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Project: Probabilistic properties of random trees

by
Michael Fuchs

Abstract

In this project, we investigated probabilistic properties of random trees. We essentially
focused on two types of trees: recursive trees and quadtrees. We devised a general method to
derive limit laws for the profile of recursive trees. Furthermore, we gave a general framework
to derive stochastic properties for a large class of characteristic parameters such as the number
of leaves, the total path lengths, etc. of quadtrees. This new approach allowed us to re-derive
most of the previous results and to add many new ones. What both methods have in common
is that they rest on the method of moments and on asymptotic transfer theorems. Moreover,
they are both of some generality and are expected to have many more applications.

1 General

This is the final report on the National Science Council project entitled “Probabilistic properties
of random trees” with number 93-2119-M-009-003 and term from November 1st, 2004 to October

31st, 2005.
Before presenting our results in more details, we give an overview of the main outcomes of

the project.

e Parts of the paper [4] were written within this project. The paper was submitted and is
accepted for publication in one of the forthcoming issuealgbrithmica

e The paper [1] was written within this project. It was submitted and is currently under review.

e The results of the second paper were presented at the 12th International Conference on Ran-
dom Structures and Algorithms in Poznan, Poland (a report on the conference was already
handled in at an earlier stage).

2 Results

The aim of the project was to study the stochastic behavior of characteristic parameters of random
trees. In particular, we were interested in the so called profile which roughly speaking is the shape
of the tree. Subsequently, we briefly describe the main results of the to papers [4] and [1] which
were written within this project.

1. Profiles of random trees: Limit theorems for random recursive trees and binary search

trees. A manuscript of this paper existed already at the time of the proposal of the project. Ac-
tually, the results were already discussed when applying for the project (see the project proposal).
It was one of the original goals of the project to extend the resulta4ary search trees and
median-of2t + 1 search trees.

As already discussed in the project proposal the main complications of such an extension
are arising from the more technical nature of the latter two families of random search trees. When
trying to extend the original method, we realized that it can be largely simplified. [4] is an improved
version of the earlier manuscript using a more simplified method of proof.
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In order to provide some details of where the simplifications occur, denakg, hythe number
of external nodes at levélof a random binary search tree omodes. An exemplary result of [4]
reads then as follows.

Theorem 1. Assume that = alogn + o(logn), wherea € [1,2]. Then,

Tk 4y,
EX,k

with convergence of all moments.

For the proof, we used the method of moments. Therefore, we had to study the transfer behav-
ior of the following recurrence

n—1

2
an k. = o E @j k-1 + ok,

J=0

which arises when studying the moments and central momenis, @f Here, b,, . is a given
sequence. The transfer behavior of such and similar recurrences was already studied in previous
works. The new feature of the present study is the dependence on two indicedich makes
the problem more involved.

From such transfer theorems the above result can then be obtained by proving the following
asymptotic expansions for all moments

EX, ~ Um () (EX, )™,
wherek = alogn + o(logn) andv,,(a) = EX™. The proof of the latter proceeds in two steps.
1. Obtain an upper bound fd@ X", uniformly valid for alln, k.
2. Fork = alogn + o(log n) refine the analysis of the previous step.

In our previous manuscript of [4], the first step above was technically involved. We succeeded
in finding a simpler approach, thereby greatly simplifying the original method.

This new approach is expected to work as well4ofary search trees and medianz2sf+ 1
search trees. In particular, it will make the expected technical difficulties for these more compli-
cated random search tree structures easier to handle. This is work still in progress and might be
the topic of a forthcoming project.

2. Phase changes in random point quadtrees. Apart from studying the profile af:-ary search
trees and median-cft + 1 search trees, also the profile of quadtrees (yet another extension of bi-
nary search trees) is of great interest. The paper [1] is expected to provide the technical machinery
needed for such a study. However, the results of the paper are also of great interest on their own.
A future detailed study of the profile was only one driving motivation for the techniques de-
veloped in [1]. Another source of inspiration was a recent paper of Dean and Majumdar [2] were
they observed a phase transition in the random continuous fragmentation problem: the limit law
changes from normal which they could prove rigorously to non-normal which they just concluded
from experiments. Since their model is closely related to random quadtrees a similar behavior is
expected to hold for the number of leavEs of a random point quadtree of dimensién
The number of leaves fat = 1 (this corresponds to the binary search tree) was well-studied
in literature and the situation is well-understood. However, for gengi@ily precise asymptotic
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expansions for the mean value were derived by Flajolet et al. [3] previous to our work. More
precisely, they proved that

EX,=n— Y <Z>(-1)k[k]1

2<k<n

1
>4

2<5<k j]'

where[k]! := [Ty, (1 —2%/j) for k > 3 and[2]! := 1. From this explicit expression, asymp-
totic expansions can be quickly derived by using Rice’s integral method.

In [1] we devised a general method to obtain asymptotic expansions for all central moments.
Such results then quickly entail the following theorem confirming the results obtained heuristically
in[2].

Theorem 2. (i) If 1 <d < 8&then

Xn — Man
O'd\/ﬁ

whereN (0, 1) denotes the standard normal law apg o, are suitable constants.

— N(0,1),

(i) If d > 8then(X, —E(X,))/v/V(X,) does not converge to a fixed limit law.

Moreover, we refined our method in order to get the following result which completely clarifies
the second phase change.

Theorem 3. Let

_ 1/3, ifl1<d<T;
o= .
V2—1, ifd=S8.
Then,
—x2/2

P (Xn = |[E(X,) + x\/V(Xn)D = ;TT()() (140 ((1+ |af*) n=30/2-9))

P (X”;E(X”) < x) — O(x)

and

sup
zeR

—0 (n_3(1/2—a)) 7
V(Xn)

where the above rate is optimal. Her@(z) denotes the distribution function of the standard
normal distribution.

The proofs of these two results again rest on the method of moments and its refinement. As al-
ready explained above, the main step is to study the asymptotic transfer behavior of the underlying
recurrence for the (centralized) moments which here has the form

n—1

Ay = 2d Z?ij(lj + bn,

J=0

J [071]d

By introducing generating functions, the above recurrence can be translated into a differential
equation. Where in most previous studies the so obtained differential equations was of Cauchy-
Euler type, the present situation is complicated by the fact that the differential equation is not

where
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of Cauchy-Euler type anymore. However, the differential equation can be interpreted as a per-
turbed differential equation of Cauchy-Euler type. In [1], we developed the machinery to obtain
asymptotic transfer theorems for such differential equations which then also yield corresponding
asymptotic transfer theorems for the above recurrence. We omit stating detailed results here and
instead direct the interested reader to [1].

Our method is general enough to be applicable to a wide range of characteristic parameters
of quadtrees, thereby re-deriving most of the previous results and adding many new ones. Just
to give some more examples, in addition to the number of leaves discussed above, the methods
yields a variety of results such as precise asymptotic expansions of moments, first and second
phase change, etc. as well for

e Paging;

¢ Node sorts;

e Total path lengths;
e Expected profile;

and many more.

Moreover the method can be applied to derive similar results for Devroye’s random grid trees
which constitute a common extension of both quadtreesnaiadly search trees.

For more details and more results, the reader may directly consult the paper [1].

As already mentioned in the introduction, the techniques we developed for quadtrees are ex-
pected to be applicable as well to derive finer results (in the flavor of [4]) for the profile. Of
course, due to the more complicated nature of the profile, some further technical complications
are expected. This is work in progress and might be the topic of an another project.

3 Summary

We shortly summarize the results of this project and indicate some future directions of research.

e A previous version of [4] was largely improved by greatly simplifying the method of proof.
The new manuscript was then submitted and is about to be published.

e We gave a general framework to study probabilistic properties of a huge class of character-
istic parameters of quadtrees and grid trees, thereby re-deriving most of the previous results
and adding many new ones.

e The two previous papers are expected to lay out the tools needed for a detailed study of the
profile oflog-trees such am.-ary search trees, median-2f-+ 1 search trees, quadtrees, etc.
This might be the topic of a forthcoming project.

e The method devised in [4] is expected to have many more applications such as in the study
of the number of subtrees of a given size in random search trees, the number of nodes of
fixed outdegree, etc. This might be the topic of yet another forthcoming project.
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Abstract
We show that a wide class of linear cost measures (such as the numbaves)lén randonal-
dimensional point quadtrees undergo a change in limit laws: if the dimedsierl, . . ., 8, then the

limit law is normal; ifd > 9 then there is no convergence to a fixed limit law. Stronger approximation
results such as convergence rates and local limit theorems are alseddervthe number of leaves,
additional phase changes being unveiled. Our approach is new gngereral, and also applicable to
other classes of search trees. A brief discussion of Devroye'sigid- (coveringn-ary search trees
and quadtrees as special cases) is given. We also propose ameffiicigeric procedure for computing
the constants involved to high precision.

1 Introduction

Phase transitions in random combinatorial objects isstnomg computer algorithms have received much
recent attention by computer scientists, probabilists, gtatistical physists, especially for NP-complete
problems. We address in this paper the change of the lim#& fewvn normal to non-convergence of some
cost measures in random point quadtrees when the dimenai@sy The phase change phenomena
well as the asymptotic tools we develop (based mostly omfinperators), are of some generality. We will
discuss the corresponding phase changes in Devroye’smmagdd-trees (se€lp]) for which a complete
description of the phase changes will be given.

aPartially supported by National Science Council of ROC uride GrantNSC- 93- 2115- M 019- 001.

bPartially supported by National Science Council of ROC urile GrantNSC- 93- 2119- M 009- 003.

CPartially supported by a Research Award of the Alexanderomboldt Foundation.

We use mostly “phase change” instead of “phase transiti@rabse the dimension in our problem takes only positive
integers.
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Figure 1:A configuration of points in the unit square and the corresponding quadtree.

Point quadtrees. Point quadtrees, first introduced by Finkel and Bentle§],[ are useful spatial and
indexing data structures in computational geometry antbf@rdimensional points in diverse applications
in practice; see de Berg et a][ Samet {3, 44] for more information. In this papewe will say quadtrees
instead of point quadtredsr simplicity.

Given a sequence of points &, the quadtree associated with this point sequence is cmstr as
follows. The first point is placed at the root and then splits tinderlying space int2f smaller regions
(or quadrants), each corresponding to one oPthsubtrees of the root. The remaining points are directed
to the quadrants (or the corresponding subtrees), and bieess are then constructed recursively by the
same procedure. See Figukdor a plot ofd = 2. Whend = 1, quadtrees are simply binary search
trees. Thus quadtrees can be viewed as one of the many difextensions of binary search trees; see
[7,12 37].

Random quadtrees. To study the typical shapes or cost measures of quadtreessuene that the given
points are uniformly and independently chosen friom|¢, whered > 1, and then construct the quadtree
associated with the random sequence; the resulting qeadtoalled aandom quadtree

Several shape parameters and cost measures in randomegsdatdive been studied, reflecting in dif-
ferent levels certain typical complexity of algorithms amagltrees.

e Depth (distance of a randomly chosen node to the rod®): 13, 17, 19, 20];
e Total path length (sum of distances of all nodes to the r¢a&i): 19, 40];

e Cost of partial-match queries4,[17, 38, 41];

e Node types: 19, 26, 34, 35, 36);

e Height (distance of the longest path to the rootp, [12].

In particular, the asymptotic normality of the depth wad fi®ved in Flajolet and Lafforgue] (see
also [L2]), and the non-normal limit law for the total path length ieiNinger and Rschendorf4Q.

The number of leaves. For concreteness and simplicity, we present the phase elpdrggnomena through
the number of leaves, denoted &y, = X,, 4, in random quadtrees of points. The extension to more
general cost measures will be discussed later.



Whend = 1, it is known thatX,, (the number of leaves in random binary search trees rmbdes) is
asymptotically normally distributed with mean and variamsymptotic ta:/3 and2n/45, respectively;
see [L1, 18]. A local limit theorem is also given inlg].

Ford > 2, Flajolet et al. (seel[9)) first derived the closed-form expression for the expeestdde of
A;L

B =n- ¥ (0 Y & ez, @

2<k<n 2<j<k
where[k]! := [[;;,(1 —2¢/j%) for k > 3 and[2]! := 1, and then showed that
E(Xn) ~ /“Ldna

where

>3 1- ]>2 h>1

vl S S e @

see B0) for an alternative expression. In particular,= 1/3 andu, = 47> — 39; see R6, 36].

The phase change. Our first result says that whehincreases, there is a change of nature for the limit
distribution ofX,,.

Theorem 1. (i) If 1 < d < 8, then
Xn = pan .«

Udvf_

where% denotes convergence of all moments and, 1) is the standard normal random variable (zero
mean and unit variance). The constaatsare given in b2).

(27) If d > 9, then the sequence of random variablés, — E(X,,))/+/V(X,) does not converge to a
fixed limit law.

2 N(0,1),

In the first case, convergence in distribution &f, — 14n)/+/c3n is also implied.

Why phase change? One key (analytic) reason why the limiting behavior0f changes its nature for
d > 9 is because of the second order term in the asymptotic exgpansE(.X,,)

E(X,) = pan + G1(Blogn)n® 4+ o(n® + n%) (d > 2), (3)

wherea := 2 cos(27/d) — 1, 5 := 2sin(27/d), andG, (=) is a bounded]-periodic function; see4@) for
an explicit expression. i < 8, thena < 1/2; anda € (1/2,1) if d > 9; see Tablél for numeric values
of a.

d| 2 3 4 5 6 7 8 9
all—-3]-2|-1]-038]0]0.24|041|0.53

Table 1:Approximate numeric values of= 2 cos(27/d) — 1 for d from2 to 9.



From this expansion, we can derive the asymptotics of tharves

5 .
on, if1<d<S8;
V(Xa) { Go(Blogn)n®®, if d > 9, (4)

whereG, () is a bounded]-periodic function.

Intuitively, we see that the periodicity irB becomes more pronounced agrows (see Figure),
implying larger and larger variance igd)( so that in the endX,, — E(X,,))/+/V(X,) does not converge
to a fixed limit law.

Phase changes in other search trees.The situation here is similar to several phase change phemam
already studied in the literature in many varieties of randsearch trees and related algorithms:ary
search trees, fringe-balanced binary search trees, deeerguicksort, etc; see?[ 3, 7, 15, 28, 29.
See also JansoRJ for a very complete description of phase changes in urn tspdéich are closely
connected to many random search trees.

However, the analytic context here is much more involved fir@viously studied search trees because,
as we will see, the underlying differential equation is naenaf Cauchy-Euler type, which demands more
delicate analysis.

Phase changes in random fragmentation models. The same phase change phenomenon as leaves in
random quadtrees was first observed in Dean and MajurBfjaviiere they proposedndom continuous
fragmentation model® explain heuristicallythe phase changes in random search trees. Their continuous
model corresponding to quadtrees is as follows. Pick a poifft, z]¢ uniformly at random £ > 1),
which then splits the space infty smaller hyperrectangles. Continue the same procedure isuibe
hyperrectangles whose volumes are larger than unity. Tbeeps stops when all sub-hyperrectangles
have volumes less than unity. They argue heuristically thattotal number of splittings undergoes a
phase change: “While we can rigorously prove that the digiob is indeed Gaussian in the sub-critical
regime [/ < 8], we have not been able to calculate the full distributiothmsuper-critical regimei[> 9]”;

see B].

Recently, Janson (private communication) showed that three dgpe of phase change can be con-
structed by considering the number of nodes at distérsagisfyingl mod d = j, 0 < j < d, in random
binary search trees, or equivalently, the number of nodieg tise (¢ + 1)-st coordinate as discriminators
in randomk-d trees, wheré mod d = ;.

Recurrence. By the recursive nature of the problem prop¥y, satisfies the recurrence
7 d
X, ZXW 4+ X 400 (=), (5)

with X, = 0, where the symbo!@: denotes equality in distribution, thé’s and thex” Z X,’s are
independenty,, ; denotes the Kronecker symbol, and

Tnj = P(Jl == jl? tee sz = de)

—1 ) )
Ji, -5 024/ Jio,1)4



denotes the probability that tt subtrees of the root are of sizgs. .., j,«. Heredx = dx;--- day
amd theg;(x)’s denote the volumes of the hyperrectangles split by a nanglointx = (z;,...,z4). We
can arrange the,(x)’s as follows

an(x) = H (1 =bi)w; + bi(1 — xy)) (1<h<29), (6)
1<i<d
where(by, . .., by)2 Stands for the binary representationof 1 (the first few digits being completed with
zeros if[logy,(h — 1)| <d — 1, sothat) = (0,...,0)2, 1 = (0,...,0,1),, etc.).
d d—1

The moment-transfer approach. By (5), all moments ofX,, (centered or not) satisfy the same recur-
rences of the form

0<j<n

with A, and{B,},>1 given, where

Tnj = <" ’ 1> / (1 za) (1 — a2y 2g)" 7 dx. (8)
J [0,1]¢
Many different expressions fat, ; can be found in19, 34]; see also25].

