d since

ϑjf(z) =
∑

0≤ℓ≤j

(−1)j+ℓS(j, ℓ)(1 − z)ℓf (ℓ)(z),

whereS(j, ℓ) represents the Stirling numbers of the second kind.

The Cauchy-Euler solution. Regarding the DE (22) as a Cauchy-Euler DE, we can then decompose the
DE as follows.

(ϑ − λd−1) · · · (ϑ − λ1)(ϑ − 2)f(z) = g(z) + 2dB(z), (24)

whose solution (exact or asymptotic) can be obtained by successively solving the first-order DE of the
form

(ϑ − υ)ξ(z) = η(z),

which is given by

ξ(z) = ξ(0)(1 − z)−υ + (1 − z)−υ

∫ z

0

(1 − t)υ−1η(t) dt,

in the sense of formal power series; see [7].
Since all initial conditions are zero, we thus obtain the solution

f(z) =
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[g + 2dB](z), (25)

where

Iυ[φ](z) = (1 − z)−υ

∫ z

0

(1 − x)υ−1φ(x) dx. (26)

Note that the functiong involves itselff .
Thus the next steps consist of(i) clarifying the changes in asymptotic approximation under consecutive

applications of the linear operators, and(ii) simplifying the resulting leading constants.

Asymptotic transfer for the linear operator.

Lemma 1 ([7]). (i) (Small toll functions) Letυ ∈ C. If
∫ 1

0
(1 − x)υ−1φ(x) dx converges, then

[zn]Iυ[φ](z) ∼ nυ−1

Γ(υ)

∫ 1

0

(1 − x)υ−1φ(x) dx, (27)

whereΓ denotes the Gamma function.
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(ii) (Large toll functions) Letυ ∈ C. If [zn]φ(z) ∼ cnτ , wherec ∈ C andℜ(τ) > ℜ(υ) − 1, then

[zn] Iυ[φ](z) ∼ c

τ + 1 − υ
nτ . (28)

Note that ifυ = 0,−1, . . . in case(i), then the∼-transfer (27) becomes ano-transfer; similarly, if
c = 0 in case(ii), then (28) becomes ano-transfer.
Proof. (Sketch) The estimate (27) follows from (26), and (28) from the expression

[zn] Iυ[φ](z) =
Γ(n + υ)

Γ(n + 1)

∑

0≤k<n

Γ(k + 1)

Γ(k + 1 + υ)
[zk]φ(z); (29)

see [7].

Asymptotic linearity. We now prove the small toll functions part of Theorem2 when Bn = o(n)

and
∑

n Bnn−2 converges. The assumption that the series
∑

n Bnn−2 converges implies that|
∫ 1

0
(1 −

x)B(x) dx| < ∞. Assume at the moment that
∣
∣
∣
∣

∫ 1

0

(1 − x)g(x) dx

∣
∣
∣
∣
< ∞. (30)

Then by applying consecutively Lemma1, we obtain

An = [zn]f(z) + Bn =
K ′

P ′
0(2)

n + o(n), (31)

where

K ′ :=

∫ 1

0

(1 − x)
(
g(x) + 2dB(x)

)
dx =

∑

j≥0

[zj]g(z) + 2dBj

(j + 1)(j + 2)
. (32)

The next step is to prove (30).

Proof of (30). Define

Λ(s) :=

∫ 1

0

(1 − x)s−1P0(ϑ)f(x) dx,

where theϑ-operator is understood to be(1 − x)d/dx.
SinceBn = o(n) = o(n1+ε), An = o(n1+ε) by (46) below. Thusf(x) = O((1−x)−2−ε) for 0 ≤ x < 1

and
P0(ϑ)f(x) = O(f (d)(x)) = O((1 − x)−d−2−ε),

for 0 ≤ x < 1. It follows thatΛ(s) is finite for sufficiently larges, says ≥ s0 ≥ d + 2 + ε. We show that
we can takes0 = 2. Note thatΛ(s) is an analytic function in the half-planeℜ(s) ≥ 2, but for our purposes
we need only real values ofs.

Lemma 2 ([5]). Let p(x) andq(x) be two polynomials of degrees at mostd. Assume thatφ(x) is defined
in the unit interval withφ(j)(0) = 0 for 0 ≤ j < k. Then

∫ 1

0

(1 − x)s−1
(
p(ϑ)q(ϑ)−1

)
φ(x) dx =

p(s)

q(s)

∫ 1

0

(1 − x)s−1φ(x) dx, (33)

provided thatq(s) 6= 0 and that both integrals converge.
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Substituting (22) into the integral and applying (33), we see thatΛ(s) satisfies the difference equation

Λ(s) = 2dB∗(s) +
∑

1≤j<d

Pj(j + s)

P0(j + s)
Λ(j + s). (34)

By assumption,B∗(s) is finite for s ≥ 2. Also Λ(s) is bounded fors ≥ d + 2 + ε as showed above. Thus
by iterating the equation (34), we deduce thatΛ(s) is finite fors ≥ 2.

This proves (30) because

∫ 1

0

(1 − x)g(x) dx =

∫ 1

0

(1 − x)
(
P0(ϑ)f(x) − 2dB(x)

)
dx,

and from (32), it follows thatK ′ = Λ(2).

Further simplification of the constant K ′. Taking firsts = 2 in (34) and then iterating the recurrence
(34) N times, we get

K ′ = K ′
N +

∑

1≤j≤N(d−1)+1

eN,j

P0(j + N + 1)
Λ(j + N + 1),

wheree1,j = Pj(j + 2) for 1 ≤ j ≤ d,

eN,j :=
∑

1≤ℓ≤d

Pℓ(j + N + 1)

P0(j + N + 1 − ℓ)
eN−1,j+1−ℓ (1 ≤ j ≤ N(d − 1) + 1),

for N ≥ 2, and

K ′
N = 2d



B∗(2) +
∑

1≤j≤(N−1)d

B∗(j + 2)

P0(j + 2)

∑

1≤ℓ≤j

eℓ,j+1−ℓ



 ,

for N ≥ 0.
SinceΛ(N) → 0 asN → ∞, we have

K ′ = lim
N→∞

K ′
N = 2d

(

B∗(2) +
∑

j≥1

B∗(j + 2)

P0(j + 2)

∑

1≤ℓ≤j

eℓ,j+1−ℓ

)

.

Define

Vk :=
1

P0(k + 2)

∑

1≤ℓ≤k

eℓ,k+1−ℓ.

ThenVk satisfies (17) and we have

K ′ = 2d
∑

k≥0

B∗(k + 2)Vk.

It follows, by (31), thatKB = K ′/P ′
0(2).
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Absolute convergence of the series representation (16) for KB. There is noa priori reason that the
series representation forKB in (16) is convergent. We show that under the assumptions onBn in (12) the
series in (16) is indeed absolutely convergent.

Observe first that by the factorial series expression in (18)

B∗(k + 2) = O(k−2).

We need then an estimate forVk.
If d = 2, thenP1(s) = s(s − 1), and we can solve the recurrence ofVk explicitly, giving

Vk = 12
k + 1

(k + 3)(k + 4)
(k ≥ 0). (35)

Consequently,

KB = 12
∑

k≥0

k + 1

(k + 3)(k + 4)
B∗(k + 2)

= 12

∫ 1

0

B(x)

(
1 + 2x

(1 − x)3
log

1

x
− 5 + x

2(1 − x)2

)

dx;

see also [36, 39].

Lemma 3. The sequenceVk satisfies the estimate

Vk = O
(
k−1(log k)d−2

)
, (36)

for d ≥ 2.

The order is tight; indeed, we can derive a more precise asymptotic approximation; see (39) below.
Proof.We first show that the generating functionV (z) of Vk satisfies the DE

Dz (z(1 − z)Dz)
d−1 (

z2V (z)
)
− 2dzV (z) = 0. (37)

By Cauchy’s integral representation forVk

Vk =
1

2πi

∮

|w|=ε

w−k−1V (w) dw =
1

2πi

∮

|w−1|=ε

(1 − w)−k−1V (1 − w) dw.

Then, by the relation (see (17)),

P0(k + 2)Vk −
∑

1≤ℓ<d

Pℓ(k + 2)Vk−ℓ = 0,

we have

0 =
1

2πi

∮

|w−1|=ε

(1 − w)V (1 − w)

[

P0(k + 2)(1 − w)−k−2 −
∑

1≤ℓ<d

Pℓ(k + 2)(1 − w)−k+ℓ−2

]

dw

=
1

2πi

∮

|w−1|=ε

(1 − w)V (1 − w)
[
ϑw(wϑw)d−1 − 2d

]
(1 − w)−k−2 dw,
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by the definition of thePj ’s, whereϑw := (1 − w)d/dw. It follows, by multiplying both sides byzk and
then summing over all nonnegativek, that

Id(z) − 2dV (z) = 0,

where

Id(z) :=
1

2πi

∮

|w−1|=ε

(1 − w)V (1 − w)
[
ϑw(wϑw)d−1

] (1 − w)−2

1 − z
1−w

dw.

By successive integration by parts, we have

Id(z) =
(−1)d

2πi

∮

|w−1|=ε

(1 − w)−2

1 − z
1−w

Dw (w(1 − w)Dw)d−1 (
(1 − w)2V (1 − w)

)
dw

=
1

2πi

∮

|w|=ε

w−2

1 − z
w

Dw (w(1 − w)Dw)d−1 (
w2V (w)

)
dw,

whereDw := d/dw. This proves (37).
By Frobenius method (see [32]), we seek solutions of the formV (z) = (1 − z)−sξ(1 − z) with ξ

analytic at zero. Substituting such a form into (37) gives ford = 1

I1(z) ∼ ξ(0)s(1 − z)−s−1 (z ∼ 1).

By induction, we obtain
Id(z) ∼ ξ(0)sd(1 − z)−s−1 (z ∼ 1).

Thus, the indicial equation issd = 0, implying that

V (z) = O
(
logd−1 |1 − z|

)
(z ∼ 1).

It follows, by singularity analysis (see [21]), thatVk satisfies the estimate (36). This proves Lemma3.

A more precise approximations to the asymptotics ofVk. Since the generating function of the se-
quenceVk satisfies the explicit, homogeneous DE (37), we can derive more precise asymptotic estimates
as follows.

By applying either the Euler transform approach of [19] or the Poisson generating functions, we obtain

Vk =
∑

1≤ℓ≤k+1

(
k + 1

ℓ

)

(−1)ℓ+1ℓ
∏

1≤j<d

Γ(3 − λj)Γ(ℓ + 1)

Γ(ℓ + 2 − λj)
(k ≥ 0).

Consequently, we have the integral representation (see [23])

Vk =
1

2πi

∫ ε+i∞

ε−i∞

Γ(k + 2)Γ(1 − s)

Γ(k + 2 − s)

∏

1≤j<d

Γ(3 − λj)Γ(s + 1)

Γ(s + 2 − λj)
ds. (38)

From this representation, we can show that

Vk ∼ d2d−1(2d − 1)

(d − 2)!
k−1(log k)d−2, (39)
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for d ≥ 2 and largek. Note that the leading constants first grows and then decreases to zero
{

d2d−1(2d − 1)

(d − 2)!

}

d≥2

=
{
12, 84, 240, 4131

3
, 504, 474 2

15
, 3622

3
, 2333

5
, 12919

21
, 631531

2835
, · · ·

}
.

Since the leading constants are quite large for smalld, the convergence of the series (16) is poor for small
d; we will propose a more efficient numeric procedure for computing KB.

In particular, ifd = 2, the integrand has three simple poles ats = −1,−2, and−3, and the residues of
these poles add up to12(k + 1)/((k + 3)(k + 4)), in accordance with (35). But for d ≥ 3, the resulting
expressions are more complicated because there are infinitely many poles.

An integral representation for the constantKB. By substituting the expression (38) of Vk in (16), we
obtain

KB =
2

2dπi

∫ c+i∞

c−i∞
Υ(s)

∏

1≤j<d

Γ(3 − λj)Γ(s + 1)

Γ(s + 2 − λj)
ds, (40)

where

Υ(s) :=
∑

k≥0

B∗(k + 2)
Γ(k + 2)Γ(1 − s)

Γ(k + 2 − s)
,

and c > −1 lies in the half-plane where the series on the right-hand side converges. Thus if analytic
properties ofΥ are known, thenKB can be further simplified; see for example (44). Also if d = 2, then
KB = 12(Υ(−1) − 2Υ(−2) + Υ(−3)); see (35).

Nonzero initial conditions. We now prove that the linearity constantKB is of the form (16) even with
nonzero initial conditions.

We start from making all the initial conditions zero

f̄(z) := f(z) −
∑

0≤j<d

(Aj − Bj)z
j,

so that, by (21),
(
ϑ(zϑ)d−1 − 2d

)
f̄(z) = 2dB(z) + 2dC(z),

where (for convenience, definingB0 = 0)

C(z) :=
∑

0≤j<d

(Aj − Bj) zj − 2−d
(
ϑ(zϑ)d−1

)

(
∑

0≤j<d

(Aj − Bj)z
j

)

.

By the same approach as above, we obtainAn ∼ K̄n, where the linearity constant̄K is given by

K̄ =
2

d

∑

k≥0

VkB
∗(k + 2) +

2

d

∑

k≥0

Vk

∫ 1

0

(1 − x)k+1
∑

0≤j<d

(Aj − Bj)x
j dx + c̄.

Here

c̄ := −21−d

d

∑

k≥0

Vk

∫ 1

0

(1 − x)k+1
(
ϑx(xϑx)

d−1
)

(
∑

0≤j<d

(Aj − Bj)x
j

)

dx

= −21−d

d

∫ 1

0

(1 − x)V (1 − x)
(
ϑx(xϑx)

d−1
)

(
∑

0≤j<d

(Aj − Bj)x
j

)

dx.
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By the same argument used to derive the DE satisfied byV (z), we have

c̄ = −21−d

d

∫ 1

0

(
∑

0≤j<d

(Aj − Bj)(1 − x)j

)

Dx (x(1 − x)Dx)
d−1 (

x2V (x)
)

dx.

But by (37)
Dx (x(1 − x)Dx)

d−1 (
x2V (x)

)
= 2dxV (x);

it follows that

c̄ = −2

d

∫ 1

0

(1 − x)V (1 − x)

(
∑

0≤j<d

(Aj − Bj)x
j

)

dx.

Thus

K̄ =
2

d

∑

k≥0

VkB
∗(k + 2);

this proves that the linearity constant is of the same form (16), which amounts to saying thatwe do not
need to nullify the initial conditions.

An efficient numeric procedure. The above proof suggests a useful numeric procedure for computing
the constantKB. The crucial observation is that the firstd terms we choose to be subtracted fromf̄ play no
special role in our proof, meaning that we can indeed subtract a sufficiently large number, sayN , of initial
terms fromf , resulting in a series form forKB with convergence rate(log k)d−2k−N . This is because the
right-hand side of the DE is of orderzN−1, which yields, after taking the finite Mellin transform, theorder
k−N for largek. Such a procedure quickly leads to a good numeric approximation to the leading constant
KB to high precision. We will apply this procedure to the constants appearing in the mean and variance of
the number of leaves in Section3.2

Necessity in (12). Assume thatAn ∼ cn for some constantc. The special form (8) or the following one
(see [19])

πn,j =
1

(d − 1)!

(
n − 1

j

) ∫ 1

0

(− log t)d−1tj(1 − t)n−1−j dt,

can be used to prove thatBn = o(n) by (7). We propose instead a proof based again on linear operators,
the advantage being generally applicable to more complicated recurrences while keeping uniformity of the
proof.

By (21)

B(z) = A(z) − 2d
(

ϑ−1
(
z−1ϑ−1

)d−1
)

A(z)

= A(z) − 2d
(

I0 ◦
(
z−1

I0

)d−1
)

[A](z).

SinceAn ∼ cn, we have, by (28),

[zn]I0[A](z) ∼ c

2
n, [zn]z−1

I0[A](z) ∼ c

2
n.

Applying successively these estimates yields

[zn]2d
(

I0 ◦
(
z−1

I0

)d−1
)

[A](z) ∼ cn.
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ThusBn = o(n).
We then prove that|∑n Bnn

−2| < ∞ by showing thatB∗(2) is finite. By (34), it suffices to show that
Λ(2) is finite. SinceAn ∼ cn andBn = o(n), we deduce thatf(x) = O((1 − x)−2) for 0 ≤ x < 1. It
follows that

Λ(2) = lim
s→2+

Λ(s)

= lim
s→2+

P0(s)

∫ 1

0

(1 − x)s−1f(x) dx

= O(1).

This complete the proof of (12).

2.3 Asymptotic transfer II. Linear toll functions

We prove part(ii) of Theorem2 in this section. By the result of part(i), it suffices to consider the case
whenBn ≡ n for n ≥ 1. ThenB(z) = z/(1 − z)2.

All initial conditions zero. It is simpler, as in part(i), to consider

f̄(z) := A(z) − B(z) −
∑

0≤j<d

(Aj − Bj)z
j,

so thatf̄ satisfies the DE
(
ϑ(zϑ)d−1 − 2d

)
f̄(z) = 2dB(z) + 2dC(z),

with zero initial conditions, where

C(z) :=
(
2−dϑ(zϑ)d−1 − 1

) ∑

1≤j<d

(Aj − Bj)z
j.

Thenf̄ satisfies the DE
P0(ϑ)f̄(z) = 2dB(z) + 2dC(z) + g(z),

whereg is defined in (22), and forn ≥ d

An = [zn]
(
f̄(z) + B(z)

)

= n + [zn]
(
Iλd−1

· · · ◦ Iλ1
◦ I2

) [
2dB + 2dC + g

]
(z).

An expression for the iterates of theI-operators. Observe first that by integration by parts

(Iυ ◦ Iτ ) [ξ](z) =
1

τ − υ
Iτ [ξ](z) − 1

τ − υ
Iυ[ξ](z) (υ 6= τ),

so that by induction

(
Iλd−1

◦ · · · ◦ Iλ0

)
[ξ](z) =

∑

0≤j<d

Iλj
[ξ](z)

∏

ℓ6=j (λj − λℓ)
. (41)

Thus

f̄(z) =
∑

0≤j<d

Iλj
[2dB + 2dC + g](z)

P ′
0(λj)

.
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The contribution of 2dB(z). By applying (41), we have

[zn]
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[2dB](z) =

∑

0≤j<d

2d

P ′
0(λj)

[zn]Iλj
[B](z)

=
2d

P ′
0(2)

[zn]

(

(1 − z)−2 log
1

1 − z
− (1 − z)−2

)

+
∑

1≤j<d

2d

(2 − λj)P ′
0(λj)

[zn](1 − z)−2 + o(n).

Now

∑

1≤j<d

2d

(2 − λj)P ′
0(λj)

=
1

d

∑

1≤j<d

λj

2 − λj

=
2

d

∑

1≤j<d

1

2 − λj

− d − 1

d

=
P ′′

0 (2)

dP ′
0(2)

− d − 1

d

= −d − 1

2d
.

Thus

[zn]
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[2dB](z)

= [zn]

(
2

d

1

(1 − z)2
log

1

1 − z
− d + 3

2d

1

(1 − z)2

)

+ o(n)

=
2

d
n log n +

(
2γ

d
− 1

2
− 7

2d

)

n + o(n), (42)

since

[zn](1 − z)−2 log
1

1 − z
= (n + 1)

∑

1≤j≤n

j−1 − n

= n log n + (γ − 1)n + O(log n).

The contribution of 2dC(z) and g(z). Similarly, by (27),

[zn]
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[2dC](z) =

2

d
C∗(2)n + o(n),

whereC∗(s) :=
∫ 1

0
C(x)(1 − x)s−1 dx, and

[zn]
(
Iλd−1

◦ · · · ◦ Iλ1
◦ I2

)
[g] (z) =

21−d

d
[zn]I2 [g] (z) + o(n)

=
21−d

d
g∗(2)n + o(n),

provided thatg∗(2) is finite, whereg∗(s) :=
∫ 1

0
(1 − x)s−1g(x) dx.
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Boundness ofg∗(2). To justify thatg∗(2) is finite, we use the same argument as in the proof forΛ(s)
above. Again by Lemma2

g∗(s) =
∑

1≤j<d

∫ 1

0

(1 − x)j+s−1Pj(ϑ)P0(ϑ)−1
(
2dB(x) + 2dC(x) + g(x)

)
dx

=
∑

1≤j<d

Pj(j + s)

P0(j + s)

∫ 1

0

(1 − x)j+s−1
(
2dB(x) + 2dC(x) + g(x)

)
dx

=
∑

1≤j<d

Pj(j + s)

P0(j + s)

(
2dB∗(j + s) + 2dC∗(j + s) + g∗(j + s)

)
,

where

B∗(s) =

∫ 1

0

x(1 − x)s−3 dx =
1

(s − 1)(s − 2)
.

SinceB∗(s) is finite fors > 2, g∗(s) is well-defined fors > 1.
Iterating the recurrence as in part(i) gives

g∗(2) =
∑

j≥0

Vj

∑

1≤ℓ<d

Pℓ(j + ℓ + 2)

P0(j + ℓ + 2)

(
2dB∗(j + ℓ + 2) + 2dC∗(j + ℓ + 2)

)

=
∑

k≥1

(
2dB∗(k + 2) + 2dC∗(k + 2)

) ∑

1≤ℓ<d

Pℓ(k + 2)

P0(k + 2)
Vk−ℓ

= 2d
∑

k≥1

Vk

k(k + 1)
+ 2d

∑

k≥1

VkC
∗(k + 2),

whereVk is defined in (17).

Collecting all estimates. Combining this with (42), we obtain

An =
2

d
n log n + K2n + o(n),

where

K2 =
2γ

d
+

1

2
− 7

2d
+

2

d

∑

k≥1

Vk

k(k + 1)
+

2

d

∑

k≥0

VkC
∗(k + 2).

The last series
∑

k≥0 VkC
∗(k + 2) is identically zero by the same argument used in part(i) for nonzero

initial conditions.

Final simplification. We now show that

∑

k≥1

Vk

k(k + 1)
=

∑

1≤j<d

ψ(3 − λj) − (d − 1)(1 − γ), (43)

and this will prove (14) by the relationsψ(3 − λj) = ψ(2 − λj) + (2 − λj)
−1 and

∑

1≤j<d

1

2 − λj

=
d − 1

4
.
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For that purpose, we substitute the integral representation (38) into the series and then sum over all positive
indicesk, giving

∑

k≥1

Vk

k(k + 1)
=

1

2πi

∫ ε+i∞

ε−i∞

1

(s − 1)2

∏

1≤j<d

Γ(3 − λj)Γ(s + 1)

Γ(s + 2 − λj)
ds. (44)

Moving the line of integration to the right and taking into account the residue of the unique pole encoun-
tered ats = 1, we obtain (43) by absolute convergence.