To prove the limit distribution, we apply thmoment-transfer approa¢twvhich has proved successful in
diverse problems of recursive nature. We have applied theoaph to and developed the required asymp-
totic tools for many problems, including-ary search trees, generalized quicksort and most vangtio
of quicksort, bucket digital search trees, maximum-findafgprithms in distributed networks, maxima in
right triangle; see the survey pap@€] for more references.

The basic idea of the approach is, because all momentsysthiessame recurrencé)( to incorporate
the analysis of the asymptotics of higher moments into dgreg the so-calledsymptotic transfemvhich,
roughly speaking, infers asymptotics df, from that of B,,. Such an approach always reduces most
analysis to obtaining the first or second moments, the ranwjmart being more or less mechanical. It
also offers the possibility of refining the limit theoremsdiyonger approximation results like convergence
rates and local limit theorems, the new ingredients neededylmleveloped in8] for m-ary search trees;
see also]].

Second phase change.The refined moment-transfer approach (s&¢)[shows thatX, undergoes a
second phase change in convergence rate to normal limibfi@n(referred to as the Berry-Esseen bound).
Our result says that the convergence rate to normal law isdefre~'/? whenl < d < 7, but is of a poorer
ordern—3(/2-v2) ~ =024 whend = 8. Both rates are optimal modulo the implied constants. We will
indeed derive local limit theorems fo¥,,, which are more precise and informative than convergence in
distribution.

Resolution of the recurrence {). Exact solution®f the recurrencer) were first investigated by Flajolet
etal. in [L9] (see also36, 39]), based mainly on the crucial introduction of the Eulensfrm. Asymptotic
propertiesof (7) were also thoroughly examined itg], using powerful complex-analytic tools. Their
approach is very efficient in deriving the asymptotic expams but requires stronger information on the
given “toll sequence’B,,.



In this paper, we show that the exact solution given via Eudersform in L9 (see (L9)) can also be
obtained by using the usual Poisson generating functiofikoi@gh this approach is essentially the same
as the Euler transform on ordinary generating functionsfférs an operational advantage in simplifying
the calculation of the exact variance; see Secsidn

Asymptotic transfer of the recurrence (7). We will develop the asymptotic transfer needed for deriving
asymptotics of moments. Most proofs of previously knowngghehanges in random search trees and
quicksort algorithms rely more or less on developing therasptic transfer for Cauchy-Euler differential
equations (abbreviated as DES) of the form

Polynomial?){(z) = n(z), (9)

wherer is independent of and? := (1 — z)(d/dz). The main transfer problem under this framework is
to derive asymptotics dt”]¢(z) when that of z2"|n(z) is known, wheréz"|£(z) denotes the coefficient of
z™ in the Taylor expansion of. A very general, elementary asymptotic theory for such DEB wlarge
number of applications is given ifT], the origin of such a development being traceable to Seubésy
analysis on quicksort (seéq]).

For quadtrees, the DE satisfied by the generating functian := > A,,2" is given by

I(20)* 71 (A(2) — B(2)) = 2°A(2), (10)
which is not of the typeq) but can be rewritten in the extended form
Py(9)A(z) = 0(20)""'B(2) + Y (1= 2/ Pi(9)A(2), (11)
1<j<d

whereRy(z) = z¢ — 2¢ and theP;(x)'s are polynomials of degre€& see 23).

We then extend the iterative operator approach introducg8]ito analyzing the expected cost of
partial match queries in randokad trees. The approach turns out to be very useful for exte@deichy-
Euler DEs of the formX1); see p] for another application to consecutive records in randequences.

The main differences of the current application from thevjones ones are(i) we consider general
non-homogeneous part (or toll functions) rather than sjpemnes;(ii) the method of Frobenius (and the
method of annihilators) used in our previous papers is @gahd replaced by a more uniform elementary
argument, the resulting proof being completely elemengamy requiring almost no knowledge on DE;
(#4i) we give not only necessary but also sufficient conditionsalbtransfers we developed; the same
proof for the sufficiency part also easily modified for prayihe necessity in all cases, keeping uniformity
of the approach(iv) the proof we give in its current form is easily amended for engeneral DEs with
polynomial coefficients(v) we put forth means of simplifying the expressions for thestants involved;
the resulting expressions are in some cases simpler thae therived in 19]; also our expressions are
easily amended for numeric purposes.

A universal condition for asymptotic linearity? One main result our approach can achieve states that
A, is asymptotically lineard,, ~ Kn if and only if B, = o(n) and the serie§" B,n"? is convergent,
whereK is explicitly given in terms of thé3,,’s; see (6). It is interesting to see that exactly the same con-
dition for the asymptotic linearity ofl,, holds for other recurrences appearing in quicksergry search
trees, generalized quicksort, and many others; gee\ote that the expression for the linearity constant
K differs from one case to another. The series conditiph), B,n 2| < oo also arises in many other
problems such as generalized subadditive inequalitiegjedand-conquer algorithms, large deviations,
etc.; see31] and the references therein. Is there a deeper reason wieties condition is so universal?

6



Organization of the paper. In the next Sectio, we develop general asymptotic transfer results, which
can be applied to more general shape characteristics ahadneasures. In Sectiorisand4, we study
the phase change phenomena exhibited by the number of leasletiscuss the extension to general cost
measures. Effective numerical procedures will also bergofecomputing the limiting mean and variance
constants forX,,. The extension of our consideration to Devroye’s griddrgsee 12)) is given in the final
section.

Notation. Throughout this paper, the notati¢ti'] f(z) denotes the coefficient af* in the Taylor ex-
pansion off. The generic symbat always represents some small quantity whose value may xamy f
one occurrence to another; similarly, the generic synatgibnds for a suitable constant. We define two
operatorsD, := d/dz and?d := (1 — z)D,. The same set of symbols3,,, B(z), B*(s)} is used for
the sequencd,,, its generating functiolB(z) = > B,2", and its factorial series or Mellin transform
B*(s) = fol(l — x)*"'B(x) dz, respectively.

2 Asymptotic transfer of the quadtree recurrence

We develop the asymptotic tools in this section by proviredtiferent types of asymptotic transfer needed
for later uses. A salient feature of our transfers is thatagymnptotic condition in each case is not only
sufficient but also proved to be necessary.

Three types of asymptotic transfer. For simplicity, we assumél, = 0 since otherwise the difference
is given explicitly byAy(2¢ — 1)n + Ay; see (9).

Theorem 2. Let A,, be defined by the recurrencé) fwith A, and{ B, },.>1 given. Then

(7) (Small toll functions)

A, ~ Kpn iff B, =o(n) and ‘Z B2 < oo, (12)

where the constank’ is given in (L6);

(77) (Linear toll functions) Assume th&, = cn + u,, wherec € C andu,, is a sequence of complex
numbers. Then

2 . -2
A, ~ gcnlogn + Kin iff u, =o(n)and ‘zﬂ: UpN ) < 00, (13)
where K, := cK, + K, with K, defined by replacing the sequenBg by u,, in (16) and K, given
explicitly by
1 _ g g . 2jmi/d
Ky = —1 d+27+d21/)(2 262/, (14)

1<5<d
1 being the logarithmic derivative of the Gamma function (Seg);
(7i1) (Large toll functions) Assume th&f(v) > 1 andc € C. Then

clv+1)*

B, ~en” iff A, ~ ———————n".
cn (U+1)d_2dn

(15)
More refinements tol) under stronger assumptions 8y will be proved below.
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The linearity constant. Given a sequencB,,, define the constarit z by the series
2
Kp = - E B*(k+2 16
B d " Vk ( + )v ( )

which is absolutely convergent under the conditibg) (on B,,, whereV}, is defined recursively by, = 0
whenk < 0, V, =1, and

Py(k+2)
= — V. E>1 17
Vi 1%3 Po(k—i—Z)ng (k=>1), (17)
<{<d
and the functionB* is given by
! B.j!
B*s::/Bx 1—2) tde = 2 —, (18)
(5) = | B -w) DT T

when the integral and series converge. Here the polynomidls)'s are given in £3). Note that when
d =1, Vi = 0, SO thatkz = 2B*(2); see B0].

2.1 Euler transform and Poissonization

Euler transform. Flajolet et al. proposed irlP] an approach via Euler transform for solving the recur-
rence {); their result is

Ay=Ag+n(2'-1DA+Bi)+ > (Z) -0 > B:-B1,) [] (1 — E—Z) . (19)

2<k<n 2<<k j<t<k
for n > 0, whereB; denotes the Euler transform of the sequeBge
B,= Y (") (—1)'B;.
1<5<n N

As one can see froni), the appearance @8’ and the power of-1 makes the asymptotics of,, less
transparent.

Poissonization. An alternative way of deriving1(9) is as follows. Consider the Poisson generating
functions of both sequencesi(z) := e} ., A,2"/nl and B(z) = e} ., B,z"/nl. Then ()
translates into

A'(z)+ A(z) = B'(2) + B(2) + Zd/ Azy - 242) dx,
[0,1]¢
with the initial conditionA(0) = Ay. Let A,, := n![2"]A(z) andB,, := n![z"]B(z). Then

d

o . 2
An + Anfl == Bn + anl + E Anfl (Tl Z 1)7 (20)

(for convenience, defining, = By = 0). Observe that

A=y = 1 3 ()0

0<k<n
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and B, = (—1)"Br. By iterating the recurrence() and by taking into account the initial values, we
obtain (9).

Although the approach is essentially the same as that vier E@nsform, it is helpful in deriving a
dimension-free expression for, say the varianceXf see SectiorB.2. It also offers the possibility of
obtaining the asymptotics of,, by the usual Mellin transform techniques.

Asymptotics of the recurrence 7). A very powerful complex-analytic approach is proposedif] [
to the asymptotics of7). The main idea is to apply singularity analysis (s&]), so one needs the
asymptotics of the generating function,, A,z" for = ~ 1, which, by the Euler transform, leads to the
study of the generating functiaa*(¢) := ) A*t" for t near—oo. For that purpose, they apply integral
representation foA*(—t) of the form

1 c+ioo ts
Aty = = / ™ (s ds,

2T Jo_joo SINTS

for suitably choser andy(s) satisfyingy(k) = Aj for £ > 2. The determination of such an “analytic
extrapolation” ofA; to complexs is crucial.

The major limitation of this approach is that when the giveguenceB,, is, say only known up to
O(n®) or ~ n“ for someq, it is not obvious how to find an analytic extrapolation andrtho deduce
the right order ofA,, because of the underlying “exponential cancellations deot roughly, (’;) has
its largest term of orde2™n~'/2, but most of our sequences grow only polynomiallyrinsee p3] for
asymptotics on alternating binomial sums.

Alternatively, one might try the usual Mellin analysis fx—i(z) (or its truncated functions); again ana-
lytic properties of the involved function at+ ioc may be very challenging.

Note that the valuel, and the sequencgB,, },~; are enough to completely determine the sequence
A,,. This property will be useful in our numeric procedure; seet®n3.2

2.2 Asymptotic transfer I. Small toll functions

We prove the first case of Theoréhin this section by extending the approach we proposed bé&fotbe
analysis ofk-d trees. The main idea is to write the underlying DE in therfaf certain “perturbed” DE
of Cauchy-Euler type, and then to use some iterative opeaagoments.

The DE. LetA(z) =) ., A.2" andB(z) = > ., B,2". Then the recurrencd) translates into the
DE (10), which becomes simpler by considerifig= A — B:

((z9)""" = 29) f(2) = 2?B(=). (21)
This DE can be re-written as the “perturbed” Cauchy-Euler DE

Po(9)f(2) = g(2) + 2¢B(2);
{ 9(2) = Yrcyeal = 2V POV F(2), (2)
wherePy(z) = z¢ — 24, and by induction

Py(a) = (=1 '] ]

0<r<j

(1<j<d). (23)



Note that allP;’s are polynomials of degre€ they can also be computed recursively as follows. Write
0(20)"" f(2) = Z (1= 2) Pay(9) f(2).
0<5<d

ThenPj(z) = —Py (z) for 1 < j < d. HerePy;(z) = (z — j)(Pi_1(z) — Py_y;_1(z)) with the

boundary condition®, o(z) = x, Py (x) = 0if j < 0o0rj > d.
Let \;'s denote the zeroes @} (x) = 0, namely,\; = 2¢%™/4 for 0 < j < d. In particular,\, = 2.

All initial conditions zero. For convenience, we assume temporarily that all initialgalare zeros
f9(0) = 0for0 < j < d. This implies that)’ f(0) = 0 for 0 < j < d since

PIE) = 3 (S GO - 2 F ),

0<L<y

whereS(j, ¢) represents the Stirling numbers of the second kind.

The Cauchy-Euler solution. Regarding the DEZ2) as a Cauchy-Euler DE, we can then decompose the
DE as follows.

(0 = Aa-1) - (9 = \)(9 = 2)f(2) = g(2) +2°B(2), (24)

whose solution (exact or asymptotic) can be obtained byessieely solving the first-order DE of the
form

(0 —v)&(z) = n(2),

which is given by

£(z) = E0)(1— =)™ + (1 — )™ / 1 () dr,

in the sense of formal power series; ség [
Since all initial conditions are zero, we thus obtain theisoh

f(Z) = (IAd—1 00 I>\1 o 12) [g + ZdB](Z)’ (25)

where
Ligl(z) = (1— =) / (1 - 2)(x) de. (26)

Note that the functiom involves itselff.
Thus the next steps consist(@f clarifying the changes in asymptotic approximation unaersecutive
applications of the linear operators, afit) simplifying the resulting leading constants.

Asymptotic transfer for the linear operator.

Lemma 1 ([7]). (i) (Small toll functions) Let € C. If fol(l — x)""1¢(z) dr converges, then

nv—l

#IRI1E) ~ Fr

1
| 1=yt a, 27)
0
wherel” denotes the Gamma function.
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(1) (Large toll functions) Let € C. If [z"|¢(z) ~ en”, wherec € C andR(7) > R(v) — 1, then

C

[2"] L[¢](z) ~ mnT- (28)

Note that ifv = 0,—1,... in case(i), then the~-transfer 27) becomes am-transfer; similarly, if
c = 01in case(ii), then 8) becomes an-transfer.
Proof. (Sketch) The estimate{) follows from (26), and £8) from the expression

ILAE = S S Ty 29)

see[]. |

Asymptotic linearity. We now prove the small toll functions part of Theoréwhen B,, = o(n)
and)" B,n 2 converges. The assumption that the sefésB,n~? converges implies thdtfol(l —
z)B(z) dz| < co. Assume at the moment that

1
/ (1—2)g(z)dz| < oco. (30)
0
Then by applying consecutively Lemmawe obtain
K/
A, = [2"]f(2) + By = —7=n+ o(n), (32)
2"/ (2) Pz o)

where

K= [(1=2) (olo) +2B(w) dr = Y [lote) 125 (32)

S G+D0+2)

The next step is to prove().

Proof of (30). Define X
As) ;:/0 (1= )" ' Py(9) f () da,

where thej-operator is understood to & — x)d/dz.
SinceB,, = o(n) = o(n'*®), A,, = o(n'"¢) by (46) below. Thusf(z) = O((1—z)?¢)for0 < x < 1
and
Py(@) f(x) = O(fD(x)) = O((1 — )~47*7),
for 0 < z < 1. It follows thatA(s) is finite for sufficiently larges, says > sy > d + 2 + . We show that
we can takes, = 2. Note thatA(s) is an analytic function in the half-plari®(s) > 2, but for our purposes
we need only real values of

Lemma 2 ([5]). Letp(z) andg(x) be two polynomials of degrees at mdstAssume thab(x) is defined
in the unit interval withp)(0) = 0 for 0 < j < k. Then

1 — )5t ) é(x x—]Ls) 1 — ) to(z) dx
| =0 e ) oy ar = B2 [ (- a0t an (39

provided thaty(s) # 0 and that both integrals converge.

11



Substituting 22) into the integral and applyin®8), we see thal (s) satisfies the difference equation

Bi(j+s)

TR A(j + s). (34)

A(s) =2'B*(s) + Y

1<j<d

By assumption3*(s) is finite fors > 2. Also A(s) is bounded fos > d + 2 + ¢ as showed above. Thus
by iterating the equatior8é), we deduce thak(s) is finite for s > 2.
This proves 80) because

| a=ou@ar= [ 1= (RO -2Bw) a.
and from @2), it follows that K/ = A(2).

Further simplification of the constant K’. Taking firsts = 2 in (34) and then iterating the recurrence
(34) N times, we get

K =Ky+ A+ N +1),
1<j<N(d—1)+1 Po(j+N+1)

wheree; ; = P;(j +2) for1 < j <d,

Pj+ N +1) .
= i 1<i<N({d-1 1
EN,j lédpo(]_i_N_'_l_g) EN-1,j+1-¢ ( >7 > ( )+ )7

for N > 2, and
3 B*(j +2)
K/ — 2d B* 2 B'(j+2) N
N ( ()+1<'< P+ 2) Z'efuﬂ z),
/=4 105

for N > 0.
SinceA(N) — 0 asN — oo, we have

: B*(j +2)
K'=lim Ky =2" B (2)+ ) S0 Y eojrir |-
11 N < ( ) + PO(] + 2) €e,j+1 5)

N—oo
Jj>1

Define
Vi = —— E e y
k Po(k 2) Lk+1—¢

1<e<k

ThenV, satisfies {7) and we have

K'=2""B*(k+2)V.

k>0

It follows, by (31), thatK'z = K’/ P;(2).
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Absolute convergence of the series representatioi) for Kz. There is noa priori reason that the
series representation féfz in (16) is convergent. We show that under the assumptionB,om (12) the
series in 16) is indeed absolutely convergent.