A different expression for K2. Yet another expression forK2 was derived in [19]

K2 =
2γ

d
+

3

2
− 3

2d
− 2d+1

∑

k≥3

1

k(kd − 2d)
.

Equating the two expressions ofK2 leads to the identity

2d+1
∑

k≥3

1

k(kd − 2d)
= 3 − 2

d
(d − 1)γ − 2

d

∑

1≤j<d

ψ(3 − λj) (d ≥ 1),

which can be proved using the relations

ψ(z + 1) = −γ +
∑

j≥1

z

j(j + z)
,

(see [14, p.15, Eq. (3)]) and
∑

1≤j<d

2 − λj

k + 2 − λj

= d − 1 − k
∑

1≤j<d

1

k + 2 − λj

= d − 1 − k

(
d(k + 2)d−1

(k + 2)d − 2d
− 1

k

)

.

Necessity. Consider the case whenAn = c0n log n + c1n + o(n), wherec0 = 2/d. Then, similarly as in
part(i), we need the elementary estimate

[zn]I0[A](z) =
1

n

∑

0≤j<n

Aj

=
1

n

∑

1≤j<n

(c0j log j + c1j) + o(n)

=
c0

2
n log n +

(c1

2
− c0

4

)

n + o(n).

The same estimate holds for[zn]z−1
I0[A](z). Iterating the estimates, we obtain

[zn]2d
(

I0 ◦
(
z−1

I0

)d−1
)

[A](z) = c0n log n +

(

c1 −
d

2
c0

)

n + o(n).

Consequently,

Bn =
d

2
c0n + o(n) = n + o(n).

ThusBn − n = o(n) and the remaining proof uses the same argument as in part(i). This completes the
proof of (13).
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2.4 Asymptotic transfer III. Large toll functions

We prove the asymptotic transfer (15) for large toll functions. For general divide-and-conquerrecurrences,
such a case is always easier than that of small toll functions, one simple reason being that the major
contribution comes from a few large terms instead of summingover all small parts like the small toll
functions case. More precisely, we expect that most contribution comes from the term2dB(z) in (22), the
other termg(z) being asymptotically negligible.

Assume thatBn ∼ cnυ, whereυ > 1. We start again from (25), which gives

An = Bn + [zn]
(
Iλd−1

◦ · · · Iλ1
◦ I2

)
[g + 2dB](z)

= Bn + A[1]
n + A[2]

n ,

where, by successive applications of (28), we have

A[2]
n := 2d[zn]

(
Iλd−1

◦ · · · Iλ1
◦ I2

)
[B](z)

∼ c2d

P0(υ + 1)
nυ.

To estimateA[1]
n , we first considerg∗(s) =

∫ 1

0
(1−x)s−1g(x) dx, which, by (34), satisfies the recurrence

equation

g∗(s) =

∫ 1

0

(1 − x)s−1
(
P0(ϑ)f(x) − 2dB(x)

)
dx

=
∑

1≤j<d

Pj(j + s)

P0(j + s)

(
g∗(j + s) + 2dB∗(j + s)

)
, (45)

for sufficiently larges. SinceBn ∼ cnυ, we deduce thatB∗(s) is finite fors > υ + 1. The same argument
as forΛ(s) shows thatg∗(s) is finite fors > υ. This implies, in particular, that

∣
∣
∣
∣

∫ 1

0

(1 − x)υ−εg(x) dx

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
Γ(υ + 1 − ε)

∑

k≥0

Γ(k + 1)

Γ(k + υ + 2 − ε)
[zk]g(z)

∣
∣
∣
∣
∣
< ∞.

Now by (29) with υ = 2

[zn]I2[g](z) = (n + 1)
∑

0≤k<n

[zk]g(z)

(k + 1)(k + 2)
.

Let Sk :=
∑

0≤j≤k Γ(j + 1)[zj]g(z)/Γ(j + υ + 2 − ε). ThenSk = O(1) and, by partial summation,

(n + 1)
∑

0≤k<n

[zk]g(z)

(k + 1)(k + 2)
= (n + 1)

∑

0≤k<n

Γ(k + 1)

Γ(k + υ + 2 − ε)
[zk]g(z) · Γ(k + υ + 2 − ε)

Γ(k + 3)

= (1 − υ + ε)(n + 1)
∑

0≤k≤n

Sk
Γ(k + υ + 2 − ε)

Γ(k + 4)
+ O(nυ−ε)

= O(nυ−ε).

Applying now successively (28), we obtainA[1]
n = O(nυ−ε) = o(nυ).

From these estimates, it follows that

An ∼ cnυ +
c2d

(υ + 1)d − 2d
nυ,

which implies the sufficiency part of (15).
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Necessity in (15). Assume thatAn ∼ K3cn
υ, whereK3 = (υ + 1)d/((υ + 1)d − 2d). Then, similarly to

the necessity proof for case(i),

[zn]2d
(

I0 ◦
(
z−1

I0

)d−1
)

[A](z) ∼ 2d

(υ + 1)d
nυ,

by successive applications of (28). Then

Bn ∼ K3c

(

1 − 2d

(υ + 1)d

)

nυ ∼ cnυ.

Simple transfers for the quadtree recurrence (7). The same proof also gives the followingO- and
o-transfers.

Lemma 4. Assumev > 1. Then

Bn = O(nv) iff An = O(nv). (46)

The same result holds withO replaced byo.

Note that the results for large toll functions can also be proved by other elementary means, but the
proof given here based on iterative operators applies for all cases, and is thus more general and uniform.

Recurrence of the Cauchy-Euler part. The preceding analysis shows that whenBn is larger than lin-
ear, the contribution fromg(z) to An is asymptotically negligible. Thus in this caseAn ∼ A

[2]
n , where

P0(ϑ)(A[2](z) − B(z)) = 2dB(z), or in terms of recurrence

A[2]
n = Bn + 2d

∑

0≤j<n

π̃n,jA
[2]
j ,

where

π̃n,j =
1

n

∑

j<j1<···<jd−1<n

1

j1 · · · jd−1

,

which is to be compared with the alternative expression forπn,j (see [19])

πn,j =
1

n

∑

j<j1≤···≤jd−1≤n

1

j1 · · · jd−1

.

2.5 Asymptotic transfer IV. Further refinements

When more precise information onBn is available, we can refine the preceding approach and obtain
more effective approximations toAn. We consider the following two cases for later use. Recall that
2e2πi/d = α + 1 + iβ.

Proposition 1. Assume thatAn satisfies (7).

(i) If Bn ∼ cnυ, wherec, υ ∈ C andα < ℜ(υ) < 1, then

An = KBn +
c(υ + 1)d

(υ + 1)d − 2d
nυ + o(nℜ(υ) + nε),

whereKB is defined in (16).
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(ii) If Bn = o(nα), then

An = KBn + K(λ1)n
α+iβ + K(λ2)n

α−iβ + o(nα + nε), (47)

where theK(λj)’s are defined in (48). If theBk’s are all real, thenK(λ1) = K(λ2).

Proof.The proof consists of refining the analysis for the small tollfunctions part of Theorem2 using the
arguments for large toll functions.

Case(i). SinceBn ∼ cnυ, the series in (12) obviously converges. Thus, by (29), we first have

[zn]I2[g + 2dB](z) = (n + 1)

(
∑

k≥0

gk + 2dBk

(k + 1)(k + 2)
−

∑

k≥n

gk + 2dBk

(k + 1)(k + 2)

)

= K ′n − n
∑

k≥n

gk

(k + 1)(k + 2)
− c2d

1 − υ
nυ + o(nℜ(υ)) + O(1),

wheregk := [zk]g(z) andK ′ =
∫ 1

0
(1 − x)

(
g(x) + 2dB(x)

)
dx.

By the same arguments used forg∗(s) in (45), we deduce thatB∗(s) is finite for s > ℜ(υ) + 1 and
g∗(s) is bounded fors > ℜ(υ). It follows, by the same summation by parts argument used forA

[1]
n , that

n
∑

k≥n

gk

(k + 1)(k + 2)
= O

(
nℜ(υ)−ε

)
.

Thus

[zn]I2[g + 2dB](z) = K ′n − c2d

1 − υ
nυ + o(nℜ(υ)) + O(1).

We may assume thatℜ(υ) > 0; otherwise all error terms are absorbed ino(nε).
Consider now

[zn] (Iλ1
◦ I2) [g + 2dB](z) =

Γ(n + λ1)

Γ(n + 1)

∑

0≤k<n

Γ(k + 1)

Γ(k + 1 + λ1)

(

K ′k − c2d

1 − υ
kυ + o(kℜ(υ) + kε)

)

=
K ′

2 − λ1

n − c2d

(1 − υ)(υ + 1 − λ1)
nυ + o(nℜ(υ) + nε),

again by (29). Repeating the same procedure, we obtain

An − Bn = [zn]f(z) =
K ′

P ′
0(2)

n +
c 2d

P0(υ + 1)
nυ + o(nℜ(υ) + nε),

which proves(i) sinceKB = K ′/P ′
0(2).

Case(ii). Now, similarly as above, we have

[zn]I2[g + 2dB](z) = K ′n + o(nα + nε),

[zn]Iλj
[g + 2dB](z) = K ′

jn
λj−1 + o(nα + nε),
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where

K ′
j :=

1

Γ(λj)

∫ 1

0

(1 − x)λj−1
(
g(x) + 2dB(x)

)
dx (j = 1, 2).

Substituting these estimates into (41) gives

[zn] (Iλ2
◦ Iλ1

◦ I2) [g + 2dB](z) =
K ′

(2 − λ1)(2 − λ2)
n +

K ′
1

(λ1 − 2)(λ1 − λ2)
nλ1−1

+
K ′

2

(λ2 − 2)(λ2 − λ1)
nλ2−1 + o(nα + nε).

Applying successively (28) to the remaining operatorsIλj
for j = 3, . . . d − 1, we obtain (47), where

K(λj) =
2d

P ′
0(λj)Γ(λj)

∑

k≥0

B∗(λj + k)Vk(λj) (j = 1, 2), (48)

whereVk(λj) satisfies the recurrence

Vk(λj) =
∑

1≤ℓ<d

Pi(λj + ℓ)

P0(λj + ℓ)
Vk−ℓ(λj),

with Vk(λj) = 0 if k < 0 andV0(λj) = 1.
The same proof for proving Lemma3 also implies thatVk(λj) satisfies the DE

Dz (z(1 − z)Dz)
d−1 (

zλjV (z)
)
− 2dzλj−1V (z) = 0,

and it follows thatVk(λj) = O
(
k−1(log k)d−2

)
. This justifies the absolute convergence of the series (48).

In a similar way, we also have the following simpler transfer.

Corollary 1. Assume thatℜ(υ) < 1 andυ 6= α ± iβ. If Bn = O(nℜ(υ)), thenAn = KBn + O(nℜ(υ) +
nα + nε); if Bn = o(nℜ(υ)), thenAn = KBn + o(nℜ(υ)) + O(nα + nε).

3 Limit laws of Xn: from normal to periodic

We prove first Theorem1 in this section. Although the first part of Theorem1 is implied by Theorem4
below, we give the main steps of the proof by the moment-transfer approach for more logical reasons: first
the mean and variance are needed by both proofs (although with different degrees of precision); second, the
main hard part of the proof of Theorem4 consists in refining the estimates of some recursive functionals
of moments. We then sketch extensions of the same types of limit results to other toll functions.

The proofs here rely strongly on the different types of asymptotic transfer we developed in Section2.

3.1 Limit theorems for the number of leaves

Expected number of leaves. By (5), we see that the mean number of leaves in a random quadtree ofn
nodes satisfies the recurrence (7) with Bn = δn,1 andA0 = 0. ThenB(x) = x andB∗(s) = s−1(s + 1)−1.
Applying (47), we obtain

E(Xn) = µdn + c+nα+iβ + c−nα−iβ + o(nα + nε), (49)
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for d ≥ 1, wherec+ = K(λ1) andc− = K(λ2) with B∗(s) = s−1(s + 1)−1. In particular,

µd =
2

d

∑

k≥0

Vk

(k + 2)(k + 3)
.

This proves (3) with G1(x) = c+eiβx + c−e−iβx; see Figure2 for a plot of the fluctuations of the error
terms. We now show that

µd =
2d+1

d

∑

k≥2

1

kd[k]!

(

(k − 1)
∑

1≤j<d

(ψ(k + 1 − λj) − ψ(k)) − 2

)

, (50)

for d ≥ 2, which gives an alternative expression to (2).
To prove (50), we apply the integral representation (40), where

Υ(s) :=
∑

k≥0

Γ(k + 2)Γ(1 − s)

(k + 2)(k + 3)Γ(k + 2 − s)

= s2ψ′(−s) + s − 1

2
(ℜ(s) < 1).

Now Υ has double poles at all positive integers. Summing over all residues of the double poles of the
integrand in (40), we obtain (50) by absolute convergence (sinceΥ(s) = O(|s|−1) as|s| → ∞ ands is at
leastε away from all positive integers). Note that

(k − 1)
∑

1≤j<d

(ψ(k + 1 − λj) − ψ(k)) − 2 = d − 1 + O(k−1);

thus the general terms in (50) decrease at the rateO(k−d).
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Figure 2:Periodic fluctuations ofn−α(E(Xn) − µdn) for n = 4, . . . , 1000 andd = 6, . . . , 10.
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Recurrence of higher moments. For higher moments, we start from the by now standard trick ofshifting
the mean; thus we consider the moment generating function

Mn(y) := E

(

exp

(

Xn − µdn − µd

2d − 1

)

y

)

,

which satisfies, by (5), the recurrence

Mn(y) =
∑

j1+···+j
2d=n−1

πn,jMj1(y) · · ·Mj
2d

(y) (n ≥ 2),

with the initial conditionsM0(y) = e−µdy/(2d−1) andM1(y) = e(1−2dµd/(2d−1))y. Note that the additional
factorµd/(2

d − 1) subtracted has the effect of keeping the recurrence simpler.
DefineMn,k := M

(k)
n (0) = E

(
(Xn − µdn − µd/(2

d − 1))k
)
. ThenMn,k satisfies the recurrence

Mn,k = Qn,k + 2d
∑

0≤j<n

πn,jMj,k (n ≥ 2),

with the initial conditionsM0,k = (−1)kµk
d/(2

d − 1)k andM1,k = (1 − 2dµd/(2
d − 1))k, where

Qn,k =
∑

j1+···+j
2d=n−1

i1+···+i
2d=k

i1,...,i
2d<k

(
k

i1, . . . , i2d

)

πn,jMj1,i1 · · ·Mj
2d ,i

2d
(n ≥ 2).

Note that by (3)

Mn,1 =

{
O (nα + nε) , if 1 ≤ d ≤ 8;
G1(β log n)nα + o(nα), if d ≥ 9.

(51)

Variance. We now prove the asymptotic estimate (4). First we have, by symmetry,

Qn,2 = 2d+1
∑

j1+···+j
2d=n−1

πn,jMj1,1

(
Mj2,1 + · · · + Mj

2d ,1

)
.

If 1 ≤ d ≤ 8, then the estimate (51) implies thatQn,2 = O(n1−2ε). Thus a straightforward application
of (12) yields

Mn,2 = E

((

Xn − µdn − µd

2d − 1

)2
)

∼ σ2
dn,

which, byV(Xn) = Mn,2 − M2
n,1 and (51), implies (4). Hereσ2

d is given by

σ2
d =

2

d

∑

k,m≥0

Vkm!Qm,2

(k + 2) · · · (k + m + 2)
, (52)

with Q0,2 andQ1,2 properly defined. We will consider numeric evaluations ofσ2
d later.

If d ≥ 9, then, by (51),

Qn,2 = 2d+1
∑

j1+···+j
2d=n−1

πn,j

(

c+jα+iβ
1 + K(λ2)j

α−iβ
1

)

×
∑

2≤ℓ≤2d

(

c+jα+iβ
ℓ + K(λ2)j

α−iβ
ℓ

)

+ o(n2α).
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By the strong law of large numbers, we have

Qn,2 = 2d+1

∫

[0,1]d

∑

2≤ℓ≤2d

(

c2
+q1(x)α+iβqℓ(x)α+iβn2α+2iβ

+ c+c−
(
q1(x)α+iβqℓ(x)α−iβ + q1(x)α−iβqℓ(x)α+iβ

)
n2α

+ c2
−q1(x)α−iβqℓ(x)α−iβn2α−2iβ

)

dx + o(n2α),

where theqh(x)’s are defined in (6). The integrals can be simplified as follows.

η(u, v) :=

∫

[0,1]d
q1(x)u

∑

2≤ℓ≤2d

qℓ(x)v dx

=
∑

0≤ℓ<d

(
d

ℓ

)(
1

u + v + 1

)ℓ (
Γ(u + 1)Γ(v + 1)

Γ(u + v + 2)

)d−ℓ

=

(
1

u + v + 1
+

Γ(u + 1)Γ(v + 1)

Γ(u + v + 2)

)d

−
(

1

u + v + 1

)d

, (53)

for ℜ(u),ℜ(v) > −1. Thus

Qn,22
−d−1 = c2

+η(α + iβ, α + iβ)n2α+2iβ + 2c−c+η(α + iβ, α − iβ)n2α

+ c2
−η(α − iβ, α − iβ)n2α−2iβ + o(n2α).

Transferring this approximation term by term using (15) gives

Mn,2 = G̃2(β log n)n2α + o(n2α),

where

G̃2(u) := 2d+1c2
+η(α + iβ, α + iβ)

(2α + 2iβ + 1)d

P0(2α + 2iβ + 1)
e2iβu

+ 2d+2c−c+η(α + iβ, α − iβ)
(2α + 1)d

P0(2α + 1)

+ 2d+1c2
−η(α − iβ, α − iβ)

(2α − 2iβ + 1)d

P0(2α − 2iβ + 1)
e−2iβu.

This proves (4) with G2(x) = G̃2(x) − G1(x)2.

Asymptotic normality for 1 ≤ d ≤ 8. The same arguments used above for the variance also apply for
Mn,k for k ≥ 3. By induction, we obtain







Mn,2k ∼ (2k)!

2kk!
σ2k

d n2k;

Mn,2k−1 = o(nk−1/2),

for k ≥ 1; details are omitted here for conciseness; see [3] for a similar proof. This proves the first part of
Theorem1.
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Periodic fluctuations for d ≥ 9. In this case, the same calculations forV(Xn) can be extended to show
that

E

((

Xn − µdn − µd

2d − 1

)k
)

∼ G̃k(β log n)nkα (k ≥ 2); (54)

where theG̃k’s are bounded periodic functions. Then the proof that thereis no fixed limit law for(Xn −
E(Xn))/

√

V(Xn) follows the same arguments used in [3].
Instead of giving the messy details of the proof for (54), we sketch the proof for

‖Xn − µdn − 2ℜ(nα+iβX)‖p = o(nα) (p ≥ 2), (55)

where‖Z‖ = (E|X|p)1/p denotes the usualLp norm. HereX is a random variable withE(X) = c+ (see
(49)) and defined by

X
D
= 〈U〉α+iβ

1 X(1) + · · · + 〈U〉α+iβ
2d X(2d),

where theX(i)’s are independent copies ofX and the〈U〉i’s are the volumes of the2d quadrants split by a
random point in[0, 1]d. Part(ii) of Theorem1 also follows from (55).

It suffices to provep = 2, the remaining cases following by induction. The argumentsused here are
modified from those in [15] for randomm-ary search trees.

Define

ξn :=
∥
∥
∥Xn − µdn − 2

∑

1≤j≤2d

ℜ
(

Jα+iβ
j X(j)

)∥
∥
∥

2
,

ηn :=
∥
∥
∥2

∑

1≤j≤2d

ℜ
(

Jα+iβ
j X(j)

)

− 2
∑

1≤j≤2d

ℜ
(

nα+iβ〈U〉α+iβ
j X(j)

)∥
∥
∥

2
.

We prove thatξn, ηn = o(nα), which will then imply (55) for p = 2.
First by the decomposition

ξn ≤ ‖Xn − µdn‖2 + 2d+2‖Jα+iβ
1 X(1)‖2,

we deduce thatξn = O(nα). Then by the recurrence (5), we have the inequality

ξ2
n ≤

∑

1≤j≤2d

E
(
ξJj

+ ηJj

)2
+ o(n2α).

This, together with the estimate

ηn ≤ 2d+2nα‖X(1)‖2

∥
∥
∥

(
J1

n

)α+iβ

− 〈U〉α+iβ
2

∥
∥
∥

2
= o(nα),

gives

ξ2
n ≤ 2d

∑

0≤j<n

πn,jξ
2
j + o(n2α)

= o(n2α),

by theo-version of (46).

28



d µd ≈
2 0.47841 76043 57434 47533 79639 99504 60454 12547 97628
3 0.56850 70194 06572 68270 35257 03246 03680 11920 50021
4 0.63168 48783 52998 69050 68769 97892 90145 67365 77851
5 0.67906 23676 94926 62299 74554 08602 48628 92348 92646
6 0.71615 83294 69847 70674 65510 61878 16738 93088 58805
7 0.74609 46112 09331 64803 70711 94105 57503 99390 36451
8 0.77079 60778 85838 99509 15248 99261 83895 90393 54520
9 0.79152 59978 40106 48407 81034 62942 59540 22737 03660
10 0.80915 45900 27608 17078 62137 34456 57737 58997 15908

Table 2: Approximate numeric values ofµd for d = 2, . . . , 10.

3.2 Numerics ofµd and σ2

d

We consider means of computing numerically the constantsµd andσ2
d.

Numerical values ofµd. To compute the constantsµd to high precision, one can use either (2) or (50)
by the standard procedure: compute the first few terms exactly and estimate the remaining terms by their
asymptotic behaviors.

An alternative procedure is described in the last section. Consider f̄(z) := f(z) − ∑

2≤j<N Ajz
j

(A1 = B1 andBn = 0 for n ≥ 2) for a suitably large numberN , say50. Exact values ofAn can be easily
computed by the exact expression (1) whenn is small. Observe that

ϑ(zϑ)d−1
∑

j≥N

cjz
j =

∑

j≥N−1

c′jz
j.

Thus the right-hand side of the DE

(
ϑ(zϑ)d−1 − 2d

)
f̄ = 2dz −

(
ϑ(zϑ)d−1 − 2d

) ∑

2≤j<N

Ajz
j,

contains only monomialszj with N < j < N + d. Then the newB∗(s) is of orders−N for larges,
implying a better convergence rate for the series (16) sinceVk remains the same and can be computed
recursively. Then we need only compute the first few terms (10 for example) of the series (16) to give the
required degree of precision. In this way, we obtain Table3.2. Such a procedure is also useful for other
constants such asσ2

d.

Expressions forσ2
d. We first derive more explicit expressions forMn,2 in (52) before computingσ2

d.
We start from the bivariate generating functionF (z, y) :=

∑

n≥0 E(eXny)zn/n!, which satisfies, by
(5), the equation

∂

∂z
F (z, y) = ey − 1 +

∫

[0,1]d
F (q1(x)z, y) · · ·F (q2d(x)z, y) dx.