Observe first that by the factorial series expressiod @) (

B*(k +2)=0(k™?).

We need then an estimate .
If d =2, thenP;(s) = s(s — 1), and we can solve the recurrencélffexplicitly, giving

E+1

ey

(k > 0). (35)

Consequently,

k41
=12 B*(k+2
; ol kY

! 142 1
= 12/0 B(x) (ﬁ log; - %) dz;
see also36, 39.
Lemma 3. The sequenck, satisfies the estimate
Vi = O (k™' (logk)*?) (36)
ford > 2.

The order is tight; indeed, we can derive a more precise atiogpproximation; see39) below.
Proof. We first show that the generating functidiiz) of V;, satisfies the DE

D, (2(1 — z)D,)*" (2°V(z)) — 292V (z) = 0. (37)
By Cauchy'’s integral representation fgy

1 —k—1 1 —k—1
- . _- 1_ 1_ .
Vie = 5 w V(w) dw 5 (1—w) V(1 —w)dw

lw|=e |lw—1|=¢

Then, by the relation (sed7)),

Po(k+2)Vi— Y Pk +2)Viey =0,

1<t<d
we have
1
0=55 (L—w)V(A—w) |[Po(k+2)(1—w) 2= 3" P(k+2)(1—w) 2| dw
270 iy 11—
ho=1l=e 1<t<d
1
=-— (1= w)V(1 —w) [Pu(wdy,)™" =27 (1 = w) ™" dw,
270 1=

13



by the definition of theP;'s, whered,, := (1 — w)d/dw. It follows, by multiplying both sides by* and
then summing over all nonnegatikethat

Iy(z) — 2%V (2) =0,

where
1

1 (1 —w)™?

(1 — W)V(l — w) [ﬁw(@Uﬁw)d_l] 1— =

w—1|=¢ 1—w

Id(Z) : dw.

By successive integration by parts, we have

Ly(z) = (;3 fw_l_a (1:7“22@@,} (w(1 — w)Dy)* (1 — w)V(1 — w)) duw

1—w

1 L]D)w (w(1 — w)Dy,)* " (w?V (w)) dw,

- : z
211 lw|=¢ 1— w

whereD,, := d/dw. This proves §7).
By Frobenius method (se&7]), we seek solutions of the fori(z) = (1 — 2)7°¢(1 — 2) with ¢
analytic at zero. Substituting such a form in8Y) gives ford = 1

I(2) ~ €(0)s(1 — )57t (z~1).

By induction, we obtain
Iy(2) ~ €(0)s%(1— 2)=7L (2~ 1),
Thus, the indicial equation ig' = 0, implying that

V(z) =0 (log" "1 —2]) (z ~1).

It follows, by singularity analysis (se€]]), thatV,, satisfies the estimat&€). This proves Lemma. |

A more precise approximations to the asymptotics oft,. Since the generating function of the se-
quenceV;, satisfies the explicit, homogeneous D&E), we can derive more precise asymptotic estimates
as follows.

By applying either the Euler transform approachd][or the Poisson generating functions, we obtain

. (k—;1>(_1)4+1€1—[ DE- A o o

1<0<k+1 1<j<d P(0+2 =)

Consequently, we have the integral representation &2p [

1 [Tk +2)I(1 - s) (3 —)\)I(s+1)
Vi =— 1 ds. 38
"Tomi ). .. T(k+2-—25) 1<]11d F(s+2-))) ° (38)
From this representation, we can show that
d24-1(2¢ - 1)
~ -1 d—2
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for d > 2 and large:. Note that the leading constants first grows and then dezsd¢aszero

(d—2)! 157 217 VY 2835”

Since the leading constants are quite large for sthdhe convergence of the serid) is poor for small
d; we will propose a more efficient numeric procedure for cotimaui z.

In particular, ifd = 2, the integrand has three simple poles at —1, —2, and—3, and the residues of
these poles add up t®2(k + 1)/((k + 3)(k + 4)), in accordance with35). But ford > 3, the resulting
expressions are more complicated because there are ilyfimiggy poles.

d27-1(2¢ — 1
{#} = {12,84,240,4133,504, 4742 3622,2332 12942 63231 ... } .
d>2

An integral representation for the constant Kz. By substituting the expressio3§) of V;, in (16), we

obtain
2 [otiee (3 — M) (s+1)
Kp= T J d 40
B~ 9dmi /C_m () H T(s+2—x) (40)
1<j<d

where

2 (1 —
=Y B4 ) B DLA =)
= Lk+2—29)

andc > —1 lies in the half-plane where the series on the right-hand s@hverges. Thus if analytic
properties off" are known, theriz can be further simplified; see for examp#el). Also if d = 2, then
Kp =12(T(-1) — 2Y(-2) + T(-3)); see B85).

Nonzero initial conditions. We now prove that the linearity constafit; is of the form (L6) even with
nonzero initial conditions.
We start from making all the initial conditions zero

f(z) = f(2) - Z (A; — By)#,

so that, by 21),
(9(z0)" = 29) f(2) = 2?B(2) + 2°C(2),

where (for convenience, defining, = 0)
Clz) ==Y (A= B;) 2 —27* (9(z0)"") ( > (4 - Bj)zJ) :
0<5<d 0<j<d
By the same approach as above, we obthjn~ Kn, where the linearity constaiif is given by

ZVkB*/{?+2 ka/ — )" Z(Aj—Bj)xjdx+é.

k;>0 k>0 0<j<d

Here

z.— 2 ka/ k+1 (ﬁx(xﬁxﬂfl) ( Z (Aj _ Bj)xj> dx

1-d o
_ _27 v - a) 00 ( > (- Bj)xf) de.
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By the same argument used to derive the DE satisfied (ay, we have

S < S (4 - B - x)f) D, (#(1 = 2)Do)"~" (#*V (2) dr.

0 \o<j<d
But by (37)
D, (2(1 — 2)D,)*" (2?V (2)) = 2%V (2);

it follows that

_ 2 ! A

c= _Ez/o (1—2)V(1—z) ( Z (A; — Bj)x9> dz.

0<j<d
Thus 9
K= ST VB (k +2);
k>0

this proves that the linearity constant is of the same fat6), (which amounts to saying thate do not
need to nullify the initial conditions

An efficient numeric procedure. The above proof suggests a useful numeric procedure for atmgp
the constanis ;. The crucial observation is that the firsterms we choose to be subtracted frémplay no
special role in our proof, meaning that we can indeed sutdraafficiently large number, say, of initial
terms fromf, resulting in a series form fak 3 with convergence ratdog k)4-2k=%. This is because the
right-hand side of the DE is of ordef’—!, which yields, after taking the finite Mellin transform, theder
k—N for largek. Such a procedure quickly leads to a good numeric approiomét the leading constant
K to high precision. We will apply this procedure to the conttappearing in the mean and variance of
the number of leaves in Secti@m2

Necessity in (2). Assume that4,, ~ cn for some constant. The special form§) or the following one

(see [L9) X

can be used to prove th&t, = o(n) by (7). We propose instead a proof based again on linear operators
the advantage being generally applicable to more complicacurrences while keeping uniformity of the
proof.

By (21)

SinceA,, ~ cn, we have, byZ8),
"MLl () ~ 5m, (7] To[A) (=) ~ 5
Applying successively these estimates yields
[2"]24 (10 o (Z—IIO)C“) [A](2) ~ en.
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ThusB,, = o(n).

We then prove that) " B,n 2| < co by showing that3*(2) is finite. By (34), it suffices to show that
A(2) is finite. SinceA,, ~ cn andB,, = o(n), we deduce thaf(z) = O((1 —z) %) for0 < z < 1. It
follows that

A(2) = lim A(s)

s—2t

s—2+

— O(1).

~ lim Po(s)/o (1— 27 f(z) do

This complete the proof ofL@).

2.3 Asymptotic transfer Il. Linear toll functions

We prove pariii) of Theorem?2 in this section. By the result of paft), it suffices to consider the case
whenB, = nforn > 1. ThenB(z) = z/(1 — 2)%

All initial conditions zero. Itis simpler, as in parti), to consider
f(2) = A(z) = B(z) = Y (4 = B))<,
0<j<d

so thatf satisfies the DE .
(9(z0)""" = 29) f(2) = 2"B(2) + 2°C(2),
with zero initial conditions, where
C(z) == (27"(20)"" = 1) Y (4; — By)7.
1<j<d
Thenf satisfies the DE )
Py(9)f(2) = 2°B(2) + 27C(2) + g(2),
whereg is defined in 22), and forn > d
A = [2"] (f(2) + B(2))
=n+["] (I, , oLy oL) [2B+2/C+g] (2).

An expression for the iterates of thel-operators. Observe first that by integration by parts

(LoL)[6(z) = ——L[E](z) — —

T—U T—U

so that by induction

L, [€](2)
0<j<d [Tes; (A = A0)

(I>\d—1 ©--+0 I)xo) [5](Z) = (41)

Thus
L, [2/B +27C + g](2)
Fy(A)
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The contribution of 2¢B(z). By applying @1), we have

) (ool o L) RUBI() = Y s [0 [B)(2)
_sz
= 7 1 (0= - (-9
2d )
"2 @Ry 0 el
Now
24 1 A
1§Zj;d (2 = M) E5(A) ~d 1§j<d2 — A
2 1 d—1
=7 1;d 2— )\ T
@) d-1
T dPR)(2) d
d-1
TR
Thus
("] (Iny 0+ o Iy, 0 1) [2'B](2)
m(2_ 1 1 d+3 1
= [2"] (8(1_2)2 logl_z T Tog (1_2)2> + o(n)
:gnlogTH (%7_%_2%)"+0(n)7 (42)
since
[Zn](l—z) 210g :(n—l—l) Z ]—1_n

The contribution of 2¢C(z) and g(z). Similarly, by 27),
2] (Tn, 00T, 0 ) 2CI(2) = = C*(2)n + ofn),

whereC*(s) := [, C(x)(1 — z)*"' dz, and

2" (T, 0+ 0Ty, 0L) [g] () = —— ("L 9] (2) + ofn)

provided thay*(2) is finite, whereg*(s) := fol(l —x)* tg(z) dz.
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Boundness ofg*(2). To justify thatg*(2) is finite, we use the same argument as in the proof\foi)
above. Again by Lemma

gs) =) /0 (1 =2 P (0) Ro(9) " (2°B(x) + 2C(x) + g(x)) dz

_ PG+s) [ Ly . N N da
s Po(j+s)/0 (1 — )1 (2/B(x) + 2°C(x) + g(2)) d
- 3 PO G 2O ) 4.

where

B*(s) = /0 (1 —2z) 7 de = m

SinceB*(s) is finite fors > 2, g*(s) is well-defined fors > 1.
Iterating the recurrence as in p&it gives

ng+€+2 d d
1% 2°B*(j + 0+ 2) +2°C (+2
7>0 1<i<d
Py(k+2)

=Z<zd3*<k+2>+2dc*<k+2>> 2 RGT2)

k>1 1<t<d ©?
V
k>1 ) k>1

whereV}, is defined in 17).

Collecting all estimates. Combining this with 42), we obtain

2
A, = gnlogn + Kon + o(n),

where

27y 2
K, =211 ‘ “(k 1 2),
2= T3~ d kzk+1 d;vkc( +2)

The last seried , ., ViC*(k + 2) is identically zero by the same argument used in parfor nonzero
initial conditions.

Final simplification. We now show that

kk—i—l Z P(B=X) = (d=1)(1—-7), (43)

E>1 1<j<d

and this will prove {4) by the relations)(3 — ;) = ¢(2 — ;) + (2 — ;)" ! and

1 d-1
2 2-), 4

1<j<d
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For that purpose, we substitute the integral representékg) into the series and then sum over all positive

indicesk, giving

1 /€+m 1 H L3 —X\)I(s+1)

— ds. (44)
k( k —I— 1) " 2rmi oo (s —1)2 \Sied ['(s+2—X\))

k>1

Moving the line of integration to the right and taking intccaant the residue of the unique pole encoun-
tered ats = 1, we obtain 43) by absolute convergence.

A different expression for K,. Yet another expression fdt, was derived in19]

2v 3 de1
K=Y
d = k(k®—2
Equating the two expressionsﬁfz leads to the identity
2
2d+1zk 2d: — — —1")/—-27?3 A) (d21)7
k>3 a 1<j<d

which can be proved using the relations

Yz +1) =

(see [L4, p.15, Eq. (3)]) and

2 -\ 1
S R R I ) ——
k42— \; Zk+2—)\

1<j<d 1<j<d

Necessity. Consider the case whety, = cynlogn + ¢in + o(n), wherecy = 2/d. Then, similarly as in
part(i), we need the elementary estimate

LA =~ S 4

0<j<n
1 L
=— ) (cojlogj+ c1j) + o(n)
n1<j<n
= Dnlogn+ (5 - 2)n+o(n).
=3 On ogn 5 1 o(n

The same estimate holds faf']z 711, A(z). Iterating the estimates, we obtain
[2"]2¢ (IO o (z_lIo)d_l> [A](2) = conlogn + (01 — gco) n+o(n).
Consequently,
B, = g con 4+ o(n) =n + o(n).

ThusB,, — n = o(n) and the remaining proof uses the same argument as ir{ipaihis completes the
proof of (13).
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2.4 Asymptotic transfer Ill. Large toll functions

We prove the asymptotic transfdrg) for large toll functions. For general divide-and-conqresrurrences,
such a case is always easier than that of small toll functions simple reason being that the major
contribution comes from a few large terms instead of sumnowvey all small parts like the small toll
functions case. More precisely, we expect that most carttdb comes from the terr2f B(z) in (22), the
other termy(z) being asymptotically negligible.
Assume thai3,, ~ cn”, wherev > 1. We start again from205), which gives
An = Bn -+ [Zn] (I>\d_1 O--- I>\1 e} IQ) [g + QdB](Z)
= B, + Al 4 AP
where, by successive applications 88), we have
A =29 (I, 0T, o L) [B](2)
c2¢ .
—_— N
Z%(U‘%l)

~

To estimated!!’, we first consideg*(s) = fol(l —2)*"1g(x) dz, which, by @4), satisfies the recurrence
equation

- Z PO”S (j+5)+ 2B +9)) (45)

for sufficiently larges. SinceB,, ~ cn, we deduce thaB*(s) is finite fors > v + 1. The same argument
as forA(s) shows thay*(s) is finite for s > v. This implies, in particular, that

/0(1—:1:)“59( Jdo| = [P +1-¢) Zrk+ii;_€>[k]g(z) <o
Now by (29) with v = 2
n _ [2"]g(2)
[2"]L2[g](2) = (n + 1)ngz<nm~

Let Sy := > o< ;< (G + D[#]9(2)/T(j + v + 2 —¢). ThenS, = O(1) and, by partial summation,

[2*]g(2) B I(k+1) A Fk+v+2—¢)
(n+1) D Gty Y 2 Thror2—ar W9 —Tg3

0<k<n 0<k<n

=(l-v+e)(n+1) Z Skr(k;:(Z::__i)_ 2 +O(n"=*)

=0(n""°).
Applying now successively2g), we obtainAll = O(n"~¢) = o(n").
From these estimates, it follows that
24
An ~ v - U’
cns + (U+1)d_2dn
which implies the sufficiency part o).
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Necessity in (5). Assume thatd,, ~ Kzcn?, whereKs; = (v + 1)%/((v + 1)4 — 2¢). Then, similarly to
the necessity proof for cagé),
2d

(2724 (10 o (zflxo)d‘1> A~ o

by successive applications &8§). Then

2d
B, ~ Ksc|1l———— ) n"~cn".
(v+1)4

Simple transfers for the quadtree recurrence {). The same proof also gives the followirdgr and
o-transfers.

Lemma 4. Assume» > 1. Then
B, =0(n") iff A,=0(n"). (46)
The same result holds with replaced byo.

Note that the results for large toll functions can also bes@doby other elementary means, but the
proof given here based on iterative operators applies f@aaks, and is thus more general and uniform.

Recurrence of the Cauchy-Euler part. The preceding analysis shows that whepis larger than lin-
ear, the contribution frong(z) to A,, is asymptotically negligible. Thus in this casg ~ A2 where
Py(9)(APN(2) — B(2)) = 2?B(z), or in terms of recurrence

AP =B, +20 Y 7,47,

0<j<n

1 1
Tnj = - Z —,

J<j1<-<ja—1<n Ji Jd-1

where

which is to be compared with the alternative expressionrfor(see [L9))

1 1
7Tn" = — —_—.
T on j<j1§~-z§;d_1§n Jurrrdd—
2.5 Asymptotic transfer IV. Further refinements

When more precise information oB, is available, we can refine the preceding approach and obtain
more effective approximations td,,. We consider the following two cases for later use. Recall tha
2e*/0 = o + 1+ if.