In particular,F (z, 0) = ez.
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Then the Poisson generating function

F̃ (z, y) = e−z
∑

n≥0

Mn(y)
zn

n!
= e−z

∑

n≥0

E(e(Xn−µdn−µd/(2d−1))y)
zn

n!

satisfies the equation

F̃ (z, y) +
∂

∂z
F̃ (z, y) = e−z(ey − 1)e−2dµdy/(2d−1) +

∫

[0,1]d
F̃ (q1(x)z, y) · · · F̃ (q2d(x)z, y) dx.

Let F̃ (z, y) =
∑

j≥0 F̃j(z)yj/j!. Then

F̃ ′
1(z) + F̃1(z) = e−z + 2d

∫

[0,1]d
F̃1(x1 · · · xdz) dx,

with the initial conditionF̃1(0) = −µd/(2
d − 1). The coefficientsun := n![zn]F̃1(z) satisfy

un+1 + un = (−1)n +
2d

(n + 1)d
un,

which, after iterating, can be solved to be

un = (−1)n−1
∑

2≤k≤n

∏

k<ℓ≤n

(

1 − 2d

ℓd

)

= (−1)n−1[n]!
∑

2≤k≤n

1

[j]!
,

for n ≥ 2, with u0 = −µd/(2
d − 1) andu1 = 1 − µd.

For F̃2(z), we have the same type of equation

F̃ ′
2(z) + F̃2(z) = g̃2(z) + 2d

∫

[0,1]d
F̃2(x1 · · ·xdz) dx,

with the initial conditionF̃2(0) = µ2
d/(2

d − 1)2, where

g̃2(z) :=

(

1 − 2d+1µd

2d − 1

)

e−z + 2d

∫

[0,1]d
F̃1(x1 · · ·xdz)

∑

2≤ℓ≤2d

F̃1(qℓ(x)z) dx. (56)

Observe that

n![zn]2d

∫

[0,1]d
F̃1(x1 · · ·xdz)

∑

2≤ℓ≤2d

F̃1(qℓ(x)z) dx = 2d
∑

0≤j≤n

(
n

j

)

ujun−jη(j, n − j),

whereη(j, n − j) is defined in (53).
By (56), we then have forn ≥ 0

vn := n!(−1)n[zn]g̃2(z) = 1 − 2d+1µd

2d − 1
+ 2d(−1)n

∑

0≤j≤n

(
n

j

)

ujun−jη(j, n − j).

It follows that
n![zn]F̃2(z) = (−1)n−1[n]!

∑

1≤k<n

vk

[k + 1]!
(n ≥ 2),
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d σ2
d ≈

2 0.06145 73978 66984 07284 36701 54743 66750 63784
3 0.06802 65800 83909 72781 61723 15284 91262 75906
4 0.07090 19719 94546 02309 70950 30497 53882 55032
5 0.07261 12472 86535 68765 26637 38060 39503 98071
6 0.07449 21253 93111 00674 61761 51696 97039 29930
7 0.07731 76983 93655 71830 91768 87307 89088 95507
8 0.08123 98836 52827 96294 47650 19430 64044 32562

Table 3: Approximate numeric values ofσ2
d for d = 2, . . . , 8. Note thatσ2

1 = 2/45 ≈ 0.04444 . . . .

with F̃2(0) = µ2
d/(2

d − 1)2 andF̃ ′
2(0) = 1 − 2d+1µd/(2

d − 1) + (2d + 1)µ2
d/(2

d − 1), and consequently

Mn,2 = E

(

Xn − µd

(

n +
1

2d − 1

))2

=
µ2

d

(2d − 1)2
+

(

1 − 2d+1µd

2d − 1
+

2d + 1

2d − 1
µ2

d

)

n −
∑

2≤k≤n

(
n

k

)

(−1)k[k]!
∑

1≤j<k

vj

[j + 1]!
.

This provides a less dimension dependent expression for computingMn,2 for small values ofn needed for
computing the approximate values ofσ2

d in Table3.2.
Note that for1 ≤ d ≤ 8, Mn,1 = O(n0.42) and

V(Xn) = Mn,2 − M2
n,1 = E

(

Xn − µd

(

n +
1

2d − 1

))2

− M2
n,1;

Thus to compute the limiting constantσ2
d of V(Xn)/n, it suffices to computeMn,2.

By the same procedure for computingµd, we obtain Table3.2.
Note that

Qn,2 = [zn−1]ez g̃2(z) =
∑

0≤j<n

(
n − 1

j

)

(−1)jvj (n ≥ 1).

For consistency, we can defineQ0,2 := µ2
d/(2

d−1)2. ThenQ1,2 = v0 = 1−2d+1µd/(2
d−1)+2dµ2

d/(2
d−1)

and forn ≥ 2

Qn,2 = 2d
∑

0≤m<n

(
n − 1

m

)
∑

0≤j≤m

(
m

j

)

ujum−jη(j,m − j).

3.3 Phase change of other cost measures

Consider the random variables defined recursively by

Yn
D
= Y

(1)
J1

+ · · · + Y
(2d)
J
2d

+ Tn (n ≥ 1), (57)

with Y0 given, where the(Y (i)
n )’s are independent copies ofYn andTn is a known random variable (often

called “toll function”).
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3.3.1 Phase change of general toll functions

Our method of proof extends easily to cover a wide class of toll functions. We formulate a simple result
for deterministic toll functions as follows.

Theorem 3. If Tn = O(n1/2(log n)−1/2−ε) andTn is not identically1 for all n ≥ 1, then

Yn − µ′
dn

σ′
d

√
n

D→ N(0, 1),

for 1 ≤ d ≤ 8, whereµ′
d andσ′

d are constants; ifd ≥ 9, then the sequence of random variables(Yn −
E(Yn))/

√

V(Yn) does not converge to a fixed limit law.

The proof follows from that for Theorem1 and is omitted. Both constantsµ′
d andσ′

d can be computed
by the same procedure as forµd andσd.

By the recurrence

V(Yn) =
∑

0≤j<n

πn,j

(
E(Yj1) + · · · + E(Yj

2d
) − E(Yn) + Tn

)2
+ 2d

∑

0≤j<n

πn,jV(Yj),

we see that the variance is identically zero iffTn ≡ 1 for n ≥ 1. In this case,Yn ≡ n (the total number of
nodes in the tree). This also implies, when applying (12), the identity

2

d

∑

k≥0

Vk

(k + 1)(k + 2)
= 1 (d ≥ 1). (58)

The same method of proof we used for proving Theorem1 also applies to cover the case whenTn ∼√
n, which still leads to asymptotic normality forYn when1 ≤ d ≤ 8 with linear mean but with variance

of ordern log n. The same non-existence of fixed limit law also holds in the wider rangeTn = o(nα) when
d ≥ 9. More cases can be clarified as in [7]. Since the number of concrete examples (directly related to
cost measures of algorithms or quadtrees) is limited, we stop from considering other general limit results.

3.3.2 Concrete examples and extensions

We briefly discuss instead a few instances ofTn studied before in the literature.

Paging. The page usage of random quadtrees was studied in [26] and [19]; it can be regarded as a
generalization of the number of leaves and satisfies (57) with Tn = 1 whenn > b, andTn = 0 otherwise,
whereb ≥ 0 is a predetermined structural constant. We can also viewYn as enumerating the number of
nodesx with subtree sizes rooted atx larger thanb.

By Theorem3, the page usage in random quadtrees undergoes the same type ofphase change (of limit
laws) as the number of leaves. The mean constant is given by

µ′
d(b) =

2

d

∑

k≥0

(b + 1)!Vk

(k + 1)(k + 2) · · · (k + b + 2)
.
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If d = 2, then (see (35))

µ′
2(b) = 12(b + 1)!

∑

k≥0

(k + 1)!

(k + 3)(k + 4)(k + b + 2)!

= 12(b + 1)

∫ 1

0

(1 − x)bx−3

(

(1 − x) log(1 − x) + x − x2

2
− x3

6

)

dx

= 6b2 + 9b + 1 − b(b + 1)2π2 + 6b(b + 1)2
∑

1≤j≤b

j−2,

which coincides with the expression first derived in [26].
Ford ≥ 3, expressions forµ′

d are less explicit. We first simplifyΥ(s) (see (40)) as follows.

Υ(s) =
∑

k≥0

(b + 1)!

(k + 2) · · · (k + b + 2)
· Γ(k + 1)Γ(1 − s)

Γ(k + 2 − s)

= (b + 1)
∑

0≤ℓ≤b

(
b

ℓ

)

(−1)ℓΩℓ+2(s),

where

Ωa(s) :=

∫ 1

0

(1 − x)−s
∑

k≥0

xk

k + a
dx (ℜ(s) < 1; a = 0, 1, . . . ),

(whena = 0, the term corresponding tok = 0 is dropped). Obviously,Ω0(s) = (s − 1)−2, and

Ω1(s) =
∑

k≥1

1

(s − k)2
= ψ′(1 − s) (ℜ(s) < 1).

By an integration by parts, we have the recurrence

Ωa+1(s) =
s

a
Ωa(s + 1) +

1

a2
− 1

as
(a ≥ 1).

By induction

Ωa(s) =

(
s + a − 2

a − 1

)

ψ′(1 − s) + poly1(a; s) (a = 1, 2, . . . ),

where poly1(a; s) is a polynomial of degreea− 2 such thatΩa(s) is of growth order|s|−1 at infinity (with
|s − k| ≥ ε). More precisely, since

ψ′(1 − s) =
∑

j≥0

(−1)j+1
Bjs

−j−1 (|s| → ∞, | arg(−s)| ≤ π − ε),

where theBj ’s denote Bernoulli numbers (see [14, p. 47, Eq. (7)])

poly1(a; s) =
∑

1≤j<a

sj−1
∑

j≤ℓ<a

|s(a − 1, ℓ)|
(a − 1)!

(−1)j−ℓ
Bj−ℓ (a ≥ 2),

where thes(a − 1, j)’s denote Stirling numbers of the first kind. From this expression, we deduce the
representation

Υ(s) =
(−1)b

b!
s(s − 1) · · · (s − b)ψ′(1 − s) + poly2(b; s),
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where poly2(b; s) is a polynomial of degreeb such thatΥ(s) is of growth order|s|−1 at infinity (with
|s − k| ≥ ε).

Then the integrand in the integral (40) has simple poles ats = 1, 2, . . . , b and double poles ats =
b + 1, b + 2, . . . . Summing over all residues of the poles yields

µ′
d(b) =

2d+1

d

∑

1≤k≤b

(−1)k

(
b
k

)
(k + 1)dk[k + 1]!

+
2d+1

d

∑

k>b

(−1)b(b + 1)
(

k
b+1

)

(k + 1)dk[k + 1]!

(
∑

1≤j<d

(ψ(k + 2 − λj) − ψ(k + 1)) − ψ(k + 1) + ψ(k − b)

)

.

Note that the last series diverges forb ≥ d. Numerically, the procedure we used for computingµd is
preferable.

Whenb ≥ d, we can use the recurrence

µ′
d(b) = 2−d

∑

0≤j≤d

Rd,jµ
′
d(b + j − 1) (b ≥ 1), (59)

so that once the values{µ′
d(0), . . . , µ′

d(d− 1)} are known, all values ofµ′
d(b) for higher values ofb can be

computed successively. HereRd,j is defined recursively asR0,0 := 1 and

Rd,j = (b + j + 1)Rd−1,j − (b + j − 1)Rd−1,j−1 (0 ≤ j ≤ d), (60)

with Rd,j = 0 whenj < 0 or j > d. The recurrence (59) is proved using the DE (37) and successive
integration by parts as follows.

µ′
d(b) =

2

d

∫ 1

0

(1 − x)b+1V (x) dx

=
21−d

d

∫ 1

0

(1 − x)b

x2
(x(1 − x)D)d x2V (x) dx

=
21−d

d

∫ 1

0

(1 − x)bRd(x)V (x) dx,

whereRd(x) = Rd(b; x) is defined by

Rd(x) :=
x2

(1 − x)b
(−Dx(1 − x))d (1 − x)b

x2

=
∑

0≤j≤d

Rd,j(1 − x)j,

with Rd,j satisfying (by induction) the recurrence (60). Thus (59) follows. Note that whenb = 0

µ′
d(0) =

2

d

∫ 1

0

(1 − x)V (x) dx =
21−d

d

∫ 1

0

V (x) dx = 1,

which can be proved directly by (40); see also (58).
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Node sorts. If Tn is equal to the probability that the root hasb nonempty subtrees, where0 ≤ b ≤ 2d,
thenYn represents the number of nodes in random quadtrees having exactlyb nonempty subtrees. The same
type of phase change phenomenon holds since the toll function is bounded; see [34, 35] for expressions
for the probability the root havingb subtrees.

In general, ifTn = δn,b, whereb ≥ 0, then the limitsµ′
d = µ′

d(b) of E(Yn)/n are calleduniversal
constantsin [36] since for general toll functionsTn with linear mean the linearity constant can be expressed
in terms of theµ′

d(b)’s as
∑

b≥1 Tbµ
′
d(b). Expressions forµ′

d(b) can be derived similar to the previous case.
We have

Υ(s) = Υb(s) =
∑

k≥0

b!Γ(k + 1)Γ(1 − s)

(k + 2) · · · (k + b + 2)Γ(k + 2 − s)

= −
∑

0≤ℓ≤b

(
b

ℓ

)

(−1)ℓ(ℓ + 1)Ωℓ+2(s)

= (−1)b+1 s2(s − 1) · · · (s − b + 1)

b!
ψ′(1 − s) + poly3(b; s),

where poly3(b; s) is a polynomial of degreeb such thatΥ(s) is of growth order|s|−1 at infinity (with
|s − k| ≥ ε). Also µ′

d(b) satisfies the recurrence

µ′
d(b) = 2−d

∑

0≤j≤d

Rd,jµ
′
d(b + j − 1) (b ≥ 1),

with Rd,j satisfyingRd,j = (b + j)Rd−1,j − (b + j − 1)Rd−1,j−1 for 0 ≤ j ≤ d. Note that in this case
Rd,0 = bd andRd,j = (−1)d−1(Pj−1(−b) − Pj(−b)) for 1 ≤ j ≤ d.

Total path length. In this case,Tn = n−1. Although Theorem3 does not apply, our method of moments
does, and we obtain convergence of all moments of(Yn−E(Yn))/n to some non-normal limit law for each
d ≥ 1; see [40], and [30] for similar details. In particular, the mean satisfies (see(14))

E(Yn) ∼ 2

d
n log n −

(

2 +
2

d
− 2γ − 2

d

∑

1≤j<d

ψ(2 − λj)

)

n,

and the variance is asymptotic toK4n
2, where

K4 =
3d

3d − 2d

∫

[0,1]d



1 +
2

d

∑

1≤j≤2d

qj(x) log qj(x)





2

dx.

To evaluate the integral, let

η̃(u, v) =

∫

[0,1]d
q1(x)u

∑

1≤ℓ≤2d

qℓ(x)v dx.

Thenη̃(u, v) = η(u, v) + 1/(u + v + 1)d, whereη is defined in (53), so that

η̃(u, v) =

(
1

u + v + 1
+

Γ(u + 1)Γ(v + 1)

Γ(u + v + 2)

)d

.
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It follows that

K4 =
3d

3d − 2d

(

1 +
4

d
· ∂

∂v
η̃(0, v)

∣
∣
∣
v=1

+
4

d2
2d ∂2

∂u∂v
η̃(u, v)

∣
∣
∣
u=1,v=1

)

=
3d

3d − 2d
· 21 − 2π2

9d
;

see also [40].
Unlike the number of leaves and other small cost measures, there is no change of limit law for total

path length since the order of the variance is not alterned for increasingd.

Expected profiles (or depth). Denote byZn,k the number of nodes at distancek to the root; theZn,k’s
are informative shape characteristics often referred to asthe profilesof the trees. ThedepthDn is the
distance of a randomly chosen node (alln nodes being equally likely) to the root. Then the probability that
the depth isk equalsE(Zn,k)/n. Consider the level polynomialsLn(y) :=

∑

k E(Zn,k)y
k. ThenLn(y)

satisfies the recurrence
Ln(y) = 1 + 2dy

∑

0≤j<n

πn,jLj(y) (n ≥ 1),

with L0(y) = 0; see [19]. The same analysis for the small toll functions part of Theorem2 (and the error
analysis in Section2.5) appliesmutatis mutandisand yields

Ln(y) = K(y)n2y1/d−1 + O
(

n2ℜ(y1/de2πi/d)−1 + nε
)

, (61)

where theO-term holds uniformly fory lying in some complex neighborhood of unity, and

K(y) =
2dy1/d

d

∑

k≥2

∏

3≤ℓ≤k(1 − 2y1/d/ℓ)

kd−1
∏

3≤ℓ≤k(1 − 2dy/ℓd)

(

(k − 1)
∑

1≤j<d

(
ψ(k + 1 − λjy

1/d) − ψ(k)
)
− 1

)

.

Thus the asymptotic normality (with optimal Berry-Esseen bound) of the depthDn follows from (61) and
the so-called quasi-power approximation theorems; see [24, Sec. IX.5] or [27]. Note that

K(1) =
2d+1

d

∑

k≥2

1

kd[k]!

(
∑

1≤j<d

(ψ(k + 1 − λj) − ψ(k)) − 1

k − 1

)

= 1 (d ≥ 2);

compare (58).
A considerable simplification of the expression forK(y) can be obtained by applying the finite differ-

ence integral representation for the closed-form expression (see [19])

Ln(y) = n − (1 − y)
∑

2≤k≤n

(
n

k

)

(−1)k
∏

3≤j≤k

(

1 − 2d

jd
y

)

(n ≥ 0),

giving

Ln(y) = − 1

2πi

∫ 1

2
+i∞

1

2
−i∞

Γ(n + 1)Γ(−s)

Γ(n + 1 − s)Γ(s + 1)d

∏

0≤ℓ<d

Γ(s + 1 − λℓy
1/d)

Γ(2 − λℓy1/d)
ds.

Then, by moving the line of integration to the left and summing the simple poles encountered, we obtain

Ln(y) =
1

1 − 2dy
+ K(y)n2y1/d−1

(

1 + O
(

n−ε + n−2ℜ(y1/d(1−e2πi/d))
))

,
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uniformly for |y| ≥ 2−d + ε, where

K(yd) :=
1

Γ(2y)d(2y − 1)

∏

1≤ℓ<d

Γ(2y(1 − e2ℓπi/d))

Γ(2 − 2ye2ℓπi/d)
.

This explicit expression and the quasi-power theorems in [27] also give more precise estimates for the
mean and variance of the depth

E(Dn) =
2

d
log n + [t] logK(et) + o(1),

V(Dn) =
2

d2
log n + 2[t2] logK(et) + o(1),

where

[t] logK(et) = K2 − 1 = −2 − 2

d
+ 2γ +

2

d

∑

1≤j<d

ψ(2 − λj),

2[t2] logK(et) =
2

d
(1 + γ) − 2π2

3d
+

2

d2
+

2

d2

∑

1≤j<d

(ψ(2 − λj) + 2(1 − λj)ψ
′(2 − λj)) .

Note thatnE(Dn) equals the expected total path length, orAn whenBn = n − 1.

4 Second phase change: convergence rates and local limit theorems
for Xn

We consider the convergence rate and local limit theorem forXn, which undergo another phase change.
Local limit theorems are more informative and precise than asymptotic normality. We use characteristic
functions and standard Fourier analysis (see [42]), the main estimate needed being based on the refined
method of moments introduced in [28] and the refined asymptotic transfers developed in Section2.5.

Local limit theorems. To state our result, let

ᾱ :=

{
1/3, if 1 ≤ d ≤ 7;√

2 − 1, if d = 8.

Theorem 4. Uniformly forx = o(n1/2−ᾱ),

P

(

Xn =
⌊

Xn + x
√

V(Xn)
⌋)

=
e−x2/2

√

2πV(Xn)

(
1 + O

(
(1 + |x|3)n−3(1/2−ᾱ)

))
.

The error terms in both cases are, up to the implied constants, optimal. Numerically,3(1/2 − ᾱ) ≈
0.2573 when d = 8. This local limit theorem (in the range of moderate deviations) also implies the
following convergence rate

sup
x∈R

∣
∣
∣
∣
∣
P

(

Xn − E(Xn)
√

V(Xn)
< x

)

− Φ(x)

∣
∣
∣
∣
∣
=

{
O(n−1/2), if 1 ≤ d ≤ 7;

O(n−3(3/2−
√

2)), if d = 8,
(62)

whereΦ(x) = (2π)−1/2
∫ x

−∞ e−t2/2 dt.
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Moment generating function ofXn normalized by that of a normal distribution with the same mean
and variance. Let Πn(y) := E(eXny) andφn(y) := e−E(Xn)y−V(Xn)y2/2Πn(y). From the recurrence (5),
we have

φn(y) =
∑

j1+···+j
2d=n−1

πn,jφj1(y) · · ·φj
2d

(y)e∆n,jy+∇n,jy
2

(n ≥ 1),

with φ0(y) = 1, where

∆n,j = δn,1 + E(Xj1) + · · · + E(Xj
2d

) − E(Xn),

∇n,j =
1

2

(
V(Xj1) + · · · + V(Xj

2d
) − V(Xn)

)
.

Note thatφn(y) is in general not a moment generating function.

Recurrences. Defineφn,k := φ
(k)
n (0). Then by the recurrence ofφn(y), we have

φn,k = ψn,k + 2d
∑

0≤j<n

πn,jφj,k (n ≥ 1),

whereφ0,k = 0 and

ψn,k =
∑

i0+i1+···+i
2d+2i

2d+1
=k

0≤i1,...,i
2d<k

k!

i0! · · · i2d !i2d+1!

∑

j1+···+j
2d=n−1

πn,jφj1,i1 · · ·φj
2d ,i

2d
∆i0

n,j∇
i
2d+1

n,j .

A uniform upper bound for φn,k. Recall thatᾱ = 1/3 when1 ≤ d ≤ 7, andᾱ =
√

2 − 1 whend = 8.
We will prove, by an inductive argument, that

|φn,k| ≤ k!Aknkᾱ (k, n ≥ 0), (63)

whereA is a suitable constant that will be specified later. Note that(63) holds fork = 0, 1, 2.

An upper bound for ∆n,j. By the estimate (49), we have

∆n,j = O (nα) =

{
O

(
n1/3−ε

)
, if 1 ≤ d ≤ 7;

O
(

n
√

2−1
)

, if d = 8,
(64)

uniformly for all tuples(j1, . . . , j2d).