Proposition 1. Assume tha#l,, satisfies 7).

(i) If B, ~ cn’, wherec,v € Canda < £(v) < 1, then

c(v+1)4

o\t v R(v)
(U+1)d_2dn + o(n +n%),

An = KBTL +
whereK i is defined in 16).
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(17) If B, = o(n®), then
A, = Kgn+ KA)n® + K(\)n® + o(n® 4+ nf), (47)

where theK ();)’s are defined in48). If the B,’s are all real, thenk (\;) = K ()\,).

Proof. The proof consists of refining the analysis for the smallfiatictions part of Theorerfd using the
arguments for large toll functions.

Case(i). SinceB, ~ cn", the series in12) obviously converges. Thus, b29), we first have

d 24 B 9d B
i 25 =00 (3 g - )

k>0

9 c2 R(v)
= K'n — v v o1
n n; FED(E Y T +o(n™") + O(1),

whereg, := [*]g(z) and K’ = [;'(1 — ) (g(z) + 2?B(x)) da.
By the same arguments used fgis) in (45), we deduce thaB*(s) is finite fors > R(v) + 1 and
g*(s) is bounded fos > R(v). It follows, by the same summation by parts argument used forthat

9k v)—¢e

Thus
2

1—wv

[2"Iy[g + 2°B](2) = K'n — n' + o(n®)) + O(1).

We may assume thadt(v) > 0; otherwise all error terms are absorbed{n°).
Consider now

+)\1 /{7+1 62d
" (I, o1 2R L(n K'k— -2 kv 4 o(BR) 4 e
10 oL lo 281 = T S e (K e o )

K’ c2¢
= n —
2—-)\ (I=v)(v+1—=X\)

nv _I_O(néR(v) _l_ne)’

again by 29). Repeating the same procedure, we obtain

An = Bo= () = o g 2o (B0 4 ey
n n = 2" f(z —P6<2)n PO(U+1)n o(n ne),

which proves(i) since Kz = K'/P}(2).

Case(ii). Now, similarly as above, we have

[2"1a[g + 2dB](z) = K'n + o(n® + nf),
[2"]1y,[g + 2dB](z) = Kj’-n)‘fl + o(n® + nf),



where . .
K= O] /0 (1—2)Y " (g(z) +2'B(z)) dz (1 =1,2).

Substituting these estimates intl) gives

K LK
n n
(2—=X1)(2—N2) (A1 —2)(A1 — A2)
K
A2 —2)( A2 — Ap)

[2"] (I, 0 Iy, 0 I) [g + 2°B](2) =

+ ( 71 4 o(n® 4 nf).

Applying successivelyZ8) to the remaining operatols, for j = 3,...d — 1, we obtain 7), where

2d

B = mooroy)

d BN ARV (=1,2), (48)

k>0

whereVj,()\;) satisfies the recurrence

with V. ();) = 0if £ < 0andV,()\;) = 1.
The same proof for proving Lemn&aalso implies thai/,()\;) satisfies the DE

D, (2(1 — 2)D,)" " (2MV(2)) — 22V (z) = 0,

and it follows thatV/,(\;) = O (k™' (log k)?~2). This justifies the absolute convergence of the se#8 (
I

In a similar way, we also have the following simpler transfer

Corollary 1. Assume tha(v) < 1 andv # a +i3. If B, = O(n®"), thenA, = Kgn + O(n*®) +
n® +nf); if B, = o(n®®), thenA,, = Kgn + o(n®®)) + O(n* 4 n?).

3 Limit laws of X ,,: from normal to periodic

We prove first Theoren in this section. Although the first part of Theoreims implied by Theoren#
below, we give the main steps of the proof by the moment-tesirapproach for more logical reasons: first
the mean and variance are needed by both proofs (althoulgldliffgrent degrees of precision); second, the
main hard part of the proof of Theorefirconsists in refining the estimates of some recursive funats
of moments. We then sketch extensions of the same typesibféisults to other toll functions.

The proofs here rely strongly on the different types of asigtiptransfer we developed in Secti@n

3.1 Limit theorems for the number of leaves

Expected number of leaves. By (5), we see that the mean number of leaves in a random quadtree of
nodes satisfies the recurren@@\ith B,, = d,,; and A, = 0. ThenB(z) = z andB*(s) = s (s + 1)
Applying (47), we obtain

E(X,) = pran + c.nTP 4 c_n®% 4 o(n® + n%), (49)
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for d > 1, wherec, = K(\;) andc_ = K()\,) with B*(s) = s7'(s + 1)L, In particular,
2 Vi
fa = d; (k+2)(k+3)

This proves 8) with G (z) = c e’ + c_e~"*; see Figure2 for a plot of the fluctuations of the error
terms. We now show that

fa = 2;1 kd%k]! (U‘“_l) 2 W(’ﬁ“—%)—w(k))—?), (50)

k>2 1<j<d

for d > 2, which gives an alternative expression . (
To prove 60), we apply the integral representatici), where

- Dk +2)0(1 — s)
T(s) = g (k+2)(k+3)T(k+2—s)

1

= 5%/ (—s) + 5 — 3 (R(s) < 1).

Now T has double poles at all positive integers. Summing overeaidues of the double poles of the
integrand in 40), we obtain §0) by absolute convergence (sintés) = O(|s|~!) as|s| — oo ands is at
leasts away from all positive integers). Note that

(k=1) > Wk+1=X)—v(k)—2=d—1+0(k™");

1<j<d

thus the general terms i6Q) decrease at the ra€e(k~%).

—0.1+4

—0.15 -

Figure 2:Periodic fluctuations of~*(E(X,,) — ugn) forn =4,...,1000 andd = 6, ..., 10.
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Recurrence of higher moments. For higher moments, we start from the by now standard trichdfing
the mean; thus we consider the moment generating function

7
My(y) = E (eXp (Xn — Hal = o5 = 1) y) :

which satisfies, byH), the recurrence

Mn(y) = Z ﬂ-nvaj (y) T szd (y> (TL > 2)7

j1+"'+j2d:n_1

with the initial conditionsM(y) = e #a¥/2"~1) and M, (y) = e(1~2"#a/@"~D)v_ Note that the additional
factor /(2% — 1) subtracted has the effect of keeping the recurrence simpler
DefineM,, ;, := Mﬁk)(o) =E (X, — pan — pa/ (24 — 1))¥). Thenl,, ,, satisfies the recurrence

Mg = Qnye + 2 Z T, Mj 1 (n>2),
0<j<n
with the initial conditionsM , = (—1)*u% /(2% — 1)* and M, = (1 — 29,/ (27 — 1))*, where
k
ok = Z (il, - ,iQd) Mg Mj2d»i2d (n=2).

it jpa=n—1

i1+~~~+’i2d=k‘
T 5eees i2d<k
Note that by 8)
[ O(n*+n), if 1 <d<S8;
M = { G1(Blogn)n® + o(n®), ifd>9. (51)

Variance. We now prove the asymptotic estimat.(First we have, by symmetry,

Qn,g = 2d+1 Z 7Tn,ij1,1 (Mjg,l + -+ szd,l) .

Jitetjpa=n—1

If 1 < d <8, then the estimatés() implies thatQ,, » = O(n'~*). Thus a straightforward application

of (12) yields
2
M, =E ((Xn — pgn — Qdﬂj 1) ) ~ o2n,

which, byV(X,) = M, , — M}, and 61), implies @). Hereo? is given by

2 Vim! Q2
2 _ 4 : 52
% dk;O(k+2)---(k+m+2)’ (52)

with Qo2 andQ; » properly defined. We will consider numeric evaluationgdfater.
If d > 9, then, by B1),

Qua=21 3wy (et + K ()it

Jitetiga=n—1

< D7 (a4 KO ) + o).

2< <24
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By the strong law of large numbers, we have

_2d+1/ Z c q a+iﬂqe(x)a+iﬁn2a+2w

[0,1)¢ 2<4<2d
+ cyc ((h (X)a+i’6Qg (X)a—iﬁ + O (X)a_iBQg (X)a—HB) n2
+q (x)a*wqg(x)“’wnm’%ﬂ) dx + o(n**),

where they,(x)’s are defined in). The integrals can be simplified as follows.

() = / a3 akx

&0 far PR
O DR

for R(u),R(v) > —1. Thus

Qn722_d_1 = cin(a + i, o +if)n* TP 4 2c_cin(a+ B, o — if)n?
+ A nla —if,a —if)n?*" 20 4 o(n*).

Transferring this approximation term by term usidg)(gives
M, 5 = Go(Blogn)n** + o(n®),
where

~ , L Qa+2i3+ 1) 4,
Ga(u) = 2" n(a + i, a +ip) f(’o(Qa o +)1) o218

2 1)4

+2"c_cin(a+if,a 5)%
d+1.2 (200 — 203 + 1) —2iBu
+ 2" e n(a —iB, a —if3) (a—22[3+1)6 i

This proves 4) with Gy (z) = Gy(z) — Gy ()2

Asymptotic normality for 1 < d < 8. The same arguments used above for the variance also apply for
M, . for k > 3. By induction, we obtain

2k)!
Man‘ ~ (kk')' gk Qk;

M, o611 = O(hkfw),

for k£ > 1; details are omitted here for conciseness; 8¢&f a similar proof. This proves the first part of
Theoreml.
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Periodic fluctuations for d > 9. In this case, the same calculations YotX,,) can be extended to show
that

k
E ((Xn — pan — 2d'uj 1> > ~ G(Blogn)n™ (k > 2); (54)

where theG,,’s are bounded periodic functions. Then the proof that tiger® fixed limit law for(X,, —
E(X,))/\/V(X,) follows the same arguments used 8h [
Instead of giving the messy details of the proof fo4)( we sketch the proof for

1X0 = pan = 2R PX)||, = o(n®)  (p > 2), (55)

where| Z|| = (E|X|P)/? denotes the usudl, norm. HereX is a random variable witft(X) = c, (see
(49)) and defined by
_0]

{

x Z U)?—HﬂX(l) 4ot <U>gz;|—iﬁX(2d)7

where theX (s are independent copies &f and the(U);'s are the volumes of th&? quadrants split by a
random point in0, 1]¢. Part(i7) of Theoreml also follows from 65).

It suffices to provey = 2, the remaining cases following by induction. The argumesed here are
modified from those in]5] for randomme-ary search trees.

Define

§n 1= HXn — fgn — 2 Z R (J]‘?‘+i5X(j)>

1<j<2d

=2 30 R(OXD) <2 3 R (net )X O)

1<j<2d 1<j<2d

2

2.

We prove that,,, n, = o(n®), which will then imply 65) for p = 2.
First by the decomposition

En < 11X = panlo + 22| ;X D2,

we deduce thag, = O(n®). Then by the recurrencé), we have the inequality

€< Y E(&, +ny)" +on®).

1<j<2d

This, together with the estimate

M < 2420 X0 = o(n%),

2

a+if ‘
J(2) - @i

gives

& <2t Y w6+ o(n™)
0<j<n
2a)

Y

=o(n

by theo-version of @6).
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| pa & |
0.47841 76043 57434 47533 79639 99504 60454 12547 97628
0.56850 70194 06572 68270 35257 03246 03680 11920 50021
0.63168 48783 52998 69050 68769 97892 90145 67365 77851
0.67906 23676 94926 62299 74554 08602 48628 92348 92646
0.71615 83294 69847 70674 65510 61878 16738 93088 58805
0.7460946112 09331 64803 70711 94105 57503 99390 36451
0.77079 60778 85838 99509 15248 99261 83895 90393 54520
0.79152 59978 40106 48407 81034 62942 59540 22737 03660
0.80915 45900 27608 17078 62137 34456 57737 58997 15908

QO 00| || O = | W| N|| X

—
e}

Table 2: Approximate numeric values @f ford =2, ..., 10.

3.2 Numerics ofy, and o2

We consider means of computing numerically the constanendo?.

Numerical values ofy. To compute the constantg to high precision, one can use eith) ¢r (50)
by the standard procedure: compute the first few terms gxant estimate the remaining terms by their
asymptotic behaviors.

An alternative procedure is described in the last sectionnsitler f(z) = f(z) — > acien A7
(A; = By andB,, = 0 for n > 2) for a suitably large numbe¥, say50. Exact values of4,, can be easily
computed by the exact expressidy Wwhenn is small. Observe that

J(z09)* ! chzj = Z 2

jzN Jj=N-1

Thus the right-hand side of the DE

(19(219)‘1_1 — Qd) f=24z— (19(219)61_1 — 2d) Z A

2<j<N

contains only monomials’ with N < j < N + d. Then the newB*(s) is of orders=" for large s,
implying a better convergence rate for the serie§ GinceV) remains the same and can be computed
recursively. Then we need only compute the first few termis@r example) of the seried §) to give the
required degree of precision. In this way, we obtain Tab# Such a procedure is also useful for other
constants such as;.

Expressions foro2. We first derive more explicit expressions fbf, » in (52) before computing?.
We start from the bivariate generating functiétiz, y) := 3 . E(e*¥)z"/n!, which satisfies, by
(5), the equation

9 P =14 | P Flastz) de

82 [0,1]¢

In particular,F'(z,0) = e*.
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Then the Poisson generating function

~ . Zn . o i Zn
Flzy) = e My(y)= = ey B(eXnmmampal @=Din) =
n>0 n: n>0 n.
satisfies the equation

F _
(z,y)+az

[0,1]

Let F(z,y) = > i0 F;(2)y?/j!. Then

Fl(2)+ Fi(2) =e " + Qd/ Fi(zy - 242) dx,
[0,1]¢
with the initial conditionF} (0) = —p4/(2? — 1). The coefficients., := n![z"]F}(z) satisfy

2d
Unt1 + Uy = (—=1)" + a

(n+1
which, after iterating, can be solved to be
w= Y I (1-5) = com Yk
Z ik
2<k<n k<t<n

forn > 2, withug = —pg/(2% — 1) anduy = 1 — puq4.
For F5(z), we have the same type of equation

Fi(2) + Fy(2) = Go(2) + zd/ ) Fy(my -+ 2q2) dx,
[0,1]

with the initial conditionF,(0) = p2/(2% — 1)2, where

~ 2d+1[ud . p B N
g2(z) = (1— 51 )¢ +2 Fi(zy---242) Z Fi(qe(x)z) dx.
- d
[071] QSZSQd
Observe that
~ - n . .
w2t [ Ress) Y Rz dc=20 3 ( .)ujunjno,n ),
[0,1]4 2<p<2d 0<j<n J
wherern(j,n — j) is defined in $3).
By (56), we then have for. > 0
d+1
ni,ni~ Hd n n : :
= D) = 1= 5 2 Y (Mgt ),
0<j<n
It follows that ) v
2" By(z) = (1) )t Y (n>2),

O B(zry) = e *(e? — 1)e2hav/C=D) 4 / Flqi(x)z,y) - - F(gaa(x)2, ) dx.

(56)



o4~ ‘
0.06145 73978 66984 07284 36701 54743 66750 63784
0.06802 65800 83909 72781 61723 15284 91262 75906
0.07090 19719 94546 02309 70950 30497 53882 55032
0.07261 12472 86535 68765 26637 38060 39503 98071
0.07449 2125393111 0067461761 51696 97039 29930
0.07731 76983 93655 7183091768 87307 89088 95507
0.08123 98836 52827 96294 47650 19430 64044 32562

QO | O U b= | W N|| &

Table 3: Approximate numeric values®f for d = 2, ..., 8. Note thato? = 2/45 ~ 0.04444 . . ..
with F5(0) = p2/(2% — 1) and F5(0) = 1 — 2% g /(24 — 1) + (24 + 1)p3/(2¢ — 1), and consequently

1 2
My, =E (Xn — Hd (n—|— ﬁ))

2 d+1 d
= 11— — —1)" k]! :
(2d_1)2+< 2d_1+2d_1'ud>n Z (k;)( )" %] Z[j+1]!

2<k<n 1<j<k

This provides a less dimension dependent expression fopeting ), » for small values of: needed for
computing the approximate valuesafin Table3.2
Note that forl < d < 8, M,,; = O(n**?) and

1 2
V(Xn>:Mn,2_Ms71:]E<Xn_,ud (n+2d_1>> —ngl;

Thus to compute the limiting constas} of V(X,,)/n, it suffices to computé/,, ».
By the same procedure for computing, we obtain Table.2.
Note that

Qnz = [2""e*Ga(2) = ) (n . 1) (—1)v;  (n>1).

0<j<n J

For consistency, we can defifil » := p2/(2—1)% ThenQ1 2 = vo = 1-2% 1,/ (27—1)4+29p2/(27—1)
and forn > 2

Qna=2" ) (”;1) > (Zf‘)ujum-m@,m—j).

0<m<n 0<j<m

3.3 Phase change of other cost measures

Consider the random variables defined recursively by
a2y 4+ v+, (n>1), (57)

with Y, given, where théY,\")'s are independent copies bf and7, is a known random variable (often
called “toll function”).
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3.3.1 Phase change of general toll functions

Our method of proof extends easily to cover a wide class ofaakctions. We formulate a simple result
for deterministic toll functions as follows.