An upper bound for ∇n,j. We need to refine the asymptotic estimate (4). Since the variance satisfies the
recurrence

V(Xn) =
∑

j1+···+j
2d=n−1

πn,j∆
2
n,j + 2d

∑

0≤j<n

πn,jV(Xj),

and the first sum on the right-hand side is bounded above by

∑

j1+···+j
2d=n−1

πn,j∆
2
n,j =

{
O

(
n2/3−2ε

)
, if 1 ≤ d ≤ 7;

O
(

n2
√

2−2
)

, if d = 8,
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we obtain, by applying Corollary (1),

V(Xn) = σ2
dn +

{
O

(
n2/3−2ε

)
, if 1 ≤ d ≤ 7;

O
(

n2(
√

2−1)
)

, if d = 8.

This implies that

∇n,j =

{
O

(
n2/3−2ε

)
, if 1 ≤ d ≤ 7;

O
(

n2(
√

2−1)
)

, if d = 8.
(65)

An estimate for φn,3. From (64) and (65), it follows that

ψn,3 =

{
O (n1−ε) , if 1 ≤ d ≤ 7;

O
(

n3(
√

2−1)
)

, if d = 8.

Thus (63) holds fork = 3 by applying (12) when1 ≤ d ≤ 7 and (15) whend = 8.

Induction. For higher values ofk, we use the estimates (by (64) and (65))

|∆n,j| ≤ K5n
ᾱ, |∇n,j| ≤ K6n

2ᾱ, (66)

uniformly for all tuples(j1, . . . , j2d).
Assume that (63) holdsφn,i for i < k. Then by (66) and induction

|ψn,k| ≤ k!nkᾱ
∑

i0+···+i
2d+2i

2d+1
=k

0≤i1,...,i
2d<k

Ai1+···+i
2d

Ki0
5 K

i
2d+1

6

i0!i2d+1!

∑

j1+···+j
2d=n−1

πn,j

(
j1

n

)i1ᾱ

· · ·
(

j2d

n

)i
2d ᾱ

≤ k!nkᾱeK5+K6

∑

0≤ℓ≤k

AℓS(ℓ), (67)

where

S(ℓ) :=
∑

i1+···+i
2d=ℓ

∑

j1+···+j
2d=n−1

πn,j

(
j1

n

)i1ᾱ

· · ·
(

j2d

n

)i
2d ᾱ

.

An estimate for S(ℓ). We now show thatS(ℓ) → 0 asℓ → ∞.

Lemma 5. For ℓ ≥ 0

S(ℓ) ≤ c(ℓᾱ + 1)−d (d ≥ 1), (68)

wherec > 0 is independent ofℓ andn.

Proof. First, by the strong law of large numbers

S(ℓ) ≤ c

∫

[0,1]d

∑

i1+···+i
2d=ℓ

∏

1≤h≤2d

qh(x)ihᾱdx

= c2d[zℓ]

∫

[0,1/2]d

∏

1≤h≤2d

1

1 − qh(x)ᾱz
dx.
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Observe that the smallest term among theqh(x)’s is q2d(x) = (1 − x1) · · · (1 − xd) whenx ∈ [0, 1/2]d.
Thus the dominant term for largeℓ comes fromq2d(x), and it follows that

[zℓ]

∫

[0,1/2]d

∏

1≤h≤2d

1

1 − qh(x)ᾱz
dx ∼

∫

[0,1/2]d
q2d(x)ℓᾱ

∏

1≤h<2d

1

1 − qh(x)/q2d(x)
dx

∼
∫

[0,1/2]d
(1 − x1)

ℓᾱ · · · (1 − x1)
ℓᾱ dx

∼ (ℓᾱ + 1)−d.

This proves (68).

Proof of (63). Substituting the estimate (68) into (67), we obtain

|ψn,k| ≤
c

(kᾱ + 1)d
k!Aknkᾱ.

Then, by the asymptotic transfer (15),

|φn,k| ≤
c′

(kᾱ + 1)d
k!Aknkᾱ,

wherec′ is independent ofn andk. Thusc′/(kᾱ + 1)d < 1 for large enoughk, sayk ≥ k0. Hence, (63)
follows by suitably tuningA for k ≤ k0; see [1] for similar details.

An estimate for the characteristic function for small y. Denote byϕn(y) = Πn(iy/
√

V(Xn)). Then,
by (63) and the Taylor series expansion,

∣
∣
∣ϕn(y) − e−y2/2

∣
∣
∣ = O

(

|y|3n−3(1/2−ᾱ)e−y2/2
)

(69)

for |y| ≤ ε0n
1/2−ᾱ, whereε0 > 0 is sufficiently small.

A uniform estimate for Πn(iy) for |y| ≤ ε. From (69), we deduce that

|Πn(iy)| ≤ e−ε1(n+1)y2

(n ≥ 3), (70)

for |y| ≤ ε0n
−ᾱ, whereε1 is a suitably chosen small constant.

We now prove that the estimate (70) indeed holds for|y| ≤ ε2, ε2 > 0 being a small constant. To that
purpose, choosen0 large enough and setε2 := ε0n

−ᾱ
0 . Then, (70) holds for3 ≤ n ≤ n0 and|y| ≤ ε2. For

n > n0, by (5) and induction,

|Πn(iy)| ≤
∑

j1+···+j
2d=n−1

πn,j|Πj1(iy)| · · · |Πj
2d

(iy)|

≤ e−ε1(n+1)y2−ε1(2d−2)y2

≤ e−ε1(n+1)y2

.

This concludes the induction proof.
Reformulating the estimate (70) yields the following global estimate forϕn(y)

|ϕn(y)| = O
(

e−εny2
)

(n ≥ 3), (71)

uniformly for |y| ≤ ε2n
1/2.
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Berry-Esseen bounds and local limit theorems. The convergence rates (62) now follows by (69), (71)
and the Berry-Esseen smoothing inequality

sup
x

∣
∣
∣
∣
∣
P

(

Xn − E(Xn)
√

V(Xn)
< x

)

− Φ(x)

∣
∣
∣
∣
∣
= O

(

R−1
n +

∫ Rn

Rn

∣
∣
∣
∣
∣

ϕn(y) − e−y2/2

y

∣
∣
∣
∣
∣

dt

)

,

whereRn := εn3(1/2−ᾱ); see [42].
For local limit theorems, we first observe that the span ofXn is 1 by induction, so that (70) can be

extended to|y| ≤ π (again by induction). Then Theorem4 follows by applying the Fourier inversion
formula

P(Xn = k) =
1

2π

∫ π

−π

e−ikyΠn(iy) dy,

wherek =
⌊

E(Xn) + x
√

V(Xn)
⌋

; see Figure3.
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Figure 3: Left: A Sedgewick plot of the absolute difference betweenP(Xn = k) and
e−(k−E(Xn))2/(2V(Xn))/

√

2πV(Xn) for n = 20, 22, . . . , 64 and ⌊0.35n⌋ ≤ k ≤ ⌊0.7n⌋ (normalized in
the unit interval) whend = 2. Right: the histogram ofP(Xn = k) for d = 3, n = 30 andk = 12, . . . , 23,
together with the corresponding normal curve (having the same mean and variance).

Extensions to general cost measures.The same method of proof applies to other cost measures in
random quadtrees. In particular, Assume thatTn in (57) is deterministic and satisfiesTn = O(nρ), where
ρ < 1/2. If 1 ≤ d ≤ 7, then we have the following Berry-Esseen bounds forYn.

sup
x

∣
∣
∣
∣
∣
P

(

Xn − E(Xn)
√

V(Xn)
< x

)

− Φ(x)

∣
∣
∣
∣
∣
=







O(n−1/2), if ρ < 1/3;
O(n−1/2 log n), if ρ = 1/3;
O(n−3(1/2−ρ)), if 1/3 < ρ < 1/2.
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Whend = 8, then

sup
x

∣
∣
∣
∣
∣
P

(

Xn − E(Xn)
√

V(Xn)
< x

)

− Φ(x)

∣
∣
∣
∣
∣

=







O(n−3(3/2−
√

2)), if ρ <
√

2 − 1;

O(n−3(3/2−
√

2)(log n)3), if ρ =
√

2 − 1;

O(n−3(1/2−ρ)), if
√

2 − 1 < ρ < 1/2.

The corresponding local limit theorems can be derived whenYn assumes only integer values.

5 Randomd-dimensional grid-trees

We consider briefly the phase changes in random grid-trees inthis section, the required asymptotic transfers
being also given.

Grid trees. Devroye [12] extended thed-dimensional point quadtrees andm-ary search trees as follows.
Instead of choosing the first point as the root, one chooses, say the firstm − 1 points (m ≥ 2) and places
them at the root. Thesem − 1 points then split the space intomd smaller regions (called grids) when no
pair of points is collinear. Each node in the corresponding grid-tree has at mostmd subtrees. Whenm = 2,
grid-trees are quadtrees; whend = 1, grid-trees reduce to the usualm-ary search trees; see [37].

Random grid-trees. Fix m ≥ 2 andd ≥ 1 throughout this section. Assume that the input is a sequence
of n random points uniformly and independently chosen from[0, 1]d. Construct the grid-tree from this
sequence. The resulting tree is called arandom grid-tree.

Phase changes of the number of leaves.For simplicity of presentation, we consider the number of
leaves in random grid-trees, denoted byXn.

m 2 3 4 5, . . . , 8 9, . . . , 26
d 1, . . . , 8 1, . . . , 4 1, . . . , 3 1, 2 1

Table 4: The setS of all pairs of(m, d) for which Xn is asymptotically normally distributed. The two
boundary cases(2, 26) (m-ary search trees) and(1, 8) (quadtrees) are both underlined.

Theorem 5. If (m, d) ∈ S, whereS is given in Table4, then

Xn − E(Xn)
√

V(Xn)

M→ N(0, 1);

if m ≥ 2, d ≥ 1 and (m, d) 6∈ S, then the sequence of random variables(Xn − E(Xn))/
√

V(Xn) does
not converge to a fixed limit law.

More refined results (and more phase changes) can be derived as in the case of quadtrees.
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Recurrence ofXn. The recurrence ofXn now has the form

Xn
D
=

∑

1≤j≤md

X
(j)
Jj

+ δn,1, (n ≥ 1),

with X0 = 0, whereXn, X
(1)
n , . . . , X

(md)
n , (J1, . . . , Jmd) are independent andXn

D
= X

(j)
n , 1 ≤ j ≤ md.

Moreover, the splitting probabilities can be expressed as

πn,j = P (J1 = j1, . . . , Jmd = jmd)

=

(
n − m + 1

j1, . . . , jmd

) ∫

([0,1]d)m−1

∏

1≤h≤md

h−1=(b1,...,bd)m

qh(x1, . . . ,xm−1)
jhdx1 . . . dxm−1

for all j1 + · · · + jmd = n − m + 1, where

qh(x1, . . . ,xm−1) =
∏

1≤i≤d

∑

0≤ℓ<m

1{ℓ}(bi)
(

x
(i)
(ℓ+1) − x

(i)
(ℓ)

)

,

with x(ℓ) denoting theℓ-th order statistic ofx1, . . . , xm−1 (x(0) := 0, xm := 1).

Recurrence of moments. All moments satisfy recurrences of the form

An = Bn + md
∑

0≤j≤n−m+1

πn,jAj, (n ≥ m − 1), (72)

whereπn,j denotes the probability that a specified subtree (say the first) of the root hasj nodes.
We now show thatπn,j can be expressed in the form

πn,j =
∑

j≤j1≤···≤jd−1≤n−m+1

(
n−1−jd−1

m−2

)

(
n

m−1

)

∏

1≤i<d

(
ji−ji−1+m−2

m−2

)

(
ji+m−1

m−1

) . (73)

To that purpose, we first splitπn,j as follows.

πn,j =
∑

j≤i1≤i2≤···≤id−1≤n−m+1

̟j;i1,...,id−1
,

where̟j;i1,...,id−1
denotes the probability that then random points are distributed in thed-dimensional unit

cube in the following way: the firstm − 1 points, denoted byx1, . . . ,xm−1, split [0, 1]d into md grids and
the remaining points are placed in these grids such that grids of the form

[

0, x
(1)
(1)

]

× · · · ×
[

0, x
(i)
(1)

]

×
[

x
(i+1)
(1) , 1

]

(i = 0, · · · , d),

containn − m − id−1 + 1, id−1 − id−2, . . . , i1 − j, j random points, respectively.
By definition, we have

̟j;i1,...,id−1
(

n−m+1
i0,i1−i0,...,id−id−1

) =

∫

([0,1]d)m−1

∏

1≤i≤d

(

x
(i)
(1)

)id−i
(

1 − x
(i)
(1)

)id−i+1−id−i

dx1 . . . dxm−1

=
∏

1≤r≤d

∫

[0,1]m−1

(

x
(r)
(1)

)id−r
(

1 − x
(r)
(1)

)id−r+1−id−r

dx
(r)
1 . . . dx

(r)
m−1, (74)
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wherei0 := j andid := n − m + 1. It remains to evaluate integrals of the form
∫

[0,1]m−1

xρ
(1)

(
1 − x(1)

)τ
dx1 . . . dxm−1,

whereρ, τ ≥ 0. By dividing the domain of integration into(m−1)! sets of the form{(x1, . . . , xm−1)|xσ(1) <
· · · < xσ(m−1)}, whereσ runs through all permutations ofm − 1 elements

∫

[0,1]m−1

xρ
(1)

(
1 − x(1)

)τ
dx1 . . . dxm−1 = (m − 1)!

∫

0≤x1≤···≤xm−1≤1

xρ
1 (1 − x1)

τ dx1 . . . dxm−1

= (m − 1)

∫ 1

0

xρ
1 (1 − x1)

β+m−2 dx1

= (m − 1)
Γ(ρ + 1)Γ(τ + m − 1)

Γ(ρ + τ + m)
,

by symmetry. Substituting this expression into (74) gives the desired result (73).

The DE. Let A(z) =
∑

n≥0 Anz
n, B(z) =

∑

n≥1 Bnzn, andf = A − B. Then the recurrence (72)
translates into the DE

(1 − z)m−1
D

m−1
(
zm−1(1 − z)m−1

D
m−1

)d−1
f(z) = m!dA(z),

or, in terms of theϑ-operator,

ϑm−1
(

zm−1ϑm−1
)d−1

f(z) = m!dA(z), (75)

whereϑm−1 = ϑ(ϑ + 1) · · · (ϑ + m − 2).

The normal form. We then rewrite the DE in the form

P0(ϑ)f(z) =
∑

1≤j≤(m−1)(d−1)

(1 − z)jPj(ϑ)f(z) + m!dB(z),

where thePj ’s are polynomials of degreedm. In particular,

P0(ϑ) = (ϑm−1)d − m!d =
∏

1≤j≤d

(

ϑm−1 − m!e2jπi/d
)

.

The unique case when the above DE reduces to a pure Cauchy-Euler type isd = 1. Also the “lineariza-
tion” achieved by the Euler transform does not seem to work directly for m ≥ 3. This says that it is not
obvious how to derive an explicit expression such as (38) whenm ≥ 3.

Zeros of P0(x). Our method of proof for deriving the asymptotic transfers ismostly operational and
requires only limited properties of the zeros of the indicial polynomialP0(x). The proofs of the following
properties are straightforward and thus omitted.

• The zero with the largest real part isx = 2. All other zeros have real parts strictly less than2.

• All zeros ofP0(x) are simple (we need only this property forx = 2 and the second largest zeros in
real part).

Other properties similar to those for the cased = 1 (m-ary search trees) can be derived as in [37, Ch. 3].
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Asymptotic transfers. We state the main asymptotic transfers needed for proving Theorem5.
Let Hm :=

∑

1≤j≤m 1/j denotes the harmonic numbers. Define

KB :=
1

d(Hm − 1)

∑

k≥0

VkB
∗(k + 2), (76)

when the series converges, whereVk is defined recursively byVk = 0 whenk < 0, V0 = 1, and

Vk =
∑

1≤ℓ≤(m−1)(d−1)

Pℓ(k + 2)

P0(k + 2)
Vk−ℓ (k ≥ 1),

andB∗(s) :=
∫ 1

0
B(x)(1 − x)s−1 dx when the integral converges.

Theorem 6. LetAn be defined by the recurrence (72) with A0 and{Bn}n≥1 given. Then

(i) (Small toll functions)

An ∼ KBn iff Bn = o(n) and
∣
∣
∣

∑

n

Bnn
−2

∣
∣
∣ < ∞,

where the constantKB is given in (76);

(ii) (Linear toll functions) Assume thatBn = cn + un, wherec ∈ C andun is a sequence of complex
numbers. Then

An ∼ c

d(Hm − 1)
n log n + K1n iff un = o(n) and

∣
∣
∣

∑

n

unn
−2

∣
∣
∣ < ∞.

HereK1 := cK2 + Ku with Ku defined by replacing the sequenceBn by un in (76) andK2 given
explicitly by

K2 :=
1

d(Hm − 1)

(
∑

k≥1

Vk

k(k + 1)
+ γ − 2 − d

2
(Hm − 1) +

H
(2)
m − 1

2(Hm − 1)

)

,

whereH
(2)
m :=

∑

1≤j≤m 1/j2.

(iii) (Large toll functions) Assume thatℜ(υ) > 1 andc ∈ C. Then

Bn ∼ cnυ iff An ∼ c((υ + 1)m−1)d

((υ + 1)m−1)d − m!d
nυ.

In particular, ifd = 1, thenVk = δk,0 and

KB =
B∗(2)

Hm − 1
=

1

Hm − 1

∑

k≥0

Bk

(k + 1)(k + 2)
;

see [3].
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Growth order of Vk for grid-trees. The sequenceVk satisfies the DE

(
(Dzz + m − 2) · · · (Dzz + 1)Dzz(1 − z)m−1

)d−1

× (Dzz + m − 2) · · · (Dzz + 1)Dz

(
z2V (z)

)
− m!dzV (z) = 0,

implying that the solution of the formV (z) = (1 − z)−sφ(1 − z) has the indicial equation

sd(s + 1)d · · · (s + m − 2)d = 0.

Thus we deduce that
Vk = O

(
k−1(log k)c

)
,

for somec ≥ d− 2. This implies that the series in (76) is convergent for both cases of small and linear toll
functions.

Refining the asymptotic transfer for small toll functions. To derive the second-order term forE(Xn)
andV(Xn), we also need the following types of transfer.

Let α + 1 denote the real part of the second largest zeros ofP0(x) (all zeros arranged in decreasing
order according to their real parts), andβ > 0 denote the absolute value of the imaginary part of either
zero.

Proposition 2. Assume thatAn satisfies (72).

(i) If Bn ∼ cnυ, wherec ∈ C andα < ℜ(υ) < 1, then

An = KBn +
c((υ + 1)m−1)d

((υ + 1)m−1)d − m!d
nυ + o(nυ + nε),

whereKB is defined in (76).

(ii) If Bn = o(nα), then

An = KBn + K(λ1)n
α+iβ + K(λ2)n

α−iβ + o(nα + nε),

where theK(λj)’s are constants whose expressions are similarly defined as in(48). If theBk’s are
all real, thenK(λ1) = K(λ2).

These types of transfer and the inductive arguments used forquadtrees can be applied to prove local
limit theorems forXn with optimal convergence rates. Limit theorems for many other shape parameters
can also be derived. We mention only the application to totalpath length.

Total path length. Neininger and R̈uschendorf [40] derived a general limit law for the total path length
in random split trees of Devroye (see [12]), which cover in particular grid-trees. Their result is based on
the assumption that the expected total path length satisfiesasymptoticallycn log n + c′n. Our asymptotic
transfer for linear toll functions shows that this is the case for grid-trees. This proves the limit law for the
total path length in random grid-trees. Note that the limit law can also be derived directly by method of
moments and our asymptotic transfer for large toll functions.
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6 Conclusions

We extended in this paper the asymptotic theory for Cauchy-Euler DEs developed in [7] to essentially DEs
with polynomial coefficients (often referred to asholonomic DEs) andz = 0 not an irregular singularity.
Not only the results are very general, but also the method of proof requires almost no knowledge on DEs.
Indeed, since all our manipulations are based on linear operators, only properties of the first-order DEs
are used, which can be further avoided by completely operating on recurrences of quicksort type (see
[30]). The main feature of such an approach is that all differential operators are regarded as coefficient-
transformers, so that no analytic properties are needed forthe functions involved.

We applied the general asymptotic transfers developed in this paper to clarify the phase changes of
limit laws in quadtrees and more general grid-trees. Further applications to distributional properties of
profiles of random search trees will be given elsewhere.

For more methodological interest, we conclude this paper bymentioning an alternative approach to
proving general asymptotic transfers forAn (under suitable growth information onBn) based solely on the
theory of differential equations. Such an approach was inspired by the series of papers by Flajolet and his
coauthors (see [17, 20, 22, 26]). We start from the method of Frobenius and seeks solutionsof the form
(1− z)−λkφ(1− z) for the homogeneous DE(ϑ(zϑ)d−1 − 2d)f(z) = 0, whereφ(z) is analytic atz = 0. A
detailed information on the zeros ofP0(x) is needed; in particular, we can show that whend is a multiple
of 6 there are two pairs of non-real zeros differing by integers (in that case, logarithmic terms need to be
introduced). Then we use the method of variation of parameters (see [32]) for the non-homogeneous DE;
a long and laborious calculation of the Wronskians then leadsto the form

f(z) =
∑

0≤j<d

ξj(z)(1 − z)−λj

+ 2d
∑

0≤j<d

ηj(z)(1 − z)−λj

∫ z

0

(1 − t)λj−1B(t)
∑

0≤r≤κd

ζj,r(t)
(

log
z

t

)r

dt, (77)

whereκd ≤ (d − 1)2 andξj, ηj, ζj,r are functions analytic in the unit circle satisfying
∑

n |[zn]χ(z)| <
∞, whereχ ∈ {ξj, ηj, ζj,r}. Similar expressions can be derived for

∑

1≤j<d(1 − z)jPj(ϑ)f . Then the
sufficiency proofs of the transfers (12), (13), (15) are reduced to deriving asymptotic transfers for integrals
of the form

ξ(z)(1 − z)−υ

∫ z

0

(1 − t)υ−1B(t)η(t)
(

log
z

t

)r

dt.

Such a general approach, although quickly gives the generalform of the solution, does not seem easily
amended for getting expressions for the leading constants (similar to most asymptotic problems on DEs
and linear differential systems); also for more general DEssuch as (75), the precise characterizetion of the
zero locations (of their differences) requires more delicate analysis.
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Abstract

We prove convergence in distribution for the profile (the number of nodes at each level), normalized
by its mean, of random recursive trees when the limit ratio˛ of the level and the logarithm of tree size
lies in Œ0; e/. Convergence of all moments is shown to hold only for˛ 2 Œ0; 1� (with only convergence
of finite moments when̨ 2 .1; e/). When the limit ratio is0 or 1 for which the limit laws are both
constant, we prove asymptotic normality for˛ D 0 and a “quicksort type” limit law for̨ D 1, the
latter case having additionally a small range where there isno fixed limit law. Our tools are based on
contraction method and method of moments. Similar phenomena also hold for other classes of trees; we
apply our tools to binary search trees and give a complete characterization of the profile. The profiles
of these random trees represent concrete examples for whichthe range of convergence in distribution
differs from that of convergence of all moments.