Theorem 3. If T, = O(n'/?(logn)~*/2~¢) and T, is not identically1 for all n > 1, then

Yn_ufjng
_ N(0,1
aln/n = N0, 1),

for 1 < d < 8, wherey, and ¢/, are constants; ifl > 9, then the sequence of random variab(&s —
E(Y,))/v/V(Y,) does not converge to a fixed limit law.

The proof follows from that for Theorerhand is omitted. Both constant§ ando’, can be computed
by the same procedure as foy ando,.
By the recurrence

Vo) = Y Ty (B(Y) + - +E(Y,) —E(Y,) + T)" +20 Y m,,V(Y;),

0<j<n 0<j<n

we see that the variance is identically zerdIiff= 1 for n > 1. In this casey,, = n (the total number of
nodes in the tree). This also implies, when applyihg) (the identity

2 Vi B
; % RSN 1 (d>1). (58)

The same method of proof we used for proving Theofleatso applies to cover the case wHEN~
v/n, which still leads to asymptotic normality fof, when1 < d < 8 with linear mean but with variance
of ordern log n. The same non-existence of fixed limit law also holds in théewvrangé€l;,, = o(n*) when
d > 9. More cases can be clarified as if}.[ Since the number of concrete examples (directly related t
cost measures of algorithms or quadtrees) is limited, we fstan considering other general limit results.

3.3.2 Concrete examples and extensions

We briefly discuss instead a few instance§ pktudied before in the literature.

Paging. The page usage of random quadtrees was studied@nand [19]; it can be regarded as a
generalization of the number of leaves and satisB&sWith 7,, = 1 whenn > b, and7,, = 0 otherwise,
whereb > 0 is a predetermined structural constant. We can also Yigas enumerating the number of
nodesr with subtree sizes rooted atlarger tharb.

By Theorem3, the page usage in random quadtrees undergoes the same typase change (of limit
laws) as the number of leaveBhe mean constant is given by

o2 (b+1)!Vi
Nd(b)_3;“{;_}_1)(]{—{—2)-”(]{34'87‘{'2).
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If d =2, then (see3H))

Do (k+1)!
#a(b) = 12(b + 1)! %; (k+3)(k +4)(k+b+2)!

=12(b+1) /01(1 — )Py ((1 —z)log(l —x) + o — “%2 — %3) dx

=602+ 9b+ 1 —b(b+1)*r2 +6b(b+1)* Y 72,

1<5<b

which coincides with the expression first derived 26|
Ford > 3, expressions for/, are less explicit. We first simplif{' (s) (see €0)) as follows.

) bryl THEDr-s)
T(S)—Z(k_,_z)...(k—l—b—i-Q). [(k+2—s)

k>0

=00 Y ()1

0<e<b

where

Qu(s) = /1—;5 Zk+a (R(s) < T:a=0,1,...),

(whena = 0, the term corresponding fo= 0 is dropped). Obviousl)(s) = (s — 1)~2, and
1 !/
Qls) =Y ——=v(1-s) (R(s) <1).
= (s — k)

By an integration by parts, we have the recurrence
s 1
Qa+1(s):EQa(s+1)—l———— (a>1).

By induction
S+a—

a—1

2(s) = (

where poly(a; s) is a polynomial of degree — 2 such that2,(s) is of growth ordets|~! at infinity (with
|s — k| > €). More precisely, since

Y(1—s)= > (~1)/"Bys (|s| — oo, |arg(—s)| < 7w — ),

Jj=0

where theB,’s denote Bernoulli numbers (se®4 p. 47, Eq. (7)])

poly, (a;s) = Y s'7' ) ’”_1 Ol iy, (@22,

1<j<a j<t<a

2)¢’(1—s)+p0|y1(a;s) (a=1,2,...),

where thes(a — 1, j)'s denote Stirling numbers of the first kind. From this expres, we deduce the
representation

T(s) = s(s = 1)+ (s = b)Y (1 — 5) + poly,(b; 5),
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where poly(b; s) is a polynomial of degreé such thatY(s) is of growth order|s|~! at infinity (with
|s — k| > ¢).
Then the integrand in the integral@ has simple poles at = 1,2,...,b and double poles at =

b+ 1,b+2,.... Summing over all residues of the poles yields
, 2d+1 -1 k
pa(b) = 4 b ( d) |
1<k<b () (k + 1)k [k + 1!

20+l 1 (=1)*(b+ 1)(,}))
d = (k+1)%[k +1]!

>b

}:ka+2—&)—w%+1D—w%+1%HMk—®>-

1<j<d

Note that the last series diverges tor> d. Numerically, the procedure we used for computingis

preferable.
Whenb > d, we can use the recurrence
) =274 > " Rajy(b+5—1)  (b>1), (59)
0<j<d
so that once the valudg.,(0), ..., u,(d — 1)} are known, all values qf/,(b) for higher values ob can be

computed successively. Hefg ; is defined recursively aB,, := 1 and
Ryj=(b+j+1)Ra1; —(b+j—1)Ra-1, (0<j<d), (60)

with R;;, = 0 whenj < 0 orj > d. The recurrence5Q) is proved using the DE3(?) and successive
integration by parts as follows.

i) =3 [ (=2 V@)

_ 2d /0 u ;f) (z(1 — 2)D)? 2%V (z) da
ol—d rl
- (1 — 2)’Ry(2)V (z) d,

whereR,(z) = Ry(b; x) is defined by

Ry(z) == ﬁ (=Dz(1 — z))* < ;zx)
= D Rl —ay,

with R, ; satisfying (by induction) the recurrencgdj. Thus g9) follows. Note that wherh = 0

2 gl-d rl

wy(0) = 3/0 (1 —2)V(z)dr = i/ V(z)dz =1,

which can be proved directly byt(); see alsog8).
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Node sorts. If T, is equal to the probability that the root hasonempty subtrees, whepe< b < 27,
thenY,, represents the number of nodes in random quadtrees haantygxnonempty subtrees. The same
type of phase change phenomenon holds since the toll funigibounded; see8f, 35 for expressions
for the probability the root havingsubtrees.

In general, if7,, = 0,5, whereb > 0, then the limitsy, = p,(b) of E(Y,,)/n are calleduniversal
constantsn [36] since for general toll functions, with linear mean the linearity constant can be expressed
in terms of theu),(b)'s as) ", Ty, (b). Expressions for),(b) can be derived similar to the previous case.
We have

B (k + DT(1 — s)

T(s) = Ty(s) = = (k+2)---(k+b+2)['(k+2—5)
=— (2 (=1 (0 + 1)Qp12(s)
0<¢<b
- (_1)b+1 s2(s—1)---(s—b+ 1)¢/<1 — 5) + poly, (b; s),

b!

where poly(b; s) is a polynomial of degreé such thatY(s) is of growth order|s|~! at infinity (with
|s — k| > ¢). Also 1/,(b) satisfies the recurrence

py®) =27 > " Ryjuy(b+j—1)  (b>1),

0<j<d

with R, ; satisfyingR,; = (b + j)Ra—1,; — (b+j — 1)Rq_1-1 for 0 < j < d. Note that in this case
Ry = b andRy; = (—1)*" (P,y(—b) — P;(~b)) for 1 < j < d.

Total path length. In this case7,, = n—1. Although Theoren3 does not apply, our method of moments
does, and we obtain convergence of all momentdpf-E(Y;,))/n to some non-normal limit law for each
d > 1; see B0], and [3Q] for similar details. In particular, the mean satisfies (&)

2 2 2
E(Y,,) ~ 8nlogn— <2+ 7 — 2y — pi Z P(2 — )\j)> n,
1<j<d

and the variance is asymptotic f6,n2, where

2
3¢ 2
o= grgt Jo |1 Fa 2 alogabo | dx

1<j<2d

To evaluate the integral, let

ﬁ(u’v):/[oud ¢ (x)" Z qe(x)" dx.

1<e<2d

Thendj(u,v) = n(u,v) + 1/(u+ v + 1), wheren is defined in 3), so that

1 I(u+ DI(v+1)\*
u+v+1 I'(u+v+2) '

i) =
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It follows that

34 4 0 4 0
K4_3d—2d(1+E'%U(O7U>U—l+_2a8 TI( )
2

3 2127
~3d - 2d 9d '

u—lm—l)

see also40Q].
Unlike the number of leaves and other small cost measurees th no change of limit law for total
path length since the order of the variance is not alterneshéoeasingi.

Expected profiles (or depth). Denote byZ, ; the number of nodes at distankeo the root; theZ,, ;'s
are informative shape characteristics often referred tthagrofiles of the trees. Thelepth D, is the
distance of a randomly chosen node (atlodes being equally likely) to the root. Then the probapilitat
the depth isk equalsE(Z, ;)/n. Consider the level polynomials, (y) := >, E(Z,x)y*. ThenL,(y)
satisfies the recurrence

Lo(y) =1+42% Y mLily)  (n>1),

0<j<n

with Lo(y) = 0; see [L9]. The same analysis for the small toll functions part of Tie@o2 (and the error
analysis in Sectio.5) appliesmutatis mutandiand yields

Ln(y) = Klgh"* 40 (w000 ) (61)
where theD-term holds uniformly fory lying in some complex neighborhood of unity, and

9dy1/d Z H3§zgk(1 —2y1/0)
d s kO  acoai (L = 2%/69)

Thus the asymptotic normality (with optimal Berry-Esseenrnt) of the depthD,, follows from (61) and
the so-called quasi-power approximation theorems; 2&eJec. 1X.5] or R7]. Note that

K(y) = (k—=1) > (w(k+1=X\y") = (k) — 1) :

1<5<d

2d+1 1 1
K1) = d 4 kIk]! (1;d (W(k+1—=X)—v(k) - m) =1 (d>2);

compare $8).
A considerable simplification of the expression f0fy) can be obtained by applying the finite differ-
ence integral representation for the closed-form expoagsee 19))

L=n--0 % (e 00 (1-50) @20,

2<k<n 3<j<k

giving

ds.

1, -
1 5+ico T(n+1 S—|— 1— )\Zyl/d
Luly) = e I :

2w I'(n+1-ys) (2 — A\yl/d)

5 7200

0<e<d
Then, by moving the line of integration to the left and sumgrtine simple poles encountered, we obtain

Ln(y) = 1— 2dy + K (y)n* i (1 +0 (n’e + n*m(yl/d(l—e%/d)))) 7
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uniformly for |y| > 2=¢ + ¢, where

1 I'(2y(1 — emi/d
11 (2y( )

K(y?) = ——
(y ) F(2y)d(2y _ 1) \Siea 1”(2 _ 2y€2£m/d)

This explicit expression and the quasi-power theorem2h §lso give more precise estimates for the
mean and variance of the depth

E(D,) = glogn + [t] log K(e") + o(1),

V(D,) = % log 1 + 2[£2] log K(e!) + o(1),
where
[t]logK(e!) = Ky — 1= —2 — % +27+§ PORUCEDPY]
1<j<d
20 logK(e!) = 214 7) - 2+ 2 2 S GR-A) F2 AR ).
1<5<

Note thatn[E(D,,) equals the expected total path lengthAarwhenB,, = n — 1.

4 Second phase change: convergence rates and local limit theans
for X,

We consider the convergence rate and local limit theorenXfgrwhich undergo another phase change.
Local limit theorems are more informative and precise theymgptotic normality. We use characteristic
functions and standard Fourier analysis (s€8)[ the main estimate needed being based on the refined
method of moments introduced iRg] and the refined asymptotic transfers developed in Seétian

Local limit theorems. To state our result, let

[ 13, ifl1<d<T;
Tl V2-1, ifd=8.

Theorem 4. Uniformly forz = o(n'/?2~%),

—x2/2

P (Xn = {Xn + m\/WJ) = \/;Tm (140 ((1+ |z )n—30/2-3)) |

The error terms in both cases are, up to the implied constaptsnal. Numerically3(1/2 — a) ~
0.2573 whend = 8. This local limit theorem (in the range of moderate deviasjpalso implies the
following convergence rate

X, —E(X,) [ O(n7Y?), if1<d<T;
’ (W ) m) )| { O(n=32) if d =3,

where®(z) = (2r)~ /2 [*_ e ¥'/2dt.

sup (62)

z€R
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Moment generating function of X,, normalized by that of a normal distribution with the same mean
and variance. LetII,(y) := E(eX) andg, (y) := e EXny=V(Xn)v*/2[] (). From the recurrencéy,
we have

on) = Y Tagbn () G, ()t (0> 1),

Jietiga=n—1

with ¢o(y) = 1, where
Anv.j = 5n71 + E(le) +oot E(Xde) - E<Xn)7

L W) VX - V(X))

Vi = 5

Note thaty, (y) is in general not a moment generating function.

Recurrences. Defineg,, ;. := ,(f)(()). Then by the recurrence ¢f,(y), we have

¢n,k = 77Z}n,k: + 2d Z 7Tn,j¢j,k (TL > 1)7

0<ji<n

whereg, , = 0 and

]{7' j : Aio 7"2‘1+1
w'ﬂ,k - Z /[/ ' .. '7: d'Z d ' ﬂ-n)jgbjlail U ¢j2d7i2d n,jvn,j :
iotinboiyat2iga =k 020 2L G g =n1
0<i1,emmyina <k

A uniform upper bound for ¢, ;. Recallthatt = 1/3 whenl < d <7, anda = v/2 — 1 whend = 8.
We will prove, by an inductive argument, that
|bni| < KLAFRR™ (k0 > 0), (63)

whereA is a suitable constant that will be specified later. Note (638X holds fork = 0, 1, 2.

An upper bound for A,,;. By the estimate49), we have

O (nl/gfs) , F1<d<T;
O (n%) =

Bang = 0 (n>1), ifd=s, (64)

uniformly for all tuples(ji, . . ., j4).

An upper bound for V,,;. We need to refine the asymptotic estimafe Gince the variance satisfies the
recurrence

V(Xa) = Y w2t Y m V(X))

Jittja=n—1 0<j<n
and the first sum on the right-hand side is bounded above by
@) (n2/3*25) , 1 <d<T;
Z T A2 =
M 0 (i), ifd=s,

jitpa=n—1
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we obtain, by applying Corollaryy,
) O (n2/3_28) , f1<d<T;

This implies that
On*32), if1<d<T,
Vi = 0 () ifd =, (63)

An estimate for ¢,, 5. From (64) and ©5), it follows that

O (n'79), if 1 <d<T,
Pa = 0 (ne ) itd =8

Thus @3) holds fork = 3 by applying (2) when1 < d < 7 and (L5) whend = 8.

Induction.  For higher values of, we use the estimates (b§4) and ©5))
|An,J| S K{)nd’ |Vn,j| S Kanaa (66)

uniformly for all tuples(ji, . . ., jo4)-
Assume that@3) holds¢,, ; for : < k. Then by 66) and induction

i o Kot )"
‘wn,k‘ S/{Z!nka Z A11+---+22d576' Z Tnj ‘7_1

Toligar ! . - n
o Higa+2iya =k 0724 bt jpa=n—1

a de lyd O
n
0<i1,.iga <k

< kinfoefotie N " ALS(0), (67)

0<e<k

where

s= Y Y my (»%> o (ﬂﬂ

i1t Figa =0 j1+FJja=n—1

An estimate for S(¢). We now show thaf(¢) — 0 as{ — .
Lemma5. For ¢ > 0

S() <clla+1)"%  (d>1), (68)
wherec > 0 is independent of andn.

Proof. First, by the strong law of large numbers

S() < c/[m]d Z H gn(x) " dx

14 Fiya =0 1<h<24

1
:CQd ZZ/ %dx.
] [0,1/2)4 1 1 — qn(x)%2

1<h<2d
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Observe that the smallest term among 4hex)’s is qqa(x) = (1 — 1) -+ (1 — z4) whenx € [0,1/2]%.
Thus the dominant term for largecomes fromy,«(x), and it follows that

1 - 1
— Ox ~ / oa(x)" dx
/01/2] 1<h<2d 1— gu(x)3z [0,1/2) ? 131;:{% 1 — qn(x)/qaa(x)
N/ (1—a)® (1 — ) dx
[0,1/2]4
~ (la+1)1

This proves §8). 1

Proof of (63). Substituting the estimat&®) into (67), we obtain

c k, ka
|¢nk| < mk!fl no.

Then, by the asymptotic transfet),

c k ka
|¢nk| < WHA n-,

wherec is independent of, andk. Thusc'/(ka + 1)? < 1 for large enougtk, sayk > k,. Hence, 63)
follows by suitably tuningA for k& < kq; see [L] for similar details.

An estimate for the characteristic function for smally. Denote byy, (y) = I1,,(iy/+/V(X,)). Then,
by (63) and the Taylor series expansion,

9
Son(y) —e v/

_ (W 3(1/2- a)e—zﬂ/?) (69)

for |y| < egn'/?>~%, wheres, > 0 is sufficiently smalll.

A uniform estimate for 11, (iy) for |y| <e. From ©9), we deduce that
M (iy)] < e = (n > 3), (70)

for |y| < eon™ %, wherezs, is a suitably chosen small constant.