1 Introduction

The profile or height profile of a tree is the sequence of numbers whosek-th element enumerates the
number of nodes at distancek from the root of the tree (or the number of descendants ink-th generation in
branching process terms). Profiles of trees are fine shape characteristics encountered in diverse problems
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2Partially supported by a research award of the Alexander vonHumboldt Foundation and by National Science Council under

the grantNSC-92-2118-M-001-019.
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such as breadth-first search, data compression algorithms (Jacquet, Szpankowski, Tang, 2001), random
generation of trees (Devroye and Robson, 1995), and the level-wise analysis of quicksort (Chern and
Hwang, 2001b, Evans and Dunbar, 1982). In addition to their interest in applications and connections to
many other shape parameters, we will show, through recursive trees and binary search trees, that profiles
of random trees having roughly logarithmic height are a richsource of many intriguing phenomena. The
high concentration of nodes at certain (log) levels resultsin the asymptotic bimodality for the variance, as
already demonstrated in Drmota and Hwang (2005a); our purpose of this paper is to unveil and clarify the
diverse phenomena exhibited by the limit distributions of the profiles of random recursive trees and binary
search trees. The tools we use, as well as the results we derive, are of some generality.

Recursive trees. Recursive trees have been introduced as simple probabilitymodels for system gener-
ation (Na and Rapoport, 1970), spread of contamination of organisms (Meir and Moon, 1974), pyramid
scheme (Bhattacharya and Gastwirth, 1984, Smythe and Mahmoud, 1995), stemma construction of philol-
ogy (Najock and Heyde, 1982), Internet interface map (Janicet al., 2002), stochastic growth of networks
(Chan et al., 2003). They are related to some Internet models(van Mieghem et al., 2001, van der Hofstad
et al., 2001, Devroye, McDiarmid and Reed, 2002) and some physical models (Tetzlaff, 2002); they also
appeared in Hopf algebra under the name of “heap-ordered trees”; see Grossman and Larson (1989). The
bijection between recursive trees and binary search trees not only makes the former a flexible representa-
tion of the latter but also provides a rich direction for further extensions; see for example Mahmoud and
Smythe (1995).

A simple way of constructing a random recursive tree ofn nodes is as follows. One starts from a root
node with the label1; at stagei (i D 2; : : : ; n/ a new node with labeli is attached uniformly at random
to one of the previous nodes (1; : : : ; i � 1). The process stops after noden is inserted. By construction,
the labels of the nodes along any path from the root to a node form an increasing sequence; see Figure2
for a recursive tree of10 nodes. For a survey of probabilistic properties of recursive trees, see Smythe and
Mahmoud (1995).

Known results for the profile of recursive trees. Let Xn;k denote the number of nodes at levelk in a
random recursive tree ofn nodes, whereXn;0 D 1 (the root) forn � 1. ThenXn;k satisfies (see van der
Hofstad et al., 2002)

Xn;k
DD XIn;k�1 C X �

n�In;k ; (1)

for n; k � 1 with Xn;0 D 1 � ın;0 (ın;0 being Kronecker’s symbol), where.Xn;k/, .X �
n;k

/ and.In/ are

independent,Xn;k
DD X �

n;k
, andIn is uniformly distributed overf1; : : : ; n � 1g.

Meir and Moon (1978) showed (implicitly) that

�n;k WD E.Xn;k/ D s.n; k C 1/

.n � 1/!
.0 � k < n/; (2)

wheres.n; k/ denotes the unsigned Stirling numbers of the first kind; see also Moon (1974) and Donda-
jewski and Szymański (1982). By the approximations given in Hwang (1995), we then have

�n;k D �k
n

�.1 C ˛n;k/k!

�

1 C O
�

��1
n

��

; (3)

uniformly for 1 � k � K�n, for anyK > 1, where,here and throughout this paper,

�n WD maxflogn; 1g; ˛n;k WD k=�n;
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and� denotes the Gamma function. This approximation implies, inparticular, a local limit theorem for the
depth (distance of a random node to the root); see Devroye (1998), Szymański (1990), Mahmoud (1991).

The second moment is also implicit in Meir and Moon (1978)

E.X 2
n;k/ D

X

0�j�k

�

2j

j

�

s.n; k C j C 1/

.n � 1/!
I

see also van der Hofstad et al. (2002). Precise asymptotic approximations for the varianceV.Xn;k/ were
derived in Drmota and Hwang (2005a) for all ranges ofk. In particular, the variance is asymptotically
of the same order as�2

n;k
when˛ 2 .0; 2/ exceptk � �n (where the profile variance exhibits a bimodal

behavior).

Limit distribution when 0 � ˛ < e. From the asymptotic estimate (3), we have

log�n;k

�n

! ˛ � ˛ log˛;

wherehere and throughout this paperk D k.n/ and˛ WD limn!1 k.n/=�n. Thus�n;k ! 1 when
˛ < e. Note that the expected height (length of the longest path from the root) of random recursive trees
is asymptotic toe�n; see Devroye (1987) or Pittel (1994).

Define a class of random variablesX.˛/ by the fixed-point equation

X.˛/
DD ˛U ˛X.˛/ C .1 � U /˛X.˛/�; (4)

with E.X.˛// D 1, whereX.˛/; X.˛/�; U are independent,X.˛/� DD X.˛/, andU is uniformly dis-
tributed in the unit interval; see Proposition1 for existence and properties ofX.˛/. DefineX.0/ D 1.

Theorem 1. .i/ If 0 � ˛ < e, then

Xn;k

�n;k

D�! X.˛/; (5)

where
D�! denotes convergence in distribution.

.ii / If 0 � ˛ < m1=.m�1/, wherem � 2, thenXn;k=�n;k converges toX.˛/ with convergence of the
first m moments but not the.m C 1/-st moment.

In particular, convergence of the second moment holds for0 � ˛ < 2.

Corollary 1. If 0 � ˛ < 2, then

V.Xn;k/ �
�

�.˛ C 1/2

.1 � ˛=2/�.2˛ C 1/
� 1

�

�2
n;k :

Note that the coefficient on the right-hand side becomes zerowhen˛ D 0 and˛ D 1, and the variance
indeed exhibits abimodal behaviorwhen˛ D 1; see Figure1 for a plot and Drmota and Hwang (2005a)
or below for more precise approximations to the variance.

Sincem1=.m�1/ # 1, the unit interval is the only range where convergence of allmoments holds.
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Figure 1: A plot of E.Xn;k/ (the unimodal curve),V.Xn;k/ (the bimodal curve with higher valley), and
jE.Xn;k � �n;k/3j (right) of the numberXn;k of nodes at levelk in random recursive trees ofn D 1100

nodes, all normalized by their maximum values. Note that thevalley of jE.X1100;k � �1100;k/3j (when
normalized byn3) is deeper than that ofV.X1100;k/ (normalized byn2); see Corollary5 for the general
description.

Corollary 2. If 0 � ˛ � 1, then

Xn;k

�n;k

M�! X.˛/; (6)

where
M�! denotes convergence of all moments. Convergence of all moments fails for1 < ˛ < e.

Thus the profile of random recursive trees represents a concrete example for whichthe range of con-
vergence in distribution is different from that of convergence of all moments.We will show that such a
property also holds for random binary search trees; it is expected to hold for other trees like ordered (or
plane) recursive trees andm-ary search trees, but the technicalities are expected to bemuch more compli-
cated. We focus at this stage on new phenomena and their proofs, not on generality.

The proof of (5) relies on the contraction method developed in Neininger and Rüschendorf (2004) (see
also the survey paper Rösler and Rüschendorf, 2001), and the moment convergenceXn;k=�n;k uses the
method of moments. Both methods are technically more involved because we are dealing with recurrences
with two parameters. We will indeed prove a stronger approximation to (5) by deriving a rate under the
Zolotarev metric (see Zolotarev, 1976).

But why m1=.m�1/? This is readily seen by the recurrence of the moments�m.˛/ WD E.X.˛/m/ of
X.˛/

�m.˛/ D 1

m � ˛m�1

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/˛h�1 �.h˛ C 1/�..m � h/˛ C 1/

�.m˛ C 1/
.m � 2/; (7)

where�0.˛/ D �1.˛/ D 1. This recurrence is well-defined for�m.˛/ when˛ < m1=.m�1/. This explains
the special sequencem1=.m�1/.

Note that sinceE.X.˛/m/ D 1 for ˛ � m1=.m�1/, we haveE.Xn;k=�n;k/m ! 1 in that range.

A “quicksort-type” limit distribution when ˛ D 1. SinceX.1/ D 1, we can refine the limit result (5)
for ˛ D 1 as follows.
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Theorem 2. .i/ If k D �n C tn;k , wherejtn;k j ! 1 andtn;k D o.�n/, then

Xn;k � �n;k

tn;k�k�1
n =k!

M�! X 0.1/; (8)

whereX 0.1/ WD .d=d˛/X.˛/j˛D1 satisfies

X 0.1/
DD UX 0.1/ C .1 � U /X 0.1/

� C U C U logU C .1 � U / log.1 � U /;

with X 0.1/; X 0.1/
�
; U independent andX 0.1/

DD X 0.1/
�.

.ii / If k D �n C O.1/, then the sequence of random variables.Xn;k � �n;k/=
p

V.Xn;k/ does not
converge to a fixed law.

Although (8) can also be proved by the contraction method, we prove both results of the theorem by
the method of moments because the proof for the non-convergence part is readily modified from that for
(8); see also Chern et al. (2002) for more examples having no convergence to fixed limit law. On the other
hand, since the distribution ofX 0.1/ is uniquely characterized by its moment sequence (see (41)), we have
the convergence in distribution as follows.

Corollary 3. If k D �n C tn;k , wherejtn;k j ! 1 andtn;k D o.�n/, then

Xn;k � �n;k

tn;k�k�1
n =k!

D�! X 0.1/:

The same limit lawX 0.1/ also appeared in the total path length (which is
P

k kXn;k) of recursive trees
(see Dobrow and Fill, 1999), or essentially the total left path length of random binary search trees, and the
cost of an in-situ permutation algorithm; see Hwang and Neininger (2002).

The appearance of the same limit law as the total path length is not a coincidence.Intuitively, almost
all nodes lie at the levelsk D �n C O.

p
�n/ (sinceE.Xn;k/ � n=

p
�n by (3)) and it is these nodes

that contribute predominantly to the total path length; seealso (9) below for an estimate of the variance.
Analytically, a deeper connection between the profile and the total path length is seen through the level
polynomials

P

k Xn;kzk (properly normalized) for which we can derive, following Chauvin et al. (2001),
an almost sure convergence to some (complex-valued) limit random variable. From such a uniform con-
vergence, the profile is quickly linked to the total path length by taking derivative of the normalized level
polynomial with respect toz and substitutingz D 1. Indeed, limit theorems for weighted path-lengths of
the form

P

k kmXn;k , as well as the width (maxk Xn;k), can be obtained as by-products. These and finer
results on correlations and expected width are discussed inDrmota and Hwang (2005b).

Asymptotics of the variance. As a consequence of our convergence of all moments, we have the fol-
lowing estimate for the variance.

Corollary 4. If k D �n C tn;k , wheretn;k D o.�n/, then the variance ofXn;k satisfies

V.Xn;k/ � p2.tn;k/

�

�k�1
n

k!

�2

; (9)

wherep2.tn;k/ WD c2t2
n;k

C 2c1tn;k C c0 with

c2 WD 2 � �2

6
; c1 WD c2.1 �  / � �.3/ C 1

c0 WD c2

�

 2 � 2 C 3
�

� 2.�.3/ � 1/.1 �  / � �4

360
: (10)

Here denotes Euler’s constant and�.3/ WD
P

j�1 j �3.
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The expression (9) explains the valley for the variance in Figure1. Note thatV.Xn;k/=�2
n;k

D
O.t2

n;k
=�2

n/ whentn;k D o.�n/.
Our proof indeed yields the following extremal orders ofjE.Xn;k � �n;k/mj for m � 2.

Corollary 5. The absolute value of them-th central moment satisfies

max
0�k<n

jE.Xn;k � �n;k/mj � ��m
n nm;

min
jk��njDO.

p
�n/

jE.Xn;k � �n;k/mj � ��3m=2
n nm;

where the maximum is achieved atk D �n ˙
p

�n.1 C o.1// and the minimum atk D �n C O.1/.

More refined results can be derived as in Drmota and Hwang (2005a). For example, by (40) below, we
have

max
0�k<n

jE.Xn;k � �n;k/mj � jE.X 0.1/m/je�m=2

�

np
2��n

�m

;

for m � 2, whereE.X 0.1/m/ can be computed recursively; see (41).

Asymptotic normality when ˛ D 0. The profileXn;k in the remaining range1 � k D o.�n/ will be
shown to be asymptotically normally distributed. It is known (see Bergeron et al., 1992) that the out-degree
of the rootXn;1 satisfies

P.Xn;1 D j / D s.n � 1; j /

.n � 1/!
.1 � j < n/I

thusXn;1 is asymptotically normal with mean and variance both asymptotic to �n. Equivalently,Xn;1 is
the number of nodes on the rightmost branch (the path starting from the root and always going right until
reaching an external node) in a random binary search trees ofn � 1 nodes; see the transformation below
for more information.

Let ˆ.x/ WD .2�/�1=2
R x

�1 e�t2=2 dt denote the distribution function of the standard normal distribu-
tion.

Theorem 3. The distribution of the profileXn;k satisfies

sup
x

ˇ

ˇ

ˇ

ˇ

ˇ

P

 

Xn;k � �k
n=k!

�
k�1=2
n =

p

.k � 1/!2.2k � 1/
< x

!

� ˆ.x/

ˇ

ˇ

ˇ

ˇ

ˇ

D O

0

@

s

k

�n

1

A ; (11)

uniformly for1 � k D o.�n/, with mean and variance asymptotic to
8

ˆ

ˆ

<

ˆ

ˆ

:

E.Xn;k/ � �k
n

k!
;

V.Xn;k/ � �2k�1
n

.k � 1/!2.2k � 1/
:

In particular,Xn;2 is asymptotically normally distributed with mean asymptotic to 1
2
�2

n and variance to
1
3
�3

n. A similar central limit theorem appeared in the logarithmic order of a random element in symmetric
groups; see Erdős and Turán (1967).

Unlike previous cases, the proof of this result is based on a polynomial decomposition of the associated
generating functions using characteristic functions and singularity analysis (see Flajolet and Odlyzko,
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Figure 2:A recursive tree of10 nodes and its corresponding transformed binary increasingtree of9 nodes.

1990), the reasons being.i/ this method leads to the optimal Berry-Esseen bound (11), which is not
obvious by the method of moments;.ii / it is of independent methodological interests, and.iii / it can also
be applied to give an alternative proof of (6).

The asymptotic normality ofXn;k when˛ D 0 indicates that nodes are generated in a very regular way
in recursive trees, at least for the firsto.�n/ levels. The rough picture here is that each node at these levels
“attracts” about�n=k new-coming nodes, as is obvious from (3); see also Drmota and Hwang (2005b)
for an asymptotic independence property for the number of nodes at two different levels, both beingo.�n/

away from the root.

Profiles of random binary search trees. Binary search trees are one of the most studied fundamental
data structures in Computer Algorithms. They have also beenintroduced in other fields under different
forms; see Drmota and Hwang (2005a) for more references.

This tree model is characterized by a recursive splitting process in whichn � 2 distinct labels are
split into a root and two subtrees formed recursively by the same procedure (one may be empty) of sizes
Jn andn � 1 � Jn, whereJn is uniformly distributed inf0; 1; : : : ; n � 1g. Such a model is isomorphic
to binary increasing treesin which a sequence ofn � 2 continuous random variables (independent and
identically distributed) is split into a root with the smallest label and two subtrees formed recursively by the
same splitting process corresponding to the subsequences to the left and right respectively of the smallest
label. Note that when given a random permutation ofn elements the size of the left subtree of the binary
increasing tree constructed from the permutation equalsj , 0 � j � n � 1 with equal probability1=n, the
same as in random binary search trees.

A recursive tree can be transformed into a binary increasingtree by the well-known procedure (referred
to as thenatural correspondencein Kunth, 1997 and therotation correspondenceby others): drop first the
root and arrange all subtrees from left to right in increasing order of their root labels; sibling relations are
transformed into right branches (of the leftmost node in that generation) and the leftmost branches remain
unchanged; a final relabeling (using labels from1 to n � 1) of nodes then yields a binary increasing tree
of n � 1 nodes. Such a transformation is invertible; see Figure2.

Under this transformation, the profileXn;k in recursive trees becomes essentially the number of nodes
in random binary search trees ofn � 1 nodes with left-distancek � 1 (k � 1), theleft-distanceof a node

7



being the number of left-branches needed to traverse from the root to that node. This also explains the
recurrence (1).

Known and new results for profiles of random binary search trees. We distinguish two types of nodes
for binary search trees: external nodesYn;k (virtual nodes completed so that all nodes are of out-degree
either zero or two) and internal nodesZn;k (nodes holding labels). Chauvin et al. (2001) establishedalmost
sure convergencefor Yn;k=E.Yn;k/ andZn;k=E.Zn;k/ when1:2 � ˛ � 2:8, and recently Chauvin et al.
(2005) extended the range forYn;k=E.Yn;k/ to the optimal rangę � < ˛ < ˛C, the two numbers̨ � �
0:37; ˛C � 4:31 being the fill-up and height constants (of binary search trees), namely,0 < ˛� < 1 < ˛C
solving the equatione.z�1/=z D z=2; see also Chauvin and Rouault (2004). For other known results on the
profilesYn;k , see Drmota and Hwang (2005a) and the references therein.

Our tools for recursive trees also apply to binary search trees. Briefly, we derive convergence in
distribution forYn;k=E.Yn;k/ andZn;k=E.Zn;k/ in the rangę 2 .˛�; ˛C/ and convergence of all moments
for ˛ 2 Œ1; 2�, the degenerate cases˛ D 1; 2 being further refined by more explicit limit laws; see Section 7
for details.

While it is expected that the profiles for both types of nodes have similar behaviors toXn;k, we will
derive finer results showing more delicate structural difference between internal nodes and external nodes.

Organization of the paper. Since most of our asymptotic approximations are based on thesolution
(exact or asymptotic) of the underlying double-indexed recurrence (inn andk), we start from solving
the recurrence in the next section. The proof of the convergence in distribution (5) of Xn;k=�n;k when
0 < ˛ < e by contraction method is given in Section3. Then we prove the moment convergence part of
Theorem1 in Section4 and Theorem2 in Section5. The asymptotic normality when̨ D 0 is proved in
Section6, where an alternative proof of (6) is also indicated. Our methods of proof can be easily amended
for binary search trees, and the results are given in Section7. We conclude this paper with a few questions.

Notations. Throughout this paper,�n WD maxflogn; 1g, ˛n;k WD k=�n and˛ WD limn!1 ˛n;k when the
limit exists. The symbolŒzn�f .z/ stands for the coefficient ofzn in the Taylor expansion off .z/. The
generic symbols" andK always represent sufficiently small and large, respectively, positive constants
whose values may vary from one occurrence to another. Finally, U represents a uniformŒ0; 1� random
variable.

2 The double-indexed recurrence and asymptotic transfer

Since all moments (centered or not) satisfy the same recurrence, we derive in this section the exact solution
and study a simple type of asymptotic transfer (relating theasymptotics of the recurrence to that of the non-
homogeneous part) for such a recurrence.

By (1), we have the recurrence for the probability generating functionsPn;k.y/ WD E.yXn;k /

Pn;k.y/ D 1

n � 1

X

1�j<n

Pj ;k�1.y/Pn�j ;k.y/ .n � 2I k � 1/; (12)

with Pn;0.y/ D y for n � 1 andP0;k.y/ D 1.

8



Recurrence of factorial moments. Let

A
.m/

n;k
WD E.Xn;k.Xn;k � 1/ � � � .Xn;k � m C 1// D P

.m/

n;k
.1/:

ThenA
.0/

n;k
D 1 for n; k � 0. By (12), we have the recurrence

A
.m/

n;k
D 1

n � 1

X

1�j<n

�

A
.m/

j ;k�1
C A

.m/

j ;k

�

C B
.m/

n;k
.n � 2I k; m � 1/;

where

B
.m/

n;k
D

X

1�h<m

�

m

h

�

1

n � 1

X

1�j<n

A
.h/

j ;k�1
A

.m�h/

n�j ;k
; (13)

with the boundary conditionsA.1/

n;0 D 1 for n � 1 andA
.m/

n;0 .0/ D 0 for m � 2 andn � 1.

Exact solution of the recurrence. Consider a recurrence of the form

an;k D 1

n � 1

X

1�j<n

�

aj ;k C aj ;k�1

�

C bn;k ; .n � 2I k � 1/; (14)

with a1;k andbn;k given. We assume, without loss of generality, thata0;k D 0 (otherwise, we need only to
modify the values ofa1;k andbn;k).

Lemma 1. For n � 1 andk � 0,

an;k D bn;k C
X

1�j<n

X

0�r�k

bj ;k�r

j
Œur �.u C 1/

Y

j<`<n

�

1 C u

`

�

; (15)

whereb1;k WD a1;k .

Proof.Let an.u/ WD
P

k anC1;kuk andbn.u/ WD
P

k bnC1;kuk . Thenan.u/ satisfies the recurrence

an.u/ D 1 C u

n

X

0�j<n

aj.u/ C bn.u/ .n � 1/;

with the initial conditiona0.u/ D
P

k a1;kuk . By taking the differencenan.u/ � .n � 1/an�1.u/, we
obtain

an.u/ D
�

1 C u

n

�

an�1.u/ C bn.u/ � n � 1

n
bn�1.u/ .n � 2/:

Solving this linear recurrence yields

an.u/ D bn.u/ C .1 C u/
X

0�j<n

bj.u/

j C 1

Y

jC2�`�n

�

1 C u

`

�

.n � 1/;

(sinceb0.u/ WD a0.u/). Taking coefficient ofuk on both sides leads to (15).
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Mean value. Applying (15) with bn;k D ın;1ı0;k , we obtain forn � 1 andk � 0

�n;k D Œuk �
Y

1�`<n

�

1 C u

`

�

(16)

D s.n; k C 1/

.n � 1/!
:

This rederives (2).

A uniform estimate for the expected profile. For later use, we derive a uniform bound for�n;k .

Lemma 2. The mean satisfies

�n;k D O
�

.v�n/�1=2v�knv
�

; (17)

uniformly for1 � k < n, where0 < v D O.1/.

Proof.Note that by (16), we have the obvious inequality

�n;kvk �
Y

1�`<n

�

1 C v

`

�

.v > 0/;

which leads to�n;k D O
�

v�knv
�

for 1 � k < n. But this is too crude for our purpose.
By Cauchy’s integral formula,

�n;k � v�k

2�

Z �

��

Y

1�`�n

ˇ

ˇ

ˇ

ˇ

1 C veit

`

ˇ

ˇ

ˇ

ˇ

dt

� v�k

2�

Z �

��

exp

 

v.cost/
X

1�`�n

1

`
C O.1/

!

dt

D O
�

.v�n/�1=2v�knv
�

:

proving (17).
Note that whenk D O.�n/, then the right-hand side of (17) is optimal if we takev D k=�n and

(17) becomes�n;k D O.�k
n=k!/. Thus (17) is tight whenk D O.�n/. This also explains why we write

.v�n/�1=2 instead of��1=2
n (to keep uniformity whenk D o.�n/ and we choosev D k=�n).

On the other hand, leavingv unspecified in (17) and in many other estimates in this paper considerably
simplifies the analysis.

A simple asymptotic transfer. We will need the following result when applying the contraction method.
It roughly says that when the non-homogeneous partbn;k of (14) is of order�w

n;k
, wherew > 1, thenan;k

is also of the same order for certain range of˛.

Lemma 3. If bn;k D O
�

..v�n/�1=2v�knv/w
�

for all 1 � k � n, wherew > 1 and0 < v < v0, then

an;k D O

�

1

w � vw�1

�

.v�n/�1=2v�knv
�w
�

;

uniformly for1 � k � n, provided that0 < v < minfw1=.w�1/; v0g. Similarly, replacingO by o in the
estimate forbn;k yields ano-estimate foran;k .
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Proof.By the exact expression foran;k , we have, for0 < v < v0,

an;k � bn;k D O

0

@

X

1�j<n

X

0�r�k

1

j

�

.v�j/�1=2v�kCrj v
�w

Œur �.1 C u/
Y

j<`<n

�

1 C u

`

�

1

A : (18)

The inner sum overr can be simplified as follows.

X

0�r�k

v�.k�r/wŒur �.1 C u/
Y

j<`<n

�

1 C u

`

�

� v�kw
X

r�0

vrwŒur �.1 C u/
Y

j<`<n

�

1 C vwt

`

�

D v�kw.1 C vw/
Y

j<`<n

�

1 C vw

`

�

D O

 

v�kw

�

n

j

�vw
!

; (19)

uniformly in j . Substituting this estimate into (18), we obtain

an;k D O

0

@

�

.v�n/�1=2v�knv
�w

C v�kwnvw
X

1�j<n

.v�j/�w=2j wv�vw�1

1

A

D O

�

1

w � vw�1

�

.v�n/�1=2v�knv
�w
�

;

uniformly for 1 � k � n, where0 < v < w1=.w�1/. Theo-estimate is similarly proved. This completes
the proof of Lemma3.

3 Convergence in distribution when0 < ˛ < e

We prove the first part of Theorem1 (excepting̨ D 0) in this section by contraction method based on the
framework developed in Neininger and Rüschendorf (2004).The new difficulty arising here is the asymp-
totics of the double-indexed recurrence (14) (instead of single-indexed ones previously encountered).

The underlying idea. The idea used here is roughly as follows.
Define NXn;k WD Xn;k=�n;k . Then, by (1), NXn;k satisfies the recurrence

NXn;k
DD

�
In;k�1

�n;k

NXIn;k�1 C �n�In;k

�n;k

NX �
n�In;k ; (20)

with independence conditions as in (1). By the estimates (3) and the relationIn D d.n � 1/U e, we expect
that

�
In;k�1

�n;k

� k

�n

�

�n C logU

�n

�k�1

! ˛U ˛;

with suitable meaning for the convergence; similarly,

�n�In;k

�n;k

! .1 � U /˛:

Thus if we expect thatNXn;k ! X.˛/, thenX.˛/ satisfies the fixed-point equation (4).
To justify these steps, we apply the contraction method.
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Contraction method. The fixed-point equation (4) has a few special properties not enjoyed by single-
indexed recursions encountered in the literature for whichthe typical fixed-point equation has the form

X
DD

X

1�j�h

CjX .j/ C b; (21)

with X .1/; : : : ; X .h/; .C1; : : : ; Ch; b/ independent,X .j/ DD X , and0 � Cj � 1 almost surely for all
1 � j � h. Here,h may be deterministic or integer-valued random variables. The special rangeŒ0; 1� for
the coefficientsC1 : : : ; Cj is roughly due to the relation

�.I
.n/
j /

�.n/
! Cj ;

where, in various applications (see Neininger and Rüschendorf, 2004),� is the leading term in the expan-
sion of the standard deviation of the underlying random variable and0 � I

.n/
j � n are the sizes of the

subproblems. Typically,� is a monotonically increasing function, hence we obtain0 � Cj � 1.
In general, the Lipschitz constant of the map of probabilitymeasures associated with (21) under

the Zolotarev metric�w is assessed by
P

j E.C w
j /. This term is monotonically decreasing asw in-

creases. Thus, in typical applications for which one expects a contraction, the sum
P

j E.C w
j / has to

satisfy
P

j E.C w
j / < 1, and for that purpose, one has to choosew sufficiently large; see Neininger and

Rüschendorf (2004) for implications of this condition on the moments required.
For the bi-indexed recursion ofXn;k, we are led to the fixed-point equation (4), where the coefficient

˛U ˛ may have values larger than one for˛ > 1. This implies that the corresponding estimateE.˛U /w C
E.1 � U /w for the Lipschitz constant is not decreasing inw. When˛ < e increases, the range where we
have contraction becomes smaller and vanishes in the boundary casę D e.

Notations. We denote byM the space of univariate probability measures, byMw � M the space of
probability measures with finite absolutew-th moment, and byMw.1/ � Mw the subspace of probability
measures with unit mean, where1 < w � 2. Zolotarev [50] introduced a family of metrics�w, which, for
1 < w � 2 are given by

�w.�1; �2/ D sup
f 2Fw

jE.f .X / � f .Y //j; .�1; �2 2 Mw.1//;

whereX andY have the distributionsL.X / D �1, L.Y / D �2.
We have

Fw WD ff 2 C 1.R; R/ W jf 0.x/ � f 0.y/j � jx � yjw�1g;

with C 1.R; R/ the space of continuously differentiable functions onR. We will use the property that con-
vergence in�w implies weak convergence and that�w is ideal of orderw, i.e., we have forW independent
of .X; Y / andc ¤ 0

�w.X C W; Y C W / � �w.X; Y /; �w.cX; cY / D jcjw�w.X; Y /:

For general reference and properties of�w, see Zolotarev [51] and Rachev [43].
We also use the minimalLp metrics`p, defined for1 < p � 2 by

`p.�1; �2/ D inffkX � Y kp W L.X / D �1;L.Y / D �2g; .�1; �2 2 Mp/;
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wherekX kp denotes theLp-norm of a random variableX . For simplicity, we use the abbreviation
�w.X; Y / WD �w.L.X /;L.Y // for �w as well as for the other metrics appearing subsequently.

In addition, we assume that

R.n/ WD jk � ˛�nj D j˛n;k � ˛j�n D o.�n/;

where0 < ˛ < e, and fix a constants as follows. If2 � ˛ < e, then1 < s < � with � 2 .1; 2� the unique
solution of� D ˛��1, ands WD 2 if 0 < ˛ < 2. The bound� also identifies the best possible order for the
existence of absolute moment ofX.˛/. Note thats satisfiess � ˛s�1 > 0, which is the continuous version
of m � ˛m�1 > 0 appearing in (7).

Properties ofX.˛/. Define the map

T W M ! M; � 7! L.˛U ˛Z C .1 � U /˛Z�/;

whereZ; Z�; U are independent,L.Z/ D L.Z�/ D �.

Proposition 1. For 0 < ˛ < e, the restriction ofT toMs.1/ has a unique fixed pointL.X.˛//. Further-
more,EjX.˛/j� D 1 for 2 � ˛ < e.

Proof. By Lemma 3.1 in Neininger and Rüschendorf (2004),T is a Lipschitz map in�s with Lipschitz
constant bounded above by

lip.T / � ˛s C 1

˛s C 1
:

Thus lip.T / < 1 by our choice ofs. Also T has a unique fixed point in the subspaceMs.1/ by Lemma
3.3 in Neininger and Rüschendorf (2004).

When2 � ˛ < e, we assumeEjX.˛/j� < 1 and prove a contradiction. First we haveEjX.˛/j� D
Ej˛U ˛X.˛/ C .1 � U /˛X.˛/�j�, whereX.˛/; X.˛/�; U are independent withL.X.˛// D L.X.˛/�/.
Note thatX.˛/ � 0 almost surely. Furthermore,E.X.˛// D 1 implies that there is a set with positive
probability in which we haveX.˛/ > 0 andX.˛/� > 0. It follows that

EjX.˛/j� D E.X.˛/�/ D E.˛U ˛X.˛/ C .1 � U /˛X.˛/�/�

> E
�

˛�U ˛�X.˛/� C .1 � U /˛�.X.˛/�/�
�

D ˛� C 1

˛� C 1
E.X.˛/�/

D E.X.˛/�/;

by the definition of� and the inequality.aCb/� > a� Cb� for a; b > 0 and� > 1. This is a contradiction,
hence we haveEjX.˛/j� D 1.

Zolotarev distance betweenXn;k=�n;k and X.˛/.

Theorem 4. If 0 < ˛ < 2, then

�2

�

Xn;k

�n;k

; X.˛/

�

D O

�

R.n/ C 1

�n

�

:

If 2 � ˛ < e, then

�s

�

Xn;k

�n;k

; X.˛/

�

! 0;

wheres is specified as above.

In particular, this theorem implies the convergence in distribution of Xn;k=�n;k for 0 < ˛ < e and
proves the first part of Theorem1.

13



Convergence rate of the factors in (20).

Lemma 4. With s andR.n/ specified as above, we have







�
In;k�1

�n;k

� ˛U ˛






s
C






�n�In;k

�n;k

� .1 � U /˛






s
D O

�

R.n/ C 1

�n

�

:

Proof.We consider only theLs-norm of�
In;k�1

=�n;k �˛U ˛, the other part being similar. By (3), we have

�n;k D s.n; k C 1/

.n � 1/!
D �k

n

k!
H.n; k/;

where

H.n; k/ D 1

�.1 C ˛n;k/
C O

�

1

�n

�

; (22)

theO-term holding uniformly for1 � k � K�n. Then we decompose the ratio�
In;k�1

=�n;k into three
parts

�
In;k�1

�n;k

D k

�n

�

logIn

�n

�k�1
H.In; k � 1/

H.n; k/
DW F Œ1�

n F Œ2�
n F Œ3�

n : (23)

We first show that

jF Œ1�
n � ˛j C kF Œ2�

n � U ˛k4s C kF Œ3�
n � 1k4s D O

�

R.n/ C 1

�n

�

:

These estimates imply thatkF
Œ2�
n k4s; kF

Œ3�
n k4s D O.1/. Then, Hölder’s inequality gives









�
In;k�1

�n;k

� ˛U ˛









s

D O

�

R.n/ C 1

�n

�

:

First, we introduce the setA WD fIn � n˛=6g. Note that�n;k D O.1/ for k � 3�n. On the setA, we
havek � 1 D ˛�n C R.n/ � 1 � .˛=2/�n � .˛=2/ logI

6=˛
n D 3 logIn, for sufficiently largen; thus

�
In;k�1

D O.1/. On the other hand, sincę< e, the mean satisfies�n;k D �.1/; thus

Z

A

ˇ

ˇ

ˇ

�
In;k�1

�n;k

� ˛U ˛
ˇ

ˇ

ˇ

4s

dP D O.P.A// D O.P.In �
p

n// D O.1=
p

n/ D O.��4s
n /:

Thus we need only to consider the complement setAc.
Obviously,F Œ1�

n D k=�n D ˛ C O.R.n/=�n/.
For F

Œ2�
n , we observe that forx � 0 the expansion.1 C x=m/m D ex C O.e#x=m/ holds uniformly

with # < 1. Thus, we obtain

F Œ2�
n D

�

logIn

�n

�k�1

D
�

In

n
C O

�

.In=n/#

�n

��˛C.R.n/�1/=�n

D U ˛ C O

�

R.n/.U ˛ C U ˛C#�1/ logU C U ˛C#�1

�n

�

:
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Here, we may choose# with 1 � ˛ < # < 1. Then.U ˛ C U ˛C#�1/ logU andU ˛C#�1 are bothL4s-
integrable and theO-term in the last display is bounded above byO..R.n/ C 1/=�n/ in L4s.

For the third factor in (23), we have

H.n; k/ D 1

�.1 C ˛ C R.n/=�n/
C O

�

1

�n

�

D 1

�.1 C ˛/
C O

�

R.n/ C 1

�n

�

:

For H.In; k � 1/, we restrict to the setAc. OnAc, for n sufficiently large, we havek � 1 � 12 logIn, so
the error in the expansion ofH.In; k � 1/ implied by (22) is uniformly O.1= logIn/ D O.1=�n/. Thus
we have

H.In; k � 1/ D 1

�
�

1 C ˛ C ˛ log.n=In/CR.n/�1

logIn

� C O

�

1

logIn

�

D 1

�.1 C ˛/
C O

�

log.n=In/ C R.n/

�n

�

:

Sincek log.n=In/k4s ! k logU k4s < 1, the last error term is of orderO..R.n/ C 1/=�n/ in L4s.
Collecting all estimates, we obtainkF

Œ3�
n � 1k4s D O..R.n/ C 1/=�n/.

Asymptotic transfer of the double-indexed recurrence (14). Consider the recurrence (14) with suit-
able initial conditions.

Lemma 5. If

bn;k D O

�

..v�n/�1=2nvv�k/w � R.n/ C 1

�n

�

.1 < w � 2/;

uniformly for1 � k < n, where0 < v < v0, then

an;k D O

�

1

w � vw�1
..v�n/�1=2nvv�k/w � R.n/ C 1

�n

�

; (24)

uniformly for1 � k < n, where0 < v < minfw1=.w�1/; v0g.
Proof.The proof is similar to that for Lemma3 but slightly more complicated. By the exact expression for
an;k and the estimate forbn;k , we have, for0 < v < v0,

an;k � bn;k D O

0

@v�wk�w=2
X

1�j<n

X

0�r�k

jk � r � ˛�j j��1�w=2
j j wv�1vwr Œur �.1 C u/

Y

j<`<n

�

1 C u

`

�

1

A :

First, if jk � ˛�nj � "�n, thenjk � r � ˛�j j D O.k C �n/, so that (24) holds by the proof of Lemma3.
We assume now thatjk � ˛�nj � "�n. Split the sum inj into three parts

an;k � bn;k D O

0

@v�wk�w=2

0

@

X

1�j<ın

C
X

ın�j�.1�ı/n

C
X

.1�ı/n<j<n

1

A

�
X

0�r�k

jk � r � ˛�j j��1�w=2
j j wv�1vwr Œur �.1 C u/

Y

j<`<n

�

1 C u

`

�

1

A ;

whereı 2 .0; 1/ will be specified later. An analysis similar to the proof of Lemma3 gives

an;k � bn;k D O

�

.v�n/�w=2

w � vw�1
v�wknwv

�

ıwv�vw C jk � ˛�nj C 1

�n

C ı

��

;

where0 < v < minfw1=.w�1/; v0g. Takingı WD ..R.n/ C 1/=�n/1=.wv�vw/ yields (24).
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An inequality between�s- and `s-distances.

Lemma 6. For 1 < w � 2 andM > 0, there is a constantK > 0 such that

�w.X; Y / � K.`w.X; Y / _ `w�1
w .X; Y //; (25)

for all pairsL.X /;L.Y / 2 Mw.1/ with kX kw; kY kw � M .

Proof.We start from the inequality (see Theorem 3, Zolotarev, 1976)

�w.X; Y / � 1

w

�

2ˇw.X; Y / C 2w�1ˇw�1
w .X; Y /.kX kw

w ^ kY kw
w/2�w

�

;

for 1 < w � 2, whereˇw denotes the difference pseudo-moment

ˇw.�1; �2/ WD inf
˚

E
ˇ

ˇjX jw�1X � jY jw�1Y
ˇ

ˇ W L.X / D �1;L.Y / D �2

	

.w > 1/;

with �1; �2 2 Mw. From
ˇ

ˇjxjw�1x � jyjw�1y
ˇ

ˇ � w.jxjw�1 _ jyjw�1/jx � yj and Hölder’s inequality, it
follows that

ˇw.X; Y / � w .EjX jw C EjY jw/
.w�1/=w

`w.X; Y /;

which implies the desired inequality.

Proof of Theorem 4. We introduce a hybrid quantity

„n WD
�

In;k�1

�n;k

X.˛/ C �n�In;k

�n;k

X �.˛/;

whereX.˛/; X �.˛/; In are independent andX.˛/; X �.˛/ identically distributed. SinceL.X.˛//,L. NXn;k/,
L.„n/ 2 Ms.1/, the �s-distances between these quantities are finite. For simplicity, write hn;k WD
�s. NXn;k ; X.˛//. By triangle inequality

hn;k � �s. NXn;k ; „n/ C �s.„n; X.˛//:

Note that�s is ideal of orders. Thus

�s. NXn;k ; „n/ D �s

�

�
In;k�1

�n;k

NXIn;k�1 C �n�In;k

�n;k

NX �
n�In;k ;

�
In;k�1

�n;k

X.˛/ C �n�In;k

�n;k

X �.˛/

�

� 1

n � 1

X

1�j<n

�s

�

�j ;k�1

�n;k

NXj ;k�1 C �n�j ;k

�n;k

NX �
n�j ;k ;

�j ;k�1

�n;k

X.˛/ C �n�j ;k

�n;k

X �.˛/

�

� 1

n � 1

X

1�j<n

��

�j ;k�1

�n;k

�s

hj ;k�1 C
�

�n�j ;k

�n;k

�s

hn�j ;k

�

:

We now show that

�s.„n; X.˛// D O
�

D.n/s�1
�

; (26)

whereD.n/ WD .R.n/ C 1/=�n.
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First, by Lemma4,

k„nks �
�







�
In;k�1

�n;k







s
C






�n�In;k

�n;k







s

�

kX.˛/ks

! .˛kU ˛ks C k.1 � U /˛ks/kX.˛/ks;

which implies thatk„nks is uniformly bounded for alln. SinceL.X.˛// 2 Ms.1/, there is anM > 0

such thatkX.˛/ks; k„nks � M for all n. We apply Lemma6 to bound the�s-distance, which gives

�s.„n; X.˛// � K.`s.„n; X.˛// _ `s�1
s .„n; X.˛///:

By Lemma4

`s.„n; X.˛// �
�







�
In;k�1

�n;k

� ˛U ˛






s
C






�n�In;k

�n;k

� .1 � U /˛






s

�

kX.˛/ks D O .D.n// :

This proves (26).
Collecting the estimates, we obtain

hn;k � 1

n � 1

X

1�j<n

��

�j ;k�1

�n;k

�s

hj ;k�1 C
�

�n�j ;k

�n;k

�s

hn�j ;k

�

C O
�

D.n/s�1
�

:

Thus,hn;k D O.an;k��s
n;k

/, wherean;k satisfies (14) with

bn;k D O
�

�s
n;kD.n/s�1

�

;

and suitable initial conditions. Theorem4 then follows from applying the different types of asymptotic
transfer given in Lemmas3 and5.

Remark. Note that the proof of Theorem4 also yields a rate of convergence of orderO...R.n/ C
1/=�n/s�1/ for �s for the range2 � ˛ < e.

Recently, S. Janson (private communication) showed that Lemma6 also holds with (25) there replaced
by

�w.X; Y / � K`w.X; Y /:

This inequality leads to an improvement of the error term in Theorem4 for the range2 � ˛ < e to
O..R.n/ C 1/=�n/.

4 Asymptotics of moments

We prove in this section the moment estimate (6) whose proof is more involved than the asymptotic transfer
in Lemma3. The idea is to first derive a crude bound for higher moments ofXn;k, which holds uniformly
for 1 � k < n. Then a more refined analysis leads to (6).

Note that them-th factorial moments ofXn;k and them-th moments are asymptotically equivalent
when�n;k ! 1, or roughly when̨ < e.
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A uniform estimate for higher moments. For convenience, define'1.v/ D 1 and

'm.v/ WD 1

m � vm�1
.m � 2/:

We now prove by induction that

A
.m/

n;k
D O

�

'm.v/
�

.v�n/�1=2v�knv
�m�

.m � 1/; (27)

uniformly for 1 � k < n, where0 < v < m1=.m�1/.
Obviously, (27) holds form D 1 by (17). By (13) and induction, we have for0 < v < .m � 1/1=.m�2/

B
.m/

n;k
D O

 

X

1�h<m

�

m

h

�

'h.v/'m�h.v/

�n�1
X

1�j<n

�

.v�j/�1=2v�kC1j v
�h �

.v�n�j/�1=2v�k.n � j /v
�m�h

1

A

D O

0

B

B

@

'm�1.v/v�kmn�1
X

1�h<m
1�j<n

j hv.n � j /.m�h/v.v�j/�h=2.v�n�j/�.m�h/=2

1

C

C

A

D O
�

'm�1.v/.v�n/�m=2v�kmnmv
�

; (28)

uniformly for 1 � k < n.
By (15),

A
.m/

n;k
D B

.m/

n;k
C

X

1�j<n

X

0�r�k

B
.m/

j ;k�r

j
Œur �.u C 1/

Y

j<`<n

�

1 C u

`

�

: (29)

Substituting the estimate (28) into (29) gives for0 < v < m1=.m�1/

A
.m/

n;k
D O

0

@B
.m/

n;k
C v�km

X

1�j<n

.v�j/�m=2j mv�1
X

0�r�k

vrmŒur �.1 C u/
Y

j<`<n

�

1 C u

`

�

1

A

D O
�

B
.m/

n;k
C 'm.v/.v�n/�m=2nmvv�km

�

;

similar to the proof of Lemma3. This proves (27).
Note that when̨ � m1=.m�1/ � ", the optimal choice ofv in (27) minimizing nvv�k is v D ˛n;k ,

which yields the estimateA.m/

n;k
D O.�k

n=k!/, uniformly in k. When˛ � m1=.m�1/ � ", the optimal choice

is thenv D m1=.m�1/ � ". This says that the asymptotic behavior ofA
.m/

n;k
when˛ < m1=.m�1/ is very

different from that when̨ � m1=.m�1/. More precise estimates can be derived, but they are not needed
here; see Drmota and Hwang (2005a) for asymptotic approximations to the variance (covering all ranges).
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Asymptotics ofA.m/

n;k
. Since the casę D 0 will be treated separately, we assume throughout this section

that˛ > 0. We refine the above inductive argument and show that

A
.m/

n;k
� �m.˛/�m

n;k � �m.˛/

�

�k
n

�.1 C ˛/k!