We now prove that the estimatéq) indeed holds foty| < e, €2 > 0 being a small constant. To that
purpose, choose, large enough and set := on, “. Then, {0) holds for3 < n < ny and|y| < &,. For
n > ng, by (5) and induction,

MGiy) < Y magllL, (i) - [T, (iy)]
jittga=n—1
< 6761(n+1)y2751(2d72)y2

6761(n+1)y2

IN

This concludes the induction proof.
Reformulating the estimat&() yields the following global estimate faf,, (y)

)| =0 (=) (n23), (72)

uniformly for |y| < eyn'/2.
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Berry-Esseen bounds and local limit theorems. The convergence rate83) now follows by ©9), (71)
and the Berry-Esseen smoothing inequality
Ry,
=0 | R'+ / dt |,
whereR,, := en’1/2-%); see p2].

V(Xn)
For local limit theorems, we first observe that the spaXgfis 1 by induction, so that10) can be
extended tdy| < 7 (again by induction). Then Theorefollows by applying the Fourier inversion
formula

Pn (y) — eV /2
Y

sup
xX

1 4 .
P(X, = k) / T, (iy) dy,

:% o

wherek = LE(Xn) + x\/V(Xn)J : see Figure.

0.0035 -+ 4
0.25
0.003
0.0025
0.002
0.0015

0.001

0.0005

24

o

Figure 3: Left: A Sedgewick plot of the absolute difference betw@xX, = k) and
e~ (b=EXn)*/QV(X0) /| o7V (X,) for n = 20,22,...,64 and |0.35n] < k < [0.7n] (normalized in
the unit interval) wherl = 2. Right: the histogram dP(X,, = k) ford = 3,n = 30 andk = 12,...,23,
together with the corresponding normal curve (having theesaman and variance).

Extensions to general cost measures.The same method of proof applies to other cost measures in
random quadtrees. In particular, Assume thatn (57) is deterministic and satisfids, = O(n”), where
p<1/2.1f 1 <d <7, then we have the following Berry-Esseen boundsyfor

O(n=1/?), if p<1/3;
P (—Xn ;}E(Xn) < x) — ®(x) { f

sup
x

O(n=2logn), if p=1/3;
(Xn) O(n=30/2=0)) " if 1/3 < p < 1/2.
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Whend = §, then

p(LE(X") <x> — &(x)
\Y%

sup (X )
O(n=33/2-v2)) if p<v2-—1;
=1 OG22 (logn)?), if p=v2—1;
O(n=3(1/2=r)), ifvV2-1<p<1/2.

The corresponding local limit theorems can be derived whgassumes only integer values.

5 Randomd-dimensional grid-trees

We consider briefly the phase changes in random grid-trabgsieection, the required asymptotic transfers
being also given.

Grid trees. Devroye [L2] extended the-dimensional point quadtrees andary search trees as follows.
Instead of choosing the first point as the root, one choosgghe firstm — 1 points (n > 2) and places
them at the root. These — 1 points then split the space inta? smaller regions (called grids) when no
pair of points is collinear. Each node in the correspondindrtyee has at most? subtrees. Whem = 2,
grid-trees are quadtrees; whénr= 1, grid-trees reduce to the usualary search trees; se@f].

Random grid-trees. Fix m > 2 andd > 1 throughout this section. Assume that the input is a sequence
of n random points uniformly and independently chosen fiom|?. Construct the grid-tree from this
sequence. The resulting tree is calleciadom grid-tree

Phase changes of the number of leavesFor simplicity of presentation, we consider the number of
leaves in random grid-trees, denoted.By.

m 2 3 4 5,....819,...,26
dl[1,...8]1,..,4]1,....3] 1,2 1

Table 4: The se& of all pairs of (m, d) for which X,, is asymptotically normally distributed. The two
boundary case®, 26) (m-ary search trees) arid, 8) (quadtrees) are both underlined.

Theorem 5. If (m, d) € S, whereS is given in Tablet, then

X, — E(X,) A

Vo) N(0,1);

if m >2/d>1and(m,d) ¢ S, then the sequence of random variablés, — E(X,))//V(X,) does
not converge to a fixed limit law.

More refined results (and more phase changes) can be deswedhe case of quadtrees.
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Recurrence of X,,. The recurrence ok, now has the form

X, Z 3 X946, (n=1),

1<j<md

with X, = 0, whereX,,, XV, ..., X" (J,,..., J,4) are independent antf,, Z X1 < j < md.
Moreover, the splitting probabilities can be expressed as

Tnj = ]P)(Jl :jl,...7de :jmd)

— 1 .
= (TL m ) / H qh(Xl,...7Xm_1)jth1...de_1
([0,1]4)m=t

jlv"'7.jmd

forall j; +--- 4+ j,,a =n —m+ 1, where
an(X1, .- Xpe1) = H Z Liny (i) <37E2)+1) - l’%) ,
1<i<d 0<b<m

with z(, denoting the/-th order statistic ok, ..., z,,—1 (z(o) := 0, 2, := 1).

Recurrence of moments. All moments satisfy recurrences of the form
Ay =B, +m* Y m A, (n=m-1), (72)
0<j<n—m+1

wherer,, ; denotes the probability that a specified subtree (say ttdirthe root hag nodes.
We now show thatr,, ; can be expressed in the form

(”—1—j§—1) (ji_ji—l—;m—2)
Mg = ) 2= ] s (73)
" J<i1 < <jg—1<n—m+1 (mril) 1<i<d (]Z;Tl 1)

To that purpose, we first split, ; as follows.
Tng = Z Wit yeesia—1>
j<in <ip<<ig g <n—m+1

wherew;,.;, ., , denotes the probability that tmerandom points are distributed in tHedimensional unit
cube in the following way: the first: — 1 points, denoted by, ..., x,,_1, split [0, 1]¢ into m? grids and
the remaining points are placed in these grids such thas gfithe form

1) () (i+1) .
[O,:c(l)] X oo X [O,:c(l)] X [l’(l) ,1} (1=0,---,d),

containn —m —ig_1 + 1,991 — iq_o,...,11 — j,j random points, respectively.
By definition, we have

Wjsinriia—s / ( (i) )Zd ( () )idiﬂ_idi
n—m - 'y -z dX1 . de,1
( ) o L1 =0} @

. . . . m—1 A
20581 —105--y8d —td—1 1<i<d

= T1 ) ()T el e
[0,1]77171

1<r<d
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wherei, := j andiy; := n — m + 1. It remains to evaluate integrals of the form

/[0 1jm—1 l’?l) (1 — LE(I))T dxl .. dxm—l,

wherep, 7 > 0. By dividing the domain of integration inton—1)! sets of the forn{ (z1, ..., xp—1)|zo1) <
-+ < To(m-1)}, Whereo runs through all permutations of — 1 elements

/[01]m1 $€1) (1 — x(l))T dxl N dxm—l = (m — 1)!/ x,i (1 o -1'1)T dx1 N .dl’m,l

0<z1 <<z —1<1
1
=(m-—1 2° (1 — )™ 2 dg,
( ) 7
0

T+ DT tm—1)
== )G )

by symmetry. Substituting this expression intd) gives the desired resulfd). 1

)

The DE. Let A(z) = ) -0 A4n2", B(2) = > -1 Bx2", andf = A — B. Then the recurrenc&’p)
translates into the DE - -

(1—z)"™'D" ! (2™ (1 = z)m_le_l)d_l f(z) =mlYA(2),

or, in terms of thej-operator,
- —\d-1
g1 (zm—lﬁm—l) F(2) = ml2A(2), (75)
wherey™ 1 = 9(d +1)--- (9 +m — 2).

The normal form. We then rewrite the DE in the form
P f(z) = Y. (1=2P0)f(z) + m\B(2),
1<j<(m—1)(d—1)
where theP;’s are polynomials of degreén. In particular,
Py(9) = (ﬂm)d —mld = H <19m — m!e2jm/d> )
1<j<d

The unique case when the above DE reduces to a pure Cauchytfpdésd = 1. Also the “lineariza-
tion” achieved by the Euler transform does not seem to wanrkctly form > 3. This says that it is not
obvious how to derive an explicit expression such38 (vhenm > 3.

Zeros of Py(z). Our method of proof for deriving the asymptotic transfersnigstly operational and
requires only limited properties of the zeros of the indiplynomial P,(x). The proofs of the following
properties are straightforward and thus omitted.

e The zero with the largest real partis= 2. All other zeros have real parts strictly less ttzan

e All zeros of Py(x) are simple (we need only this property for= 2 and the second largest zeros in
real part).

Other properties similar to those for the case 1 (m-ary search trees) can be derived as3n [Ch. 3].
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Asymptotic transfers. We state the main asymptotic transfers needed for provimgpiemb.
Let H,, :== >, _;,, 1/j denotes the harmonic numbers. Define

Kp = Z Vi, B*(k + 2), (76)
k>0

when the series converges, whéfas defined recursively by, = 0 whenk < 0, V5 = 1, and

Py(k+2)
Vi = E — Vi kE>1
g Po(k+2) (k2 1),
1<0< (m—1)(d—1)

andB*(s) := fol B(z)(1 — z)*~! dz when the integral converges.
Theorem 6. Let A,, be defined by the recurrencé?) with A, and{B,,},>1 given. Then

(z) (Small toll functions)

A, ~ Kgn iff B, =o(n) and ‘Z B,n"?

where the constank’ is given in {6);

(77) (Linear toll functions) Assume th&, = cn + u,, wherec € C andu,, is a sequence of complex
numbers. Then

Anwmnlogn%—lﬁn iff un:o(n)and‘zn:unn_2’<oo.

Here K, := ¢K, + K, with K, defined by replacing the sequenBg by u,, in (76) and K, given
explicitly by

1 Vi d HY 1
Ky = —— —2— —(Hp— 1)+
2T A(H, — 1) (;k(/{+1)+7 yHn =+ 50 —75 )

where 7 Z1<J<m 1/42

(7i1) (Large toll functions) Assume th&f(v) > 1 andc € C. Then

B, ~cn® iff A, ~ ((Uﬂm—
" " ((v41)m=1)d —mld

In particular, ifd = 1, thenV}, = 4,0 and

B*(2) 1 B,
Kp = — .
P H,—1 Hm—1;(k+1)(k+2)’

see B].
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Growth order of V} for grid-trees. The sequence), satisfies the DE

((]Dzz +m—2)-(D,z+ 1)D,z(1 — Z)m_1)d—1

X Dz 4+m—2)-- (D,z + 1)D, (2*V(2)) — m!?2V(2) = 0,
implying that the solution of the forif'(z) = (1 — z)~*¢(1 — z) has the indicial equation
s s+ 1) (s+m—2)=0.
Thus we deduce that
Vi = O (k™' (log k)°)

for somec > d — 2. This implies that the series ifi§) is convergent for both cases of small and linear toll
functions.

Refining the asymptotic transfer for small toll functions. To derive the second-order term f&(.X,,)
andV(X,), we also need the following types of transfer.

Let « + 1 denote the real part of the second largest zera®&,0f) (all zeros arranged in decreasing
order according to their real parts), add> 0 denote the absolute value of the imaginary part of either
zero.

Proposition 2. Assume thatl,, satisfies 72).

(¢) If B, ~ cn’, wherec € Canda < R(v) < 1, then

(Gl
(v +1)m=T)d — mld

A, = Kpn + n' + o(n’ + nf),

whereK is defined in 76).
(73) If B, = o(n®), then
A, = Kgn + KA\)nT + K(\)n®"% + o(n® 4 nf),

where theK ()\;)’s are constants whose expressions are similarly defined &8)n If the B,’s are

all real, thenK (\;) = K(X2).

These types of transfer and the inductive arguments useglmitrees can be applied to prove local
limit theorems forX,, with optimal convergence rates. Limit theorems for manyeothape parameters
can also be derived. We mention only the application to foa#h length.

Total path length. Neininger and Rschendorf40] derived a general limit law for the total path length
in random split trees of Devroye (seE?]), which cover in particular grid-trees. Their result isskd on
the assumption that the expected total path length satasigaptoticallycn logn + ¢'n. Our asymptotic
transfer for linear toll functions shows that this is theecéw grid-trees. This proves the limit law for the
total path length in random grid-trees. Note that the liraw lcan also be derived directly by method of
moments and our asymptotic transfer for large toll function
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6 Conclusions

We extended in this paper the asymptotic theory for CaucHgrlRES developed in7] to essentially DEs
with polynomial coefficients (often referred to hslonomic DEyandz = 0 not an irregular singularity.
Not only the results are very general, but also the methodafpequires almost no knowledge on DEs.
Indeed, since all our manipulations are based on linearatpes; only properties of the first-order DEs
are used, which can be further avoided by completely opeyain recurrences of quicksort type (see
[30])). The main feature of such an approach is that all diffeatiperators are regarded as coefficient-
transformers, so that no analytic properties are needdatiédunctions involved.

We applied the general asymptotic transfers developedisnpper to clarify the phase changes of
limit laws in quadtrees and more general grid-trees. Furdpplications to distributional properties of
profiles of random search trees will be given elsewhere.

For more methodological interest, we conclude this papembwptioning an alternative approach to
proving general asymptotic transfers &y (under suitable growth information dsy,) based solely on the
theory of differential equations. Such an approach wadnedpy the series of papers by Flajolet and his
coauthors (se€lf/, 20, 22, 26]). We start from the method of Frobenius and seeks solutibtise form
(1—2)"¢(1 — z) for the homogeneous D (z19)?1 — 2%) f(2) = 0, whereg(z) is analytic at: = 0. A
detailed information on the zeros &%(x) is needed,; in particular, we can show that wiidgs a multiple
of 6 there are two pairs of non-real zeros differing by integersh(at case, logarithmic terms need to be
introduced). Then we use the method of variation of parareésee B2]) for the non-homogeneous DE;
a long and laborious calculation of the Wronskians then léatise form

2{: &(2)(1—2) A

0<j<d

+203 ()1 - 2) %‘/Ozu VB S Gl (1og ) at, 77)

0<j<d 0<r<rg

wherer, < (d — 1)* and¢;, n;, ¢, are functions analytic in the unit circle satisfying, |[2"]x(z)| <
oo, wherex € {¢;,n;,¢;,}. Similar expressions can be derived fof,_;_,(1 — 2)’P;(9)f. Then the
sufficiency proofs of the transfers3), (13), (15) are reduced to deriving asymptotic transfers for integral
of the form

- | W B (log 2)

Such a general approach, although quickly gives the gefaral of the solution, does not seem easily
amended for getting expressions for the leading constamtsl@r to most asymptotic problems on DEs
and linear differential systems); also for more general Bl as 15), the precise characterizetion of the
zero locations (of their differences) requires more dédi@alysis.
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Abstract

We prove convergence in distribution for the profile (the bemof nodes at each level), normalized
by its mean, of random recursive trees when the limit rataf the level and the logarithm of tree size
lies in[0, ¢). Convergence of all moments is shown to hold onlydog [0, 1] (with only convergence
of finite moments whew € (1,¢)). When the limit ratio i) or 1 for which the limit laws are both
constant, we prove asymptotic normality fer= 0 and a “quicksort type” limit law forx = 1, the
latter case having additionally a small range where themm iixed limit law. Our tools are based on
contraction method and method of moments. Similar phenaratso hold for other classes of trees; we
apply our tools to binary search trees and give a completectaization of the profile. The profiles
of these random trees represent concrete examples for wieatange of convergence in distribution
differs from that of convergence of all moments.

1 Introduction

The profile or height profile of a tree is the sequence of numbédrosek-th element enumerates the
number of nodes at distangdrom the root of the tree (or the number of descendantstimgeneration in
branching process terms). Profiles of trees are fine shapaatbastics encountered in diverse problems
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such as breadth-first search, data compression algoritbacsgfet, Szpankowski, Tang, 2001), random
generation of trees (Devroye and Robson, 1995), and théwase analysis of quicksort (Chern and
Hwang, 2001b, Evans and Dunbar, 1982). In addition to time@rest in applications and connections to
many other shape parameters, we will show, through re@itsdes and binary search trees, that profiles
of random trees having roughly logarithmic height are a sobirce of many intriguing phenomena. The
high concentration of nodes at certain (log) levels resnltee asymptotic bimodality for the variance, as
already demonstrated in Drmota and Hwang (2005a); our gerpbthis paper is to unveil and clarify the
diverse phenomena exhibited by the limit distributionghef profiles of random recursive trees and binary
search trees. The tools we use, as well as the results wegare/of some generality.

Recursive trees. Recursive trees have been introduced as simple probaitvittjels for system gener-
ation (Na and Rapoport, 1970), spread of contamination gdr@sms (Meir and Moon, 1974), pyramid
scheme (Bhattacharya and Gastwirth, 1984, Smythe and Madyh895), stemma construction of philol-
ogy (Najock and Heyde, 1982), Internet interface map (Janat., 2002), stochastic growth of networks
(Chan et al., 2003). They are related to some Internet m@dafsMieghem et al., 2001, van der Hofstad
et al., 2001, Devroye, McDiarmid and Reed, 2002) and somsipalymodels (Tetzlaff, 2002); they also
appeared in Hopf algebra under the name of “heap-ordered’freee Grossman and Larson (1989). The
bijection between recursive trees and binary search tretesnly makes the former a flexible representa-
tion of the latter but also provides a rich direction for iiet extensions; see for example Mahmoud and
Smythe (1995).

A simple way of constructing a random recursive tree ofodes is as follows. One starts from a root
node with the label; at stage (i = 2,...,n) a new node with label is attached uniformly at random
to one of the previous nodes$,(..,i — 1). The process stops after nodés inserted. By construction,
the labels of the nodes along any path from the root to a naue & increasing sequence; see Figire
for a recursive tree of0 nodes. For a survey of probabilistic properties of recarsiges, see Smythe and
Mahmoud (1995).

Known results for the profile of recursive trees. Let X, x denote the number of nodes at lexein a
random recursive tree af nodes, whereX,, o, = 1 (the root) forn > 1. ThenX, ; satisfies (see van der
Hofstad et al., 2002)

Xk Z Xiher + X7 p 4 (1)
forn,k > 1 with X, 0 = 1 — 8,0 (6s,0 being Kronecker’'s symbol), whereY,, x), (Xn""k) and([,) are
independentX, « Z X,;“’k, and/, is uniformly distributed ove(l,...,n — 1}.

Meir and Moon (1978) showed (implicitly) that
s(n,k +1
Unk = E(Xnk) = sk + 1) (0 <k <n), (2)
(n—1)!

wheres(n, k) denotes the unsigned Stirling numbers of the first kind; $s®Moon (1974) and Donda-
jewski and Szymanhski (1982). By the approximations giveHwang (1995), we then have

)\k
wk=——"2——(1+0(X1"), 3
uniformly for 1 < k < KA, forany K > 1, where here and throughout this paper

An := maxXlogn, 1}, Onk =k /Ay,
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andI” denotes the Gamma function. This approximation impliepairiicular, a local limit theorem for the
depth (distance of a random node to the root); see Devroyasj1$zymanhski (1990), Mahmoud (1991).
The second moment is also implicit in Meir and Moon (1978)

B = Y (Zj)s(n,k +j+ D),

—_ 1\
0<j=<k J (n 1)'

see also van der Hofstad et al. (2002). Precise asymptqsiozipnations for the varianc€(X, x) were
derived in Drmota and Hwang (2005a) for all rangescofin particular, the variance is asymptotically
of the same order aﬁfl’k whena € (0,2) exceptk ~ A, (where the profile variance exhibits a bimodal
behavior).

Limit distribution when 0 <« <e. From the asymptotic estimat8)( we have

|Og Mn,k

n

—a—aloga,

wherehere and throughout this papér = k(n) anda := lim,_. k(n)/A,. Thuspu,r — oo when
a < e. Note that the expected height (length of the longest patim the root) of random recursive trees
Is asymptotic taeA,; see Devroye (1987) or Pittel (1994).

Define a class of random variabl&%«) by the fixed-point equation

X(@) Z aU%X (@) + (1 — U)* X (a)*, (4)

with E(X(«)) = 1, whereX(a), X(x)*, U are independentX («)* Z X(a), andU is uniformly dis-
tributed in the unit interval; see Proposititrior existence and properties &f(«). Define X'(0) = 1.

Theorem 1. (i) If 0 < @ < e, then

a

k2 X(w), (5)

=

n,k

where—Z> denotes convergence in distribution.
(i) If 0 < @ < m"=D wherem > 2, thenX,, 1/, converges toX («) with convergence of the
first m moments but not th@n + 1)-st moment.

In particular, convergence of the second moment holds fere < 2.

Corollary 1. If 0 <« < 2, then

C(a + 1)? 5
V&ns) ~ ((1 — /)T Qe+ 1) 1) o

Note that the coefficient on the right-hand side becomeswbemna = 0 anda = 1, and the variance
indeed exhibits dimodal behaviowhena = 1; see Figurel for a plot and Drmota and Hwang (2005a)
or below for more precise approximations to the variance.

Sincem!/m=1 | 1, the unit interval is the only range where convergence ahalnents holds.



1000 - 8e—06

6e—06 -

600

4e—06 -

2e—06 -

o 2 a & 8 10 12 14 o 2 a & 8 10 12 1a

Figure 1: A plot of E(X, x) (the unimodal curve)V (X, ) (the bimodal curve with higher valley), and
|E(Xux — tax)’| (right) of the numberX,, ;. of nodes at levet in random recursive trees af = 1100
nodes, all normalized by their maximum values. Note thawiey of |[E(X ;1004 — i11004)°| (When
normalized by:?®) is deeper than that 0¥ (X;100.) (normalized by:?); see Corollary5 for the general
description.

Corollary 2. If 0 <« <1, then
Xn,k

Mon,k

- X(@). (6)

M .
where— denotes convergence of all moments. Convergence of all meffiads forl < o < e.

Thus the profile of random recursive trees represents a eenekample for whiclhe range of con-
vergence in distribution is different from that of converge of all momentsWe will show that such a
property also holds for random binary search trees; it igetqul to hold for other trees like ordered (or
plane) recursive trees ama-ary search trees, but the technicalities are expected touod more compli-
cated. We focus at this stage on new phenomena and theispraaifon generality.

The proof of §) relies on the contraction method developed in NeiningdrRinschendorf (2004) (see
also the survey paper Rosler and Ruschendorf, 2001),r@nchboment convergenck, /i, x uses the
method of moments. Both methods are technically more imgbecause we are dealing with recurrences
with two parameters. We will indeed prove a stronger appnation to ) by deriving a rate under the
Zolotarev metric (see Zolotarev, 1976).

But why m!/"=D? This is readily seen by the recurrence of the momepts) := E(X(«x)™) of
X(x)

1 r'(h nHr —h 1
e = I I W L T CEE )

1<h<m

wherevg (o) = v () = 1. This recurrence is well-defined foy, («) whena < m'/=D_ This explains
the special sequenee'/ 1.
Note that sinc@ (X (a)”) = oo fora > m!/"=D we haveR(X, i /u.x)" — oo in that range.

A “quicksort-type” limit distribution when « = 1. SinceX (1) = 1, we can refine the limit resulb}
fora = 1 as follows.



Theorem 2. (i) If k = A, + tyk, Where|t, x| — oo andt, . = o(%,), then

X%k'_link M
o TR X' (1 , 8
VTR ©

whereX’(1) := (d/da) X («)|«=1 Satisfies
X'(1) Z UX' () + (1 -U)X'(1)"+U +UlogU + (1 —U)log(l1 — U),

with X'(1), X'(1)*, U independent and” (1) Z X’(1)*.
(i) If & = A, + O(1), then the sequence of random variabl&S, x — tnx)/ v/ V(Xnx) does not
converge to a fixed law.

Although @) can also be proved by the contraction method, we prove lasthlts of the theorem by
the method of moments because the proof for the non-conveegeart is readily modified from that for
(8); see also Chern et al. (2002) for more examples having neecgence to fixed limit law. On the other
hand, since the distribution &f’(1) is uniquely characterized by its moment sequence &b (ve have
the convergence in distribution as follows.

Corollary 3. If k = A, + tyk, Where|t, x| — oo andt, x = o(A,), then

X%k'_link 2 ,
- X 1 .
tn,k)»ﬁ_l/k! (1)

The same limit lawX”(1) also appeared in the total path length (which ig kX, x) of recursive trees
(see Dobrow and Fill, 1999), or essentially the total lethdangth of random binary search trees, and the
cost of an in-situ permutation algorithm; see Hwang and Mgger (2002).

The appearance of the same limit law as the total path lesgibtia coincidencdntuitively, almost
all nodes lie at the levels = A, + O(J/A,) (sinceE(X,x) < n/+/A, by (3)) and it is these nodes
that contribute predominantly to the total path length; @lee @) below for an estimate of the variance.
Analytically, a deeper connection between the profile and the total pagthas seen through the level
polynomials) ", X, z* (properly normalized) for which we can derive, following&lvin et al. (2001),
an almost sure convergence to some (complex-valued) landam variable. From such a uniform con-
vergence, the profile is quickly linked to the total path lémigy taking derivative of the normalized level
polynomial with respect te and substituting = 1. Indeed, limit theorems for weighted path-lengths of
the form)_, k" X, «, as well as the width (maxX,, x), can be obtained as by-products. These and finer
results on correlations and expected width are discussedchota and Hwang (2005b).

Asymptotics of the variance. As a consequence of our convergence of all moments, we havelth
lowing estimate for the variance.

Corollary 4. If k = A, + t4k, Wheret, x = o(A,), then the variance ok, ;. satisfies
2

Xk_l
V(Xn,k)»»pz(rn,k)( " ) , ©)

k!
wherep, (ty k) 1= 212, + 2¢1ty i + co With

2

T
(&) 5:2—?, cpi=c(1—-y)—C003)+1
4

co =2 (y? =2y +3) =263 = D1 —y) — 3. (10)

Herey denotes Euler’s constant afd3) := } ., j3.
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The expression9) explains the valley for the variance in Figute Note thatV(Xn,k)/ufl,k =
O(t7  /Ay) whent, k. = o(hy).
Our proof indeed yields the following extremal orderdo¢ X, x — pnx)™| for m > 2.

Corollary 5. The absolute value of the-th central moment satisfies

max |E(X,x — tni)™| < A,"n™,

0<k<n

min  |E(Xux — i)™ < A3 20™,
k=0T " g

where the maximum is achievedkat= A, £ +/A,(1 + o(1)) and the minimum at = A, + O(1).

More refined results can be derived as in Drmota and Hwandgs@0®or example, by40) below, we
have

max [E(Xx — )™ ~ [ECX/ (1M e ™2 —=—) |
max [E(Yo = )| ~ Bl (L)

for m > 2, whereE(X’ (1)) can be computed recursively; s

Asymptotic normality when o« = 0. The profile X,, x in the remaining rangé < k = o(A,) will be
shown to be asymptotically normally distributed. It is kno{gee Bergeron et al., 1992) that the out-degree
of the root,, ; satisfies

—1,j
POty = ) = S

thus X}, is asymptotically normal with mean and variance both asgtipto A,,. Equivalently, X, ; is
the number of nodes on the rightmost branch (the path sgdrtam the root and always going right until
reaching an external node) in a random binary search trees-df nodes; see the transformation below
for more information.

Let ®(x) := 2n)~ V2 [*
tion.

(I =j<n);

e~*/2 dr denote the distribution function of the standard normatritis-

Theorem 3. The distribution of the profilé, x satisfies

sup =0|,—1, (11)

>
3

X, — A/ k!
IP( k= A/

M S DRk =) x) ~ o)

uniformly forl < k = o(A,), with mean and variance asymptotic to

My
IE(Xn,k) ~ F,
’ A2k—1

(k— D22k —1)

V(Xn,k) ~

In particular, X, , is asymptotically normally distributed with mean asymjattd %A,Z, and variance to
%Afl. A similar central limit theorem appeared in the logaritbrorder of a random element in symmetric
groups; see Erdds and Turan (1967).

Unlike previous cases, the proof of this result is based arlympmial decomposition of the associated
generating functions using characteristic functions andusarity analysis (see Flajolet and Odlyzko,
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Figure 2:A recursive tree of 0 nodes and its corresponding transformed binary increasieg of9 nodes.

1990), the reasons bein@) this method leads to the optimal Berry-Esseen bouri), (which is not
obvious by the method of moments)) it is of independent methodological interests, &iid it can also
be applied to give an alternative proof &) (

The asymptotic normality ok, » whena = 0 indicates that nodes are generated in a very regular way
in recursive trees, at least for the fitgh.,,) levels. The rough picture here is that each node at thesks leve
“attracts” about\,,/ k new-coming nodes, as is obvious froB);(see also Drmota and Hwang (2005b)
for an asymptotic independence property for the number déaat two different levels, both bein@\.,)
away from the root.

Profiles of random binary search trees. Binary search trees are one of the most studied fundamental
data structures in Computer Algorithms. They have also leteaduced in other fields under different
forms; see Drmota and Hwang (2005a) for more references.

This tree model is characterized by a recursive splittinecess in whiche > 2 distinct labels are
split into a root and two subtrees formed recursively by #r@e procedure (one may be empty) of sizes
J, andn — 1 — J,, whereJ, is uniformly distributed in{0, 1,...,n — 1}. Such a model is isomorphic
to binary increasing treegn which a sequence of > 2 continuous random variables (independent and
identically distributed) is split into a root with the smedt label and two subtrees formed recursively by the
same splitting process corresponding to the subsequemtes keft and right respectively of the smallest
label. Note that when given a random permutation efements the size of the left subtree of the binary
increasing tree constructed from the permutation egiiads< j < n — 1 with equal probabilityl /n, the
same as in random binary search trees.

A recursive tree can be transformed into a binary increasaggby the well-known procedure (referred
to as thenatural correspondenda Kunth, 1997 and theotation correspondendeay others): drop first the
root and arrange all subtrees from left to right in incregsirder of their root labels; sibling relations are
transformed into right branches (of the leftmost node in ¢femeration) and the leftmost branches remain
unchanged; a final relabeling (using labels froro » — 1) of nodes then yields a binary increasing tree
of n — 1 nodes. Such a transformation is invertible; see Figure

Under this transformation, the profilg, x in recursive trees becomes essentially the number of nodes
in random binary search treesof- 1 nodes with left-distancke — 1 (k > 1), theleft-distanceof a node



being the number of left-branches needed to traverse fremabt to that node. This also explains the
recurrenceX).

Known and new results for profiles of random binary search trees. We distinguish two types of nodes
for binary search trees: external nodés, (virtual nodes completed so that all nodes are of out-degree
either zero or two) and internal nod&s x (nodes holding labels). Chauvin et al. (2001) establistienst
sure convergenc®r Y, x /E(Y,x) andZ, . /E(Z,x) whenl.2 < « < 2.8, and recently Chauvin et al.
(2005) extended the range f&} « /E(Y, x) to the optimal range— < o < a4, the two numbers_ ~

0.37, a4+ =~ 4.31 being the fill-up and height constants (of binary searchsjigeamely) < a_ < 1 < a4
solving the equation“~/? = z/2: see also Chauvin and Rouault (2004). For other known eenlthe
profilesY, x, see Drmota and Hwang (2005a) and the references therein.

Our tools for recursive trees also apply to binary searcéstreBriefly, we derive convergence in
distributionforY,  /E(Y,.x) andZ, x /E(Z, x) in the rangexr € («—, @) and convergence of all moments
fora € [1, 2], the degenerate cases= 1, 2 being further refined by more explicit limit laws; see Seafio
for details.

While it is expected that the profiles for both types of nodagehsimilar behaviors td, », we will
derive finer results showing more delicate structural céffiee between internal nodes and external nodes.

Organization of the paper. Since most of our asymptotic approximations are based osdhgion
(exact or asymptotic) of the underlying double-indexecureence (inz and k), we start from solving
the recurrence in the next section. The proof of the convexgeén distribution ) of X, /., When
0 < a < e by contraction method is given in SectiBn Then we prove the moment convergence part of
Theoreml in Section4 and Theoren? in SectionS. The asymptotic normality whesm = 0 is proved in
Section6, where an alternative proof o) is also indicated. Our methods of proof can be easily angnde
for binary search trees, and the results are given in Se¢tidve conclude this paper with a few questions.

Notations. Throughout this papek,, := maxlogn, 1}, a,x := k/A, anda := lim,_, o @, x When the

limit exists. The symbo|z"] f(z) stands for the coefficient af* in the Taylor expansion of (z). The

generic symbolg and K always represent sufficiently small and large, respegtiysitive constants
whose values may vary from one occurrence to another. Fjréllrepresents a uniforrfd, 1] random

variable.

2 The double-indexed recurrence and asymptotic transfer

Since all moments (centered or not) satisfy the same ramereve derive in this section the exact solution
and study a simple type of asymptotic transfer (relatingagyanptotics of the recurrence to that of the non-
homogeneous part) for such a recurrence.

By (1), we have the recurrence for the probability generatingtions P, x (y) := E(y%n#)

Pak) = = Y P Paja() 22k 2 1) (12

1<j<n

with P, o(y) = y forn > 1 and P4 (y) = 1.



Recurrence of factorial moments. Let
Ar(zr,'}c) = IE(Xvn,k()(n,k - 1) cee (Xn,k —-—m + 1)) — P;s,nl?(l)

Then4'®) = 1forn, k > 0. By (12), we have the recurrence

m _ 1 (m) (m) (m) .
A = ——= 3 (AL + ATD) + B 0z 2kam = 1),
1<j<n

where

(m) _ m 1 ") (m—h)
Bn,k - Z (h)n—l Z Aj,k—lAn—j,k’ (13)

1<h<m 1<j<n
with the boundary conditionﬂfll’()) =1forn=>1 andA,(["g (0) =0form > 2andn > 1.

Exact solution of the recurrence. Consider a recurrence of the form

1
n—1

3 (@jx+aju1) +bag. (0= 2ik = 1), (14)

1<j<n

Ank =
with a, x andb, x given. We assume, without loss of generality, thgt = 0 (otherwise, we need only to
modify the values of;, x andb, k).

Lemma 1. Forn > 1 andk > 0,
bj’k_r u
ank=bnict 35 Y N+ I (1+7) (15)
1<j<n0<r<k j<t<n
Wherebl’k =dik-
Proof.Leta,(u) := Y, ant14u* andb,(u) := 3", bpt1 ,u*. Thena,(u) satisfies the recurrence

14+ u

> ai) +oaw) (=1,

0<j<n

an(u) =

with the initial conditionae(u) = Y, a1 ,xu*. By taking the differenceia, (1) — (n — 1)a,—i(u), we

obtain
n—1

an(w) = (14 =) ap1@) + b)) = ——byes ) (122),

Solving this linear recurrence yields

an(u) = by() + (14 1) Y l?"iu)l [T (1+ %) (n > 1),
0<j<n J j+2=<L=n

(sincebo (1) := ao(u)). Taking coefficient oi/* on both sides leads td§). 1



Mean value. Applying (15) with b, x = 6,180 %, We obtain fom > 1 andk > 0
[k u
e =" TT (14 7) (16)

1<l<n
sk + 1)
T m—1

This rederives?).

A uniform estimate for the expected profile. For later use, we derive a uniform bound foy .

Lemma 2. The mean satisfies
g = O (WA v ™5n"), (17)

uniformly forl < k < n, whered < v = O(1).
Proof. Note that by 16), we have the obvious inequality
k v
Jgvk < N]L (1+7)  @>o.

which leads tqu, x = O (v_kn") for 1 < k < n. But this is too crude for our purpose.
By Cauchy'’s integral formula,

—k g
v
< ||
Hnke = 2 /_n

1<{=n

dr

veit
1
T

v—k V4 1
<0 exp(v(cosr) > st 0(1)) dr

T 1<f<n

=0 ((vkn)_l/zv_kn") )

proving L7). 1

Note that whenk = O(A,), then the right-hand side ol7) is optimal if we takev = k/A, and
(17) becomesu, x = O(AK/k!). Thus (7) is tight whenk = O(A,). This also explains why we write
(vA,)~'/2 instead ofr,, '/? (to keep uniformity whert = o(1,) and we choose = k/,,).

On the other hand, leavingunspecified in17) and in many other estimates in this paper considerably
simplifies the analysis.

A simple asymptotic transfer. We will need the following result when applying the contraotmethod.
It roughly says that when the non-homogeneous hatof (14) is of ordery,’, , wherew > 1, thena, «
is also of the same order for certain rangexof

Lemma 3. If b, x = O (((vi,)"/2v™*n?)¥) forall 1 <k < n, wherew > 1 and0 < v < vy, then

ang = O (ﬁ ((vkn)—l/zv—knv)w) ’

uniformly for1 < k < n, provided thatd < v < min{fw/®=Y _y,}. Similarly, replacingO by o in the
estimate fow, x yields ano-estimate fow,, x .

10



Proof. By the exact expression fay, ., we have, fol) < v < vy,

g = bk = (Z > - ((vm Yyt ) )+ ) T (1+%)). (18)

1<j<n 0<r<k j<{<n
The inner sum over can be simplified as follows.

Z v—(k—r)w[ur](l + u) 1—[ (1 + %) < kaUrw[ur](l + u) 1—[ (1 + —)

0=<r=<k j<t<n r>0 j<t<n

—Kw w vw
= v 0 +0”) ]] (1+7)

j<{<n

_o (U—kw (;)) | (19)

uniformly in j. Substituting this estimate inta§), we obtain

dnj = 9] (((v)\n)l/kanv)w n v—kwnvw Z (U)L]_)w/ijvvwl)

1<j<n

=9 (# ((”k")_l/zv_k”vy) ’

uniformly for 1 < k < n, where0 < v < w'/®=1_ Theo-estimate is similarly proved. This completes
the proof of Lemma. |

3 Convergence in distribution when0 < o < e

We prove the first part of Theorefin(exceptingx = 0) in this section by contraction method based on the
framework developed in Neininger and Riuschendorf (2004% new difficulty arising here is the asymp-
totics of the double-indexed recurrendel) (instead of single-indexed ones previously encountered)

The underlying idea. The idea used here is roughly as follows.
Define Xy, x := Xux//nk- Then, by 0), X, « satisfies the recurrence

X1, k-1 + Ptk
Mn.k Mn .k

with independence conditions as it).(By the estimates3) and the relation,, = [(n — 1)U ], we expect
that

- 9 My, k-1
Xnk— =

X Ik (20)

Iy o1k (A,, +IogU)k_1 .
—x — | —— —-aU”,
Mn.k )\n )‘n
with suitable meaning for the convergence; similarly,
,uvn—ln,k — (1 _ U)a.
Mn k

Thus if we expect thafn,k — X (), thenX(x) satisfies the fixed-point equatiof) (
To justify these steps, we apply the contraction method.

11



Contraction method. The fixed-point equationd] has a few special properties not enjoyed by single-
indexed recursions encountered in the literature for wthiehtypical fixed-point equation has the form

XZ Y Gx9D+b, (21)

1<j<h

with X X® (Cy,...,Cy.b) independentY® Z X, and0 < C; < 1 almost surely for all

1 < j < h. Here,h may be deterministic or integer-valued random variablé® Jpecial rangg, 1] for
the coefficients”; .. ., C; is roughly due to the relation
a(I™)

o(n)

—)Cj

where, in various applications (see Neininger and Rustt#n2004) 0 is the leading term in the expan-
sion of the standard deviation of the underlying randomalde andd < Ij(") < n are the sizes of the
subproblems. Typicallyr is a monotonically increasing function, hence we obtain C; < 1.

In general, the Lipschitz constant of the map of probabititgasures associated wit@lf under
the Zolotarev metric,, is assessed bEj E(C/”). This term is monotonically decreasing asin-
creases. Thus, in typical applications for which one expactontraction, the suh_; E(C*) has to
satisfy ), E(C;*) < 1, and for that purpose, one has to choassufficiently large; see Neininger and
Ruschendorf (2004) for implications of this condition e tmoments required.

For the bi-indexed recursion of, x, we are led to the fixed-point equatiof) (where the coefficient
aU% may have values larger than one for- 1. This implies that the corresponding estimateeU )” +
E(1 — U)" for the Lipschitz constant is not decreasingiinWhena < e increases, the range where we
have contraction becomes smaller and vanishes in the boucasexr = e.

Notations. We denote byM the space of univariate probability measures My, C M the space of
probability measures with finite absoluteth moment, and by, (1) C M,, the subspace of probability
measures with unit mean, where< w < 2. Zolotarev pQ] introduced a family of metricg,,, which, for

1 < w < 2 are given by

Cw(vi.v2) = sup [E(f(X) — fF(¥))], (v1,v2 € My (1)),

SEeFw

whereX andY have the distributiong(X) = vy, L(Y) = v;.
We have

Fo={f €C'RR) : |f'(x)= [ = |x = p|""},

with C!(R, R) the space of continuously differentiable functionskariWe will use the property that con-
vergence irt,, implies weak convergence and tl§gtis ideal of ordenw, i.e., we have foW independent
of (X,Y)andc # 0

CwX + WY + W) <8(X.Y),  Lu(eX,cY) = [c[*8u(X.Y).

For general reference and propertieg f see Zolotarevil] and Rachev43].
We also use the minimdl, metrics{,, defined forl < p <2 by

Cy(vi,v2) =INf{lX =Y, 1 LX) = vy, L(Y) = v}, (vi,v2 € Mp),

12



where | X ||, denotes thel ,-norm of a random variablé&'. For simplicity, we use the abbreviation
tw(X,Y) = Cu(L(X), L(Y)) for ¢, as well as for the other metrics appearing subsequently.
In addition, we assume that

R(n) := |k —ar,| = |anr — Ay = 0(Ay),

where0 < «a < e, and fix a constant as follows. If2 < a < ¢, thenl < s < p with p € (1, 2] the unique
solution ofp = 7!, ands := 2 if 0 < a < 2. The boundo also identifies the best possible order for the
existence of absolute moment&{«). Note thats satisfiess —a*~! > 0, which is the continuous version
of m —a™~! > (0 appearing in7).

Properties of X(«). Define the map
T -M—->M, v LU*Z+(1-U)*Z%),
whereZ, Z*, U are independen;(Z) = L(Z*) = v.
Proposition 1. For 0 < a < e, the restriction ofl" to M;(1) has a unique fixed poini(X («)). Further-
more,E| X (x)|? = ocofor2 <o <e.

Proof. By Lemma 3.1 in Neininger and Ruschendorf (2008)is a Lipschitz map in; with Lipschitz
constant bounded above by |

: o’ +

lip(T) < 1
Thus lip(T) < 1 by our choice ofs. Also T has a unique fixed point in the subspaet (1) by Lemma
3.3 in Neininger and Ruschendorf (2004).

When2 < o < ¢, we assumé&| X (x)|? < oo and prove a contradiction. First we haieX («)|” =
EleU*X () + (1 — U)*X(«x)*|°, whereX («), X(«x)*, U are independent witll (X («)) = L(X(x)*).
Note thatX («) > 0 almost surely. Furthermor&(X(«)) = 1 implies that there is a set with positive
probability in which we haveX'(«) > 0 and X («)* > 0. It follows that

ElX ()’ = E(X(2)?) = E(@U*X(a) + (1 = U)* X(2)*)”
> E(PU X (@) + (1 — U)*(X(@)*)")

= Y e @)
ap

+1
= EWX()”),

by the definition ofp and the inequalitya + b)? > a” 4+ b* fora,b > 0 andp > 1. Thisis a contradiction,
hence we havE| X (x)|? = co. |

Zolotarev distance betweenX, s/ ,.x and X («).
Theorem 4. 1f 0 < @ < 2, then

& (X"”‘,X(a)) —0 (—R(”) * 1).
Mn,k )\”

¢ (X”’k,X(a)) o0,

Mn k

If 2 <a < e, then

wheres is specified as above.

In particular, this theorem implies the convergence inrttistion of X, x/ sk for 0 < @ < e and
proves the first part of Theorefin

13



Convergence rate of the factors in 20).

Lemma 4. Withs and R(n) specified as above, we have

H’n In.k

—aU”

HM — (-

Mn.k

R e

R(n) +1
‘0( A )

Proof.We consider only thé.;-norm Of/j‘ln,k—l//j“”’k —aU%, the other part being similar. BR), we have

stk +1) 2k
i = BT M g g
Pon ke -1 K (n, k),
where
Hok)=— 1oL 22)
T A T anp) )

the O-term holding uniformly forl < k& < K1,. Then we decompose the rafig , ,/usx into three
parts

k—1
Moyt _ Aﬁ ('og ’") AUn k= 1) . gt pla) pta, (23)

lonk Do H(n, k)
We first show that

o R(n) +1
F el + I FE = U+ IF - 1 = 0 (205D,

An

These estimates imply thi#s” |4, | 5 l4s = O(1). Then, Holder's inequality gives

R(n) +1
o=,
s ( )\‘" )
First, we introduce the set := {I, < n%/®}. Note thatu,, = O(1) for k > 31,. On the set4, we

havek — 1 = aA, + R(n) — 1 > (a/2)A, > (/2) Iogl,f/“ = 3logI,, for sufficiently largen; thus
Ky, k-1 = O(1). On the other hand, sinee< e, the mean satisfigs, » = 2(1); thus

My, k-1
H ns _aU(X

Mn k

/ ‘”‘; kkl —aU*["dP = OB(A) = O, = Vi) = O(1/ /) = 05 *).
A n

Thus we need only to consider the complement4et

Obviously, F'l = k /d, = a + O(R(1)/A).

ForF,?], we observe that far < 0 the expansioril + x/m)™ = e* + O(e”*/m) holds uniformly
with ¢ < 1. Thus, we obtain

k—1 o\ N\ @TRE—1)/ Ay
() (bo(42)

(R(n)(U“ + U logU + U‘””‘l)

=U"+0
+ .
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Here, we may choose with | —a < © < 1. Then(U* + U*t?~!)logU andU**?~! are bothL 4-
integrable and th&@-term in the last display is bounded above®({ R(n) + 1)/A,) in L.
For the third factor inZ3), we have

I DV _ L (R
H(”’k)‘r(1+a+R(n)/xn)+0(E)‘m+a>+0( * )

For H(I,,k — 1), we restrict to the setl“. On A€, for n sufficiently large, we havké — 1 < 12log [, so
the error in the expansion d¥ (1, k — 1) implied by 22) is uniformly O(1/log1,) = O(1/A,). Thus
we have

H(ly,k—1)= |j(/1 )+ R(n)—1 +0(|011 )
F(1+Ol+ g |olé]n ) g ln
1 log(n/1,) + R(n)
T +a) & ( An

Since ||log(n/1,)|lss — |I1ogU|lss < oo, the last error term is of orde®((R(n) + 1)/A,) in Lys.
Collecting all estimates, we obtalFLl — 1|4, = O(R(1) + 1)/Ay). 1

Asymptotic transfer of the double-indexed recurrence {4). Consider the recurrencé4) with suit-
able initial conditions.

Lemma 5. If
R 1
by = O (((vkn)_l/zn”v_k)w . (71)37+) (1<w<=<2),
uniformly forl < k < n, where0 < v < vg, then
1 R 1
ang = 0 (———— () 2nruhye . RO LY (24)
’ w — pWw 1 )Vn

uniformly forl < k < n, where0 < v < minfw'/®@=D y,1.

Proof. The proof is similar to that for Lemm&but slightly more complicated. By the exact expression for
an x and the estimate fat, ., we have, fol) < v < vy,

Qn k _bn,k =0 (vwkw/Z Z Z |k _ _akj|)\j—1—w/2jwv—1vwr[ur](l + Ll) 1_[ (1 n Z)) .

1<j<n0=<r=<k j<f<n

First, if |k — aA,| > ey, thenlk —r —ad;| = O(k + 1,), so that 4) holds by the proof of Lemma.
We assume now that — oA, | < eA,. Split the sum inj into three parts

an,kb,,,k—o(vwkw/z( Y r Y o+ Y )

1<j<én 6n<j=<(1-8)n (1-86)n<j<n

x 3 k=1 —ak A T () T (1#2))

0<r=<k j<t<n

whereé € (0, 1) will be specified later. An analysis similar to the proof ofnhea3 gives

A —w/2 . k— i |
nje = bnje = O (& p Wk (8“’”_" + & + 5)) ’

w — w1l An
where0 < v < minfw!'/®=Y o). Takings := ((R(n) + 1)/A,)"/ @) yields 4). |
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An inequality between ;- and £-distances.
Lemma6. For1 <w <2andM > 0, there is a constank > 0 such that

Gw(X,Y) < K(y(X,Y) v L~ (X, Y)), (25)
for all pairs L(X), L(Y) € My (1) with || X ||, |Y|lw < M.

Proof. We start from the inequality (see Theorem 3, Zolotarev, 1976
1 — w— w w —w
fw(X.Y) = — (2B, (X, Y) + 27 B (X, V)X g A Y [1)*7Y)
for 1 < w <2, wherep, denotes the difference pseudo-moment
Buwi,v2) = Inf{E||X|*7'X — [Y|*7'Y| : LX) =v1, LY) = vy} (w > 1),

with vy, v, € My, From||x[*~'x — [p[*~!y| < w(x|[*~' v |y[*~")|x — y| and Holder’s inequality, it
follows that
Bu(X.Y) <w (E|X|* +E|Y|*)® D¢, (X,Y).

which implies the desired inequality. I

Proof of Theorem4. We introduce a hybrid quantity

M h—1p,
g, = Inle()+M 1.k

Mn k Mn k

X* (),

whereX («), X *(«), I, are independent and(«), X * () identically distributed. Sincé(X («)), E()?,,,k),
L(E,) € M;(1), the ¢s-distances between these quantities are finite. For siitypligrite /1, x :=
¢s(Xn k. X (o). By triangle inequality

hn,k = é‘s()?n,k, En) + é‘s(En, X(O[))

Note that, is ideal of orders. Thus

Ve ~ Mnk I'L_Inak % Mn,k_ ILL ln
cs(Xn,k,m:zs( Aty g Pt P o Bk ) )
n,k Mon,k Mon,k n.k
W k— Mn—j k M k— M k
< Zzs(’ B T 1X(a>+”JX(>)
n— 1<]<I’l Mn.k Mn.k Mn.k Hn k
1 k=1’ ta-jk )
T (B e (Y )
Py Hon Hon ke

We now show that

§s(En, X (@) = O (D)*™), (26)
whereD(n) := (R(n) + 1)/A,.
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First, by Lemmad,

- Kr k=1 Hn—I,.k
2l = (|Aet] o |Ptet] ) .
n,

= (U ]ls + [I(1 = U)“Ils)IIX(Oé)IIs,

which implies thatl| €, || is uniformly bounded for alk. SinceL(X(«x)) € M;(1), there isanM > 0
such thal| X () ||s, || E.|ls < M for all n. We apply Lemmd to bound the;-distance, which gives

§s(En, X