�m

; (30)

for eachm � 1 andk=�n ! ˛ < m1=.m�1/, where�m.˛/ denotes the moment sequence ofX.˛/ given in
(7). This will prove the moment convergence part of Theorem1.

Note that by (3), (30) holds form D 1 with �1.˛/ D 1. Assume that (30) holds for allA.i/

n;k
with

i < m. We split the right-hand side of (29) into three parts

A
.m/

n;k
D B

.m/

n;k
C

X

0�r�k

0

@

X

1�j<"n

C
X

"n�j�.1�"/n

C
X

.1�"/n<j<n

1

A

B
.m/

j ;k�r

j
Œur �.u C 1/

Y

j<`<n

�

1 C u

`

�

DW B
.m/

n;k
C A

.m/

n;k
Œ1� C A

.m/

n;k
Œ2� C A

.m/

n;k
Œ3�:

By the same proof used for Lemma3, we have

A
.m/

n;k
Œ1� D O

�

"mv�vm

'm.v/��.mC1/=2
n nmvv�km

�

;

A
.m/

n;k
Œ3� D O

�

"'m.v/��.mC1/=2
n nmvv�km

�

:

Letting" ! 0, we see that, by (27),

A
.m/

n;k
Œ1� C A

.m/

n;k
Œ3� D o.A

.m/

n;k
/:

Asymptotics ofA.m/

n;k
: the dominant terms. We start by showing that for0 < ˛ < .m � 1/1=.m�2/

B
.m/

n;k
� ��

m.˛/

�

�k
n

�.1 C ˛/k!

�m

.m � 2/; (31)

where

��
m.˛/ WD

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/˛h

Z 1

0

uh˛.1 � u/.m�h/˛ du:

By (13), induction and (30), we have, for0 < ˛ < .m � 1/1=.m�2/,

B
.m/

n;k
�

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/
1

n

X

"n�j�.1�"/n

 

�k�1
j

�.1 C ˛/.k � 1/!

!h 

�k
n�j

�.1 C ˛/k!

!m�h

�
�

�k
n

�.1 C ˛/k!

�m
X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/
1

n

X

"n�j�.1�"/n

˛h

�

j

n

�kh=�n
�

1 � j

n

�k.m�h/=�n

;

which proves (31). The errors introduced for terms withj < "n and forj � .1 � "/n can be easily
bounded by using (27).
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To evaluateA.m/

n;k
Œ2�, we first observe that

Y

j<`<n

�

1 C u

`

�

D exp

0

@u
X

j<`<n

`�1 C O

� juj2
j

�

1

A

D .n=j /u
�

1 C O
�

juj2j �1
��

;

uniformly for finite complexu andj ! 1. It follows that

Œur �
Y

j<`<n

�

1 C u

`

�

D .log.n=j //r

r !

�

1 C O

�

r2

j

��

;

uniformly for "n � j � .1 � "/n and0 � r � k D o.
p

j /. Consequently, by (28) and (31),

A
.m/

n;k
Œ2� � ��

m.˛/

�

�k
n

�.1 C ˛/k!

�m
X

"n�j�.1�"/n

j �1.j=n/m˛

�
X

r�0

˛mr

�

.log.n=j //r�1

.r � 1/!
C .log.n=j //r

r !

�

� ��
m.˛/.˛m C 1/

�

�k
n

�.1 C ˛/k!

�m Z 1�"

"

xm˛�˛m�1 dx:

Letting" ! 0, we then obtain, by (29), that

A
.m/

n;k
� ��

m.˛/

 

1 C .˛m C 1/

Z 1

0

xm˛�˛m�1 dx

!

�

�k
n

�.1 C ˛/k!

�m

D ��
m.˛/

m˛ C 1

m˛ � ˛m

�

�k
n

�.1 C ˛/k!

�m

;

where

��
m.˛/

m˛ C 1

m˛ � ˛m
D 1

m � ˛m�1

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/˛h�1 �.h˛ C 1/�..m � h/˛ C 1/

�.m˛ C 1/

D �m.˛/;

for m � 2, by (7). This completes the proof of (29) and thus Theorem1 .ii /.

Moment convergence (6). Convergence of all moments implies convergence in distribution if the mo-
ment sequence (7) uniquely characterizes the distribution. By consideringN�m.˛/ WD �m.˛/�.m˛C1/=m!,
we easily obtain by induction thatN�m.˛/ D O.Km/ for ˛ 2 Œ0; 1� (see Hwang and Neininger, 2002), and
thus convergence in distribution ofXn;k=�n;k follows from (6) when˛ 2 Œ0; 1�.

5 The central range˛ D 1

We prove Theorem2 in this section. The proof proceeds essentially along the same line as we did above
but with one major difference: we consider central moments instead of factorial moments. This minor
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step is crucial in dealing with the cancellations involved in the asymptotics of higher central moments. For
simplicity, the case whenjtn;k j ! 1 andtn;k D o.�n/ is first analyzed; then the same method of proof is
extended to the case whentn;k D O.1/. Justifications of the error terms are similar to those forA

.m/

n;k
given

above but become more complicated.

Recurrence of central moments. Consider NPn;k.y/ WD E.e.Xn;k ��n;k/y/ D Pn;k.ey/e��n;ky; see (12).
Then we have the recurrence

NPn;k.y/ D 1

n � 1

X

1�j<n

NPj ;k�1.y/ NPn�j ;k.y/e�n;k .j/y .n � 2I k � 1/;

where
�n;k.j / WD �j ;k�1 C �n�j ;k � �n;k

and NPn;0.y/ D NP1;k.y/ D 1 for n; k � 1.
Let nowP

.m/

n;k
WD NP .m/

n;k
.0/ denote them-th central moment ofXn;k. ThenP

.1/

n;k
� 0 and form � 2

P
.m/

n;k
D 1

n � 1

X

1�j<n

�

P
.m/

j ;k�1
C P

.m/

j ;k

�

C Q
.m/

n;k
.n � 2I k � 1/; (32)

where

Q
.m/

n;k
WD

X

aCbCcDm
0�a;b<m
0�c�m

�

m

a; b; c

�

1

n � 1

X

1�j<n

P
.a/

j ;k�1
P

.b/

n�j ;k
�c

n;k.j /

andP
.m/

n;0 D 0 for n; m � 1.

Outline of the proof of Theorem 2. Similar to the proof of (30), we divide the proof of Theorem2 into
three main steps.

– We first derive a uniform estimate for�n;k.j / for 1 � j ; k < n, which then implies a uniform bound
for P

.m/

n;k
for 1 � k < n. This bound is sufficient for our uses except whenjk � �nj D o.

p
�n/.

– We then derive a second estimate for�n;k.j / uniformly valid fork � �n. This in turn implies a tight
bound forP .m/

n;k
whenk � �n, and an asymptotic approximation toP

.m/

n;k
when1 � jtn;k j D o.�n/.

– A finer estimate for�n;k.j / is needed to deal with the case whentn;k D O.1/.

An integral representation for �n;k.j /. By (2),

�n;k D Œuk �
nu

�.u C 1/

�

1 C O
�

n�1
��

:

Then

�n;k.j / D 1

2� i

I

jujDv

u�k�1nu�.u; j=n/
�

1 C O.j �1 C .n � j /�1/
�

du; (33)

uniformly for 1 � j < n (whenj or n�j is bounded, theO-term becomingO.1/ instead ofo.1/), where

�.u; x/ WD .1 � x/u C uxu � 1

�.u C 1/
:

Here and throughout this section, we takev D 1 C o.1/ sincek � �n.
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A uniform estimate for �n;k.j /. Since�.1; x/ D 0, we have

j�.u; x/j D O.ju � 1j/ .x 2 Œ0; 1�/:

Substituting this estimate into (33) gives

�n;k.j / D O

�

v�knv

Z �

��

ˇ

ˇ

ˇ
vei� � 1

ˇ

ˇ

ˇ
n�v.1�cos�/d�

�

D O
�

.jv � 1j C ��1=2
n /��1=2

n v�knv
�

; (34)

uniformly for 1 � j ; k < n.

A uniform estimate for P
.m/

n;k
. From the recurrence (32) and the estimate (34), we deduce, by an induc-

tion similar to that used for (27), that

Q
.m/

n;k
; P

.m/

n;k
D O

�

.jv � 1jm C ��m=2
n /

�

��1=2
n v�knv

�m�

.m � 2/; (35)

uniformly for 1 � k < n. This bound is however not tight whenjk � �nj D o.
p

�n/, the reason being
simply thatv is not properly chosen to minimize the error term (the first�

�1=2
n ) in (34).

A finer estimate than (34). For a more precise estimate than (34), we use the two-term Taylor expansion

�.u; x/ D �0
u.1; x/.u � 1/ C O.ju � 1j2/;

where�0
u.1; x/ D x C x logx C .1 � x/ log.1 � x/, which leads to

�n;k.j / D �0
u

�

1;
j

n

�

.k � �n/
�k�1

n

k!

�

1 C O.j �1 C .n � j /�1/
�

C O
�

.jv � 1j2 C ��1
n /��1=2

n v�knv
�

: (36)

Takingv D k=�n gives

�n;k.j / D O

�

.jk � �nj C 1/
�k�1

n

k!

�

: (37)

This bound holds uniformly fork � �n and1 � j < n since�0
u.1; x/ D O.xj logxj/ asx ! 0C.

A uniform bound for P
.m/

n;k
when k � �n. From (37), we deduce, again by induction, that

Q
.m/

n;k
; P

.m/

n;k
D O

 

.jk � �njm C 1/

�

�k�1
n

k!

�m
!

.m � 2/; (38)

uniformly for k � �n. The proof differs slightly from that for (30) in that we split all sums of the form
P

1�j<n into three parts
X

1�j<n

D
X

1�j<n=�m
n

C
X

n=�m
n �j�n�n=�m

n

C
X

n�n=�m
n <j<n

;

and then apply (38) and (37) to the middle sum, and (35) to the remaining two sums.
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Asymptotics ofP .m/

n;k
when jtn;k j ! 1 and tn;k D o.�n/. In this case, the estimate (36) has the form

�n;k.j / � �0
u

�

1;
j

n

�

tn;k

�k�1
n

k!
; (39)

uniformly in k when"n � j � .1 � "/n. Then we show that

P
.m/

n;k
� gm

�

tn;k

�k�1
n

k!

�m

.m � 1/; (40)

whereg0 D 1, g1 D 0 and form � 2

gm D m C 1

m � 1

X

aCbCcDm
0�a;b<m
0�c�m

�

m

a; b; c

�

gagb

Z 1

0

xa.1 � x/b�0
u.1; x/c dx: (41)

Equivalently, this can be written as

gm D
X

aCbCcDm
0�a;b;c�m

�

m

a; b; c

�

gagb

Z 1

0

xa.1 � x/b�0
u.1; x/c dx:

In particular,

g2 D 3

Z 1

0

�0
u.1; x/2 dx D 2 � �2

6
:

The inductive proof is almost the same as that forA
.m/

n;k
, with the factor.k � �n/m handled by direct

expansion and then estimated term by term. Also we need to split sums of the form
P

1�j<n into five parts

X

1�j<n

D
X

1�j<n=�m
n

C
X

n=�m
n �j<"n

C
X

"n�j�.1�"/n

C
X

.1�"/n<j�n�n=�m
n

C
X

n�n=�m
n <j<n

;

and then apply (40) to the middle sum, and the two estimates (35) and (38) to the other four sums.
The moment sequence (41) is easily checked to have the property of uniquely characterizing the distri-

bution; see Hwang (2005) for similar details.
This proves the first part of Theorem2.

The periodic case whentn;k D O.1/. In this case, we need a more precise expansion than (39) as
follows.

�n;k.j / � �k�1
n

k!

�

�0
u

�

1;
j

n

�

tn;k � 1

2
�00

uu

�

1;
j

n

��

; (42)

uniformly for j=n 2 Œ"; 1 � "� andk � �n, where

�00
uu.1; x/ D .x logx C .1 � x/ log.1 � x//2 � 2.1 �  /�0

u.1; x/:

This is proved by expanding more terms of�.u; x/ at u D 1 and then estimating the error terms (see
Hwang, 1995 for similar details).
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With the approximation (42), we first prove that form � 0

E.Xn;k � �n;k/m D P
.m/

n;k
� pm.tn;k/

�

�k�1
n

k!

�m

; (43)

wherepm.tn;k/ is a polynomial intn;k of degreem with p0.tn;k/ D 1 andp1.tn;k/ D 0. This will imply
that fork D b�nc C `, where` 2 Z,

E

�

Xn;k � �n;k

�k�1
n =k!

�m

� pm.` � f�ng/;

for m � 0, wheref�ng denotes the fractional part of�n. Then we apply an argument based on the Frechet-
Shohat moment convergence theorem similar to that used in Chern and Hwang (2001a) to prove that
.Xn;k � �n;k/=.�k�1

n =k!/ does not converge to a fixed limit law. The proof for.Xn;k � �n;k/=
p

V.Xn;k/

is similar.
To prove (43), we use again induction. Assumem � 2. Then a similar analysis as above leads to

Q
.m/

n;k
� qm.tn;k/

�

�k�1
n

k!

�m

;

whereqm.t/ is a polynomial of degreem defined by

qm.tn;k/ WD
X

aCbCcDm
0�a;b<m
0�c�m

�

m

a; b; c

�Z 1

0

ya.1 � y/b

� pa.tn;k � 1 � logy/pb.tn;k � log.1 � y//

�

�0
u.1; y/tn;k � 1

2
�00

uu.1; y/

�c

dy:

Then by (32), we deduce that form � 2

P
.m/

n;k

�

�k�1
n

k!

��m

� qm.tn;k/ C
Z 1

0

xm�1
X

r�0

log.1=x/r

r !

� .qm.tn;k � r � 1 � logx/ C qm.tn;k � r � logx// dx;

the infinite series on the right-hand side being convergent since qm is a polynomial of degreem. This
proves (43) and the second part of Theorem2.

Note that by induction

pm.t/ D qm.t/ C
Z 1

0

xm .pm.t � 1 � logx/ C pm.t � logx// dx .m � 2/:

Straightforward calculation of the integrals gives the expression (10) for p2.tn;k/.

Extrema of jE.Xn;k ��n;k/mj. To prove the maximum order ofE.Xn;k ��n;k/m, we consider two cases.
First, whenjk � �nj � �2=3, we apply (38), so that

max
jk��nj��

2=3
n

jP .m/

n;k
j D O

 

��3m=2nm � max
jtn;k j��

2=3
n

�

tm
n;k C 1

�

e�mt2

n;k
=.2�n/

!

D O .��mnm/ ;
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the maximum being reached whentn;k � ˙
p

�n.
On the other hand, whenjk � �nj � �2=3, we apply the estimate (35) and bound the maximum by the

sum

max
jk��nj��

2=3
n

jP .m/

n;k
j D O

0

@jv � 1jm��m=2
n nmv

0

@

X

k��n��2=3

C
X

k��C�2=3

1

A v�mk

1

A :

Takingv D 1 � �
�1=3
n in the first sum andv D 1 C �

�1=3
n in the second, we obtain

max
jk��nj��

2=3
n

jP .m/

n;k
j D O

�

�1=3�5m=6
n nme�m�

1=3
n =2

�

:

Thus
max

1�k<n
jE.Xn;k � �n;k/mj D O

�

��m
n nm

�

:

The proof for the minimum order is similar. This proves Corollary 5.

6 Asymptotic normality when ˛ D 0

The approach we use in this section relies on manipulating the recurrences of two sequences of polynomials
defined from the bivariate generating functionsPk.z; y/ WD

P

n E.yXn;k /zn. It can not only be applied to
prove Theorem3 but also gives an alternative proof of the moment convergence part of Theorem1.

Main steps. Let

�n;k WD

s

�2k�1
n

.k � 1/!2.2k � 1/
;

X �
n;k

WD .Xn;k � �k
n=k!/=�n;k , andƒ WD �n=k. The proof of Theorem3 uses the following estimates.

Proposition 2. The characteristic functions ofX �
n;k

satisfy the two estimates:.i/

ˇ

ˇ

ˇ
E.eX �

n;k
i�/ � e��2=2

ˇ

ˇ

ˇ
D O

�

e��2=2 j� j C j� j3p
ƒ

C n�"

�

; (44)

uniformly forj� j � "ƒ1=6; and .ii /

E.eX �

n;k
i�/ D O.e��2=4 C n�"/; (45)

uniformly for"ƒ1=6 � j� j � "
p

ƒ.

Theorem3 then follows from applying the Berry-Esseen smoothing inequality (see Petrov, 1975).
These estimates are derived by singularity analysis (see Flajolet and Odlyzko, 1990), starting from

Cauchy’s integral representation

E.eXn;k i�=�n;k / D 1

2� i

I

jzjD"

z�n�1Pk.z; ei�=�n;k / dz:

We then need estimates for the generating functionsPk , and for that purpose, we introduce two sequences
of polynomials and derive approximations toPk via those for the two polynomials.
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Two sequences of polynomials. By (12), the generating functionPk satisfies
8

ˆ

<

ˆ

:

P0.z; y/ D 1 C yz

1 � z
;

Pk.z; y/ D 1 C z exp

�Z z

0

Pk�1.t; y/ � 1

t
dt

�

.k � 1/:

It is more convenient to work with

Qk.z; s/ WD Pk.z; es/ � 1

z
:

Then
8

ˆ

<

ˆ

:

Q0.z; s/ D es

1 � z
;

Qk.z; s/ D exp

�Z z

0

Qk�1.t; s/ dt

�

; .k � 1/:
(46)

Now, writeL.z/ WD � log.1 � z/. We define two sequences of polynomialsV andW as follows.

Qk.z; s/ WD exp

 

X

m�0

Vk;m.L.z//

m!
sm

!

WD 1

1 � z

X

m�0

Wk;m.L.z//

m!
sm:

Lemma 7. The two sequences of polynomials satisfy the recurrences
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Vk;m.x/ D
Z x

0

Wk�1;m.t/ dt .k � 2/;

Wk;m.x/ D 1

m

X

1�j�m

�

m

j

�

j Vk;j .x/Wk;m�j .x/ .m � 1/;
(47)

whereV1;m D x for m � 0 andWk;0.x/ D 1 for k � 1.

Proof.The first relation follows from (46) and the second from taking derivative with respect tos and then
collecting the coefficient ofsm on both sides.

Mean value and variance. We first rederive the mean and variance by such aV W -polynomial approach.
By (47) with m D 1, we obtain

Vk;1.x/ D Wk;1.x/ D xk

k!
.k � 1/: (48)

Consequently, withx D L.z/,

�n;k D Œzn�
z

1 � z
� Lk.z/

k!
D s.n; k C 1/

.n � 1/!
;
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which rederives (2). The asymptotic behavior of�n;k whenk D o.�n/ is derived as follows.

�n;k D Œuk �
nu

�.1 C u/

�

1 C O.n�1/
�

D �k
n

k!

X

0�j�k

k!

.k � j /!�
j
n

� Œuj �
1

�.1 C u/
C O

�

�k
n

nk!

�

� �k
n

k!
:

Form D 2, we have, again by (47),

Vk;2.x/ D
Z x

0

Wk�1;2.t/ dt D x2k�1

.k � 1/!2.2k � 1/
C
Z x

0

Vk�1;2.t/ dt

D
X

0�j<k

�

2j

j

�

xkCj

.k C j /!
I (49)

and then

Wk;2.x/ D Vk;2.x/ C V 2
k;1.x/ D

X

0�j�k

�

2j

j

�

xkCj

.k C j /!
:

Hence,

E.X 2
n;k/ D Œzn�

z

1 � z
�
X

0�j�k

�

2j

j

�

LkCj.z/

.k C j /!
D

X

0�j�k

�

2j

j

�

s.n; k C j C 1/

.n � 1/!

D
X

0�j�k

�

2j

j

�

ŒukCj �
nu

�.1 C u/

�

1 C O.n�1/
�

I

cf. Meir and Moon (1978) and van der Hofstad et al. (2001). Now, observe that fork D o.�n/
�

2k

k

�

Œu2k �
nu

�.1 C u/
�
�

Œuk �
nu

�.1 C u/

�2

D O

�

k2�2k�2
n

k!2

�

:

It follows that

V.Xn;k/ � �2k�1
n

.k � 1/!2.2k � 1/
.k D o.�n//;

which proves the variance estimate in Theorem3.
This line of computations can be extended to higher moments.For example, a similar reasoning for

m D 3 yields

Vk;3.x/ D
Z x

0

Vk�1;3.t/ dt C
Z x

0

�

3Vk�1;2.t/Vk�1;1.t/ C V 3
k�1;1.t/

�

dt

D 3
X

0�`<k

X

0�j<`

�

2j

j

��

j C 2`

`

�

xkCjC`

.k C j C `/!
C

X

0�j<k

�

3j

j ; j ; j

�

xkC2j

.k C 2j /!
I

and

Wk;3.x/ D 3
X

0�`�k

X

0�j<`

�

2j

j

��

j C 2`

`

�

xkCjC`

.k C j C `/!
C

X

0�j�k

�

3j

j ; j ; j

�

xkC2j

.k C 2j /!
;

which was used to computeE.Xn;k � �n;k/3 in Figure1. However, the resulting expressions soon become
very involved. Thus we focus directly on asymptotics of these polynomials and not on exact expressions.
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Asymptotics of theV and W polynomials. First, by (48), we have

Vk;1.x/ D Wk;1.x/ � xk

k!
.x 2 C/;

for k D o.jxj/.
Next, by (49), we have the following estimates fork D o.x/

Vk;2.x/ D x2k�1

.k � 1/!2.2k � 1/

0

@1 C
X

1�j�k

2k � 1

2k � j

Y

1�`<j

�

k � `

x
� k � `

2k � j � `

�

1

A

� x2k�1

.k � 1/!2.2k � 1/
;

and

Wk;2.x/ D Vk;2.x/ C V 2
k;1.x/ � x2k

k!2
:

The general pattern is as follows.

Lemma 8. If k D o.jxj/, wherex 2 C is large, then
8

ˆ

ˆ

<

ˆ

ˆ

:

Vk;m.x/ � xm.k�1/C1

.k � 1/!m.m.k � 1/ C 1/
;

Wk;m.x/ � xmk

k!m
:

(50)

Proof. We use induction onm. We already proved (50) for m D 1; 2. Assumem � 3. By (47) and
induction

Vk;m.x/ D
Z x

0

Wk�1;m.t/ dt

� 1

m

X

1�j<m

�

m

j

�

j

Z x

0

tj.k�2/C1

.k � 2/!j.j .k � 2/ C 1/
� t .k�1/.m�j/

.k � 1/!m�j
dt C

Z x

0

Vk�1;m.t/ dt

� x.k�1/mC1

.k � 1/!m..k � 1/m C 1/
C
Z x

0

Vk�1;m.t/ dt:

Hence, by iteration,

Vk;m.x/ �
X

0�j<k

.mj /!

j !m
� xkCj.m�1/

.k C j .m � 1//!

� x.k�1/mC1

.k � 1/!m..k � 1/m C 1/
:

Moreover, by applying (47) and induction again

Wk;m.x/ � 1

m

X

1�j�m

�

m

j

�

j
xj.k�1/C1

.k � 1/!j.j .k � 1/ C 1/
� xk.m�j/

k!m�j

� xmk

k!m
:

This proves (50).

28



Proof of Proposition 2. By Cauchy’s formula, we have

E

�

eXn;k i�=�n;k

�

D 1

2� i

I

jzjD"

z�nQk .z; i�=�n;k/ dz:

We then deform the integration circle onto the left contour shown in Figure3, whereın D �2
n=n. For the

larger circle, we have

1

2� i

Z

jzjD1Cın=n

z�nQk.z; i�=�n;k/ dz D O

 

e��2
n sup

jzjD1Cın=n

jQk.z; i�=�n;k/j
!

:

Now by the estimate

�n;k D O

�

ƒ�1=2 �k
n

k!

�

;

and (50), we have

Vk;m.log.n=!n//��m
n;k D O

�

ƒ�.m�2/=2
�

.m � 1/;

for any complex sequence!n satisfying1 � j!nj D O.�K
n /. It follows that the contribution from the

large circle is bounded above by

1

2� i

Z

jzjD1Cın=n

z�nQk.z; i�=�n;k/ dz D O
�

n��2
n e��2

nCKƒ
�

;

D O .n�"/ ;

uniformly for j� j � "
p

ƒ.
Whenz 2 H1, we make the change of variablesz 7! 1 � �=n and apply the estimate (50), which gives

Qk

�

1 � �

n
;

i�

�n;k

�

D n

�
exp

(

�k
n

k!�n;k

i�

�

1 C O

� j log� j
ƒ

��

� �2

2

�

1 C O

� j log� j
ƒ

��

C O

 

ƒ
X

m�3

j� jm
m!ƒm=2

!)

:

From this we deduce that ifj� j � "ƒ1=6, then

Qk

�

1 � �

n
;

i�

�n;k

�

D n

�
exp

�

�k
n

k!�n;k

i� � �2

2

��

1 C O

�

.j� j C j� j3/
j log� jp

ƒ

��

I

and if "ƒ1=6 � j� j � "ƒ1=2, then

Qk

�

1 � �

n
;

i�

�n;k

�

D O

�

n

j� j j� j�"e��2=2CK j� j3=
p

ƒ

�

D O

�

n

j� j1�"
e��2=4

�

;

for sufficiently small".

29



These estimates then yield

E.eX �

n;k
i� / D e��2=2

2� i

Z

H0

e�

�

�

1 C O

�

.j� j C j� j3/
j log� jp

ƒ

���

1 C O

� j� j2
n

��

d� C O .n�"/

D e��2=2

�

1 C O

� j� j C j� j3p
ƒ

��

C O .n�"/ ;

uniformly for j� j � "ƒ1=6, where the contourH0 is shown in Figure3, and similarly

E.eX �

n;k
i� / D O

�

e��2=4 C n�"
�

;

uniformly for "ƒ1=6 � j� j � "ƒ1=2. This completes the proof of Proposition2.

b

1

C

H1

1=n

z

b

1 C ın

z 7! 1 � �
n

b

�

H0
0

Figure 3:The Hankel contours used to derive the asymptotics of the moments ofXn;k .

Proof of Theorem 3. We now apply the Berry-Esseen smoothing inequality (see Petrov, 1975)

sup
x2R

ˇ

ˇP
�

X �
n;k < x

�

� ˆ.x/
ˇ

ˇ D O

�

1p
ƒ

C J

�

;

where

J D
Z "

p
ƒ

�"
p

ƒ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

�

eX �

n;k
i�
�

� e��2=2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d�

D
�
Z

j� j�ƒ�1=2

C
Z

ƒ�1=2�j� j�"ƒ1=6

C
Z

"ƒ1=6�j� j�"ƒ1=2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

�

eX �

n;k
i�
�

� e��2=2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d�

DW J1 C J2 C J3:
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The integralJ1 is assessed as follows.

J1 �
Z

j� j�ƒ�1=2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

�

eX �

n;k
i�
�

� 1

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

d� C
Z

j� j�ƒ�1=2

ˇ

ˇ

ˇ

ˇ

ˇ

e��2=2 � 1

�

ˇ

ˇ

ˇ

ˇ

ˇ

d�

� E.X �2
n;k/

Z

j� j�ƒ�1=2

j� j d� C
Z

j� j�ƒ�1=2

j� j d�

D O.ƒ�1/:

By (44), the integralJ2 satisfies

J2 D O

�

ƒ�1=2

Z

ƒ�1=2�j� j�"ƒ1=6

.1 C �2/e��2=2 d� C n�"

Z

ƒ�1=2�j� j�"ƒ1=6

j� j�1 d�

�

D O
�

ƒ�1=2 C n�" logƒ
�

D O
�

ƒ�1=2
�

:

The last integralJ3 is estimated by using (45)

J3 D O

�Z

"ƒ1=6�j� j�"ƒ1=2

��1e��2=4 d� C n�" logƒ

�

D O
�

ƒ�1=2
�

:

This proves Theorem3.
In particular, Theorem3 implies and completes the case˛ D 0 in Theorem1.

An alternative proof of Theorem 1 .ii/. The above approach based onV W -polynomials can also be
refined to give an alternative proof of Theorem1. We outline the main steps.

First, by (47) and induction, we can prove that

8

ˆ

ˆ

<

ˆ

ˆ

:

Vk;m.x/ � �m

�

k

x

�

.k=x/m�1

m
� xmk

k!m
;

Wk;m.x/ � �m

�

k

x

�

xmk

k!m
;

uniformly for 0 < k=jxj < m1=.m�1/ and large complexx, where�m.u/ is defined recursively by

�m.u/ D 1

m � um�1

X

1�h<m

�

m

h

�

�h.u/�m�h.u/uh�1 .m � 2/;

with �1.u/ D 1.
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Then whenk=�n ! ˛, 0 < ˛ < m1=.m�1/,

E.X m
n;k/ D Œzn�

z

1 � z
Wk;m.L.z//

� 1

2� i

Z

H
e���1Wk;m.log.n=�// d�

� �m.˛/

2� i

Z

H
e���1 .�n � log�/mk

k!m
d�

� �m.˛/
�mk

n

k!m
1

2� i

Z

H
e���1�m˛ d�

� �m.˛/

�.1 C m˛/
� �mk

n

k!m

� �m.˛/
�.1 C ˛/m

�.1 C m˛/
�m

n;k ;

for a suitably chosen Hankel contourH. And it is straightforward to check, by (7), that

�m.˛/
�.1 C ˛/m

�.1 C m˛/
D �m.˛/:

Note that this approach does not apply to profiles of binary search trees.

7 Profiles of random binary search trees

We consider briefly in this section random binary search trees whose profiles have been widely studied; see
Drmota and Hwang (2005a) and the references therein. Our method of moments and contraction method
apply. While the results for both trees are very similar, there is no range for binary search trees where the
limit law of the profile is normal.

Let Yn;k denote the number of external nodes at distancek from the root andZn;k the number of
internal nodes at levelk (root being at level0) in a random binary search tree ofn nodes (as constructed
from a random permutation ofn elements). Then fork; n � 1

Yn;k
DD YJn;k�1 C Y �

n�1�Jn;k�1;

Zn;k
DD ZJn;k�1 C Z�

n�1�Jn;k�1;

with the initial conditionsYn;0 D ın;0 and Zn;0 D 1 � ın;0, whereJn is uniformly distributed over

f0; : : : ; n � 1g, the summands are independent andYn;k
DD Y �

n;k
, Zn;k

DD Z�
n;k

. Note thatZn;k D
P

j>k Yn;j 2j�k .

Mean values. The expected value ofYn;k satisfies (see Drmota and Hwang, 2005a and the references
therein)

E.Yn;k/ D 2k

n!
s.n; k/ D .2�n/k

�.˛n;k/k!n

�

1 C O

�

1

�n

��

;

theO-term holding uniformly for1 � k � K�n.
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For internal nodes, the asymptotic behavior is different

E.Zn;k/ D 2k

n!

X

j>k

s.n; j /

�

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

2k � .2�n/k

.1 � ˛n;k/�.˛n;k/nk!
; if 1 � k � �n � K

p
�nI

2kˆ.�xn;k/; if xn;k WD .k � �n/=
p

�n D o..�n/1=6/I
.2�n/k

.˛n;k � 1/�.˛n;k/nk!
; if �n C K

p
�n � k � K�n;

where the error terms in the first and the third approximations are of the form

O

�

.2�n/k

jk � �nj2nk!

�

;

and that of the middle isO..1 C jxn;kj3/=
p

�n/; see (51) below.
Note that

logE.Yn;k/

�n

! ˛ � 1 � ˛ log.˛=2/;

and the right-hand side is positive when˛� < ˛ < ˛C, where0 < ˛� < 1 < ˛C are the two real zeros of
the equationz � 1 � z log.z=2/ or e.z�1/=z D z=2. These two constants are sometimes referred to as the
binary search tree constants(or the fill-up level and height constants, respectively).

The limit law. Define the map

T W M ! M; � 7! L
�˛

2
U ˛�1Z C ˛

2
.1 � U /˛�1Z�

�

;

whereZ; Z�; U are independent andL.Z/ D L.Z�/ D �.
The constants is defined bys WD 2 when 2 �

p
2 < ˛ < 2 C

p
2 and 1 < s < % when ˛ 2

.˛�; ˛C/ n .2 �
p

2; 2 C
p

2/, where% 2 .1; 2� solves the equation%.˛ � 1/ C 1 D 2.˛=2/%.
Similar to Proposition1, we have the following properties.

Proposition 3. If ˛� < ˛ < ˛C, then the restriction ofT to Ms.1/ has a unique fixed pointY .˛/. In
addition,EjY .˛/j% D 1 for ˛ 2 .˛�; ˛C/ n .2 �

p
2; 2 C

p
2/.

Limit distribution when ˛� < ˛ < ˛C. The above estimates for the mean values ofYn;k andZn;k

say roughly that internal nodes are asymptotically full (ofsizes2k) for the first�n � K
p

�n levels, while
external nodes are relatively sparse there. Observe that the second order term ofE.Zn;k/ is asymptotically
of the same order asE.Yn;k/ when˛ < 1. This suggests that we should consider

NZn;k WD
�

2k � Zn;k ; if ˛� � ˛ < 1I
Zn;k ; if 1 � ˛ < ˛C:

Theorem 5. Let Y .˛/ and % be defined as in Proposition3. Assume thatk D ˛�n C o.�n/. Then for
˛� < ˛ < ˛C,

Yn;k

E.Yn;k/
;

NZn;k

E. NZn;k/

D�! Y .˛/;

with convergence of all moments for˛ 2 Œ1; 2� but not for˛ outsideŒ1; 2�.
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Chauvin et al. (2005) proved almost sure convergence forYn;k=E.Yn;k/ when˛� < ˛ < ˛C; their
result is stronger than convergence in distribution but does not imply convergence of all moments.

As in Theorem4, we can derive a convergence rate for the�2-distance when2 �
p

2 < ˛ < 2 C
p

2

and for�s when˛ 2 .˛;˛C/ n .2 �
p

2; 2 C
p

2/.

Moments of the limit law. The integral moments�m.˛/ of Y .˛/ satisfy (when they exist)�0.˛/ D
�1.˛/ D 1 and form � 2

�m.˛/ D .˛=2/m

m.˛ � 1/ C 1 � 2.˛=2/m

X

1�h<m

�

m

h

�

�h.˛/�m�h.˛/
�.h.˛ � 1/ C 1/�..m � h/.˛ � 1/ C 1/

�.m.˛ � 1/ C 1/
:

Observe that the polynomialm.z � 1/ C 1 � 2.z=2/m has two positive zerosz�
m andzC

m , wherez�
m 2

Œ2 �
p

2; 1/ andzC
m 2 .2; 2 C

p
2� for m � 2. And the two sequences of zeros for increasingm satisfy (see

Table1)
z�

m " 1; zC
m # 2:

Thus the intervalŒ1; 2� is the only range where convergence of all moments holds.
More precisely,�m.˛/ is finite whenz�

m < ˛ < zC
m and we have convergence of the firstm-th moment

(but not the.m C 1/-st moment) forYn;k=E.Yn;k/ and NZn;k=E. NZn;k/ there. In particular, if̨ � < ˛ �
2 �

p
2 or 2 C

p
2 � ˛ < ˛C, thenY .˛/ has no second moment. This is consistent with the result in

Drmota and Hwang (2005a).

m 2 3 4 5 6

z�
m 0:58578 0:69459 0:76045 0:80420 0:83509

zC
m 3:41421 3:06417 2:86989 2:74376 2:65416

m 7 8 9 10 11

z�
m 0:85790 0:87533 0:88903 0:90006 0:90912

zC
m 2:58668 2:53372 2:49085 2:45532 2:42531

Table 1:Approximate numeric values ofz�
m andzC

m for m D 2; : : : ; 11.

Limit distributions when ˛ D 1. Note thatY .1/ D Y .2/ � 1.
The following theorem states that there is a delicate difference between the limit distribution ofYn;k

and that ofZn;k (properly normalized) when̨ D 1 C O.1=
p

�n/.

Theorem 6. Assumek D �n C tn;k , wheretn;k D o.�n/. If jtn;k j ! 1, then

Yn;k � E.Yn;k/

2tn;k.2�n/k�1=.nk!/

M�! Y 0.1/I

if tn;k D O.1/, then the sequence of random variables.Yn;k � E.Yn;k//=
p

V.Yn;k/ does not converge to a
fixed limit law.

For internal nodes, uniformly fortn;k D o.�n/,

Zn;k � E.Zn;k/

.2�n/k=.nk!/

M�! Y 0.1/:
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Thus the periodicity does not play a special role for internal nodes when̨ D 1. Note that the normal-
izing constants differ by the factor̨n;k � 1 D tn;k=�n.

The limit lawY 0.1/ can also be defined as

Y 0.1/
DD 1

2
Y 0.1/ C 1

2
Y 0.1/

� C 1 C 1

2
logU C 1

2
log.1 � U /;

with independent summands andY 0.1/
DD Y 0.1/

�. Note that the random variables
P

j�0 Zn;j =2j have
mean equal to

P

1�j�n j �1 and converge toY 0.1/ (after centered and normalized).
Since the distribution ofY 0.1/ is uniquely characterized by its moment sequence, the convergence in

distribution is also implied by the Frechet-Shohat moment convergence theorem.

The quicksort limit law when ˛ D 2.

Theorem 7. Assumę n;k D 2 C tn;k=�n, wheretn;k D o.�n/. If jtn;k j ! 1, then

Yn;k � E.Yn;k/

2tn;k.2�n/k�1=.nk!/
;

Zn;k � E.Zn;k/

2tn;k.2�n/k�1=.nk!/

M�! Y 0.2/I

if tn;k D O.1/, then neither of two sequences

(

Yn;k � E.Yn;k/
p

V.Yn;k/
;
Zn;k � E.Zn;k/
p

V.Zn;k/

)

converges to a fixed limit law.

The limit lawY 0.2/ is essentially the quicksort limit law (see Hwang and Neininger, 2002)

Y 0.2/
DD U Y 0.2/ C .1 � U /Y 0.2/

� C 1

2
C U logU C .1 � U / log.1 � U /;

with independent summands on the right-hand side andY 0.2/
DD Y 0.2/�.

Convergence in distribution in the case whenjtn;k j ! 1 is also implied.
The approach given in this paper gives not only the bimodality of the variancesV.Yn;k/ andV.Zn;k/

but also the extremal (reachable) orders ofjE.Yn;k � E.Yn;k//mj and jE.Zn;k � E.Zn;k//mj for m � 3

when˛ D 2.

Sketch of proofs. We sketch a few steps for internal nodes, external nodes being similar and simpler.
Starting from the recurrence for the probability generating function ofZn;k

Pn;k.y/ D 1

n

X

0�j<n

Pj ;k�1.y/Pn�1�j ;k�1.y/ .n � 2I k � 1/;

with P0;0.y/ D 1 andPn;0.y/ D y for n � 1, we have the recurrence for the mean value

E.Zn;k/ D 2

n

X

0�j<n

E.Zj ;k�1/ .n � 2I k � 1/:
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Lemma 9. The solution to the recurrence

an;k D 2

n

X

0�j<n

aj ;k�1 C bn;k ;

is given explicitly by

an;k D bn;k C 2

n

X

0�j<n

X

0�r<k

bj ;k�1�r Œur �
Y

j<`<n

�

1 C 2u

`

�

;

whereb0;k WD a0;k .

Then we have, by applying the exact solution withbn;0 D 1 for n � 1 andbn;k D 0 otherwise,

E.Zn;k/ D 2

n
Œuk�1�

X

1�j<n

Y

j<`<n

�

1 C 2u

`

�

D 2k Œuk�1�
1

u � 1

�

�.n C u/

�.n C 1/�.u C 1/
� 1

�

D 2k

2� i

I

jujD˛n;k>1

u�k�1 1

u � 1

�

n C u � 1

n

�

du: (51)

Thus

E.Zj ;k�1/ C E.Zn�1�j ;k�1/ � E.Zn;k/

D 2k

2� i

I

jujD˛n;k

u�k�1nu�1�.u; j=n/
�

1 C O.j �1 C .n � j /�1/
�

du;

where

�.u; x/ D uxu�1 C u.1 � x/u�1 � 2

2�.u/.u � 1/
:

Note that, unlike recursive trees and external nodes of binary search trees,�.1; x/ is not zero and�.1; x/ D
1C 1

2
logxC 1

2
log.1�x/. This is why there is no periodic case for internal nodes when˛ D 1CO.1=

p
�n/.

All estimates required forE.Zn;k/ and for its differenceE.Zj ;k�1/ C E.Zn�1�j ;k�1/ � E.Zn;k/ can
be derived as for recursive trees. For example, we have, uniformly for �n C K

p
�n � k � K�n,

E.Zn;k/ � .2�n/k

.˛ � 1/�.˛/k!n
:

8 Conclusions

Most random trees in discrete probability or data structures have height of order either in
p

n or in logn;
see Aldous (1991). While profiles and other related processes defined on random trees of

p
n-height have

been thoroughly studied in the literature (see Aldous, 1991, Drmota and Gittenberger, 1997, Kersting,
1998, Pitman, 1999, and the references therein), profiles oftrees with logarithmic height have received
little attention (except for digital search trees; see Aldous and Shields, 1988, Jacquet et al., 2001). This
paper shows that the phenomena exhibited in such trees are drastically different yet highly attractive.
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A detailed study of more general random search trees (including m-ary search trees, quadtrees, fringe-
balanced binary search trees, etc.) will be given elsewhere.

Many questions remain unclear at this stage. For example, are there more “humps” or valleys for higher
central moments or cumulants in the central range? Are thereinteresting process approximations? How
to simulate the limit laws appearing in this paper? And what happens when̨ D e for recursive trees and
˛ D ˛�; ˛C for binary search trees? Do we still have the same convergence in distribution forXn;k=�n;k

when�n;k ! 1? Note that for recursive trees,E.Xn;k/ ! 1 for k � e�n � e1 log�n, wheree1 > 1=2,
but V.Xn;k/ ! 1 for k � 4

log4
�n � e2 log�n, wheree2 > 1=.2 log4/. Since4= log4 � 2:88 > e, there

is still a small range ink where the mean goes to zero but the variance goes to infinity.
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[20] P. Erdős and P. Turán (1967). On some problems of a statistical group-theory. III.Acta Mathematica
Academiae Scientiarum Hungaricae18309–320.

[21] D. J. Evans and R. C. Dunbar (1982). The parallel quicksort algorithm. I. Run time analysis.Interna-
tional Journal of Computer Mathematics12 19–55.

[22] P. Flajolet and A. M. Odlyzko (1990). Singularity analysis of generating functions.SIAM Journal on
Discrete Mathematics3 216–240.

[23] J. L. Gastwirth and P. K. Bhattacharya (1984). Two probability models of pyramid or chain letter
schemes demonstrating that their promotional claims are unreliable.Operations Research32 527–
536.

[24] R. Grossman and R. G. Larson (1989). Hopf-algebraic structure of families of trees.Journal of Alge-
bra 126184–210.

[25] H.-K. Hwang (1995). Asymptotic expansions for the Stirling numbers of the first kind.Journal of
Combinatorial Theory, Series A71343–351.

[26] H.-K. Hwang (2005). Profiles of random trees: plane-oriented recursive trees. Preprint submitted for
publication.

38



[27] H.-K. Hwang and R. Neininger (2002). Phase change of limit laws in the quicksort recurrence under
varying toll functions.SIAM Journal on Computing311687–1722.

[28] P. Jacquet, W. Szpankowski and J. Tang (2001). Average profile of the Lempel-Ziv parsing scheme
for a Markovian source.Algorithmica31 318–360.

[29] M. Janic, F. Kuipers, X. Zhou and P. van Mieghem (2002). Implications for QoS provisioning based
on traceroute measurements. InLecture Notes in Computer Science 2511, pp 3–14.

[30] G. Kersting, On the height profile of a conditioned Galton-Watson tree. Preprint (1998).

[31] D. E. Knuth (1997)The Art of Computer Programming, Volume 1, Fundamental Algorithms. Second
Edition, Addison-Wesley, Reading, MA.

[32] H. M. Mahmoud (1991). Limiting distributions for path lengths in recursive trees.Probability in the
Engineering and Informational Sciences5 53–59.

[33] H. M. Mahmoud (1992).Evolution of Random Search Trees. John Wiley & Sons, New York.

[34] H. M. Mahmoud and R. T. Smythe (1995). Probabilistic analysis of bucket recursive trees.Theoretical
Computer Science144221–249.

[35] A. Meir and J. W. Moon (1974). Cutting down recursive trees.Mathematical Biosciences21 173–
181.

[36] A. Meir and J. W. Moon (1978). On the altitude of nodes in random trees.Canadian Journal of
Mathematics30997–1015.

[37] J. W. Moon (1974). The distance between nodes in recursive trees. In “Combinatorics”, edited by T.
P. McDonough and V. C. Marron. London Mathematical Society Lecture Notes, Series 13, London,
pp. 125–132.

[38] H. S. Na and A. Rapoport (1970). Distribution of nodes ofa tree by degree.Mathematical Biosciences
6 313–329.

[39] D. Najock and C. C. Heyde (1982). On the number of terminal vertices in certain random trees with
an application to stemma construction in philology.Journal of Applied Probability19 675–680.
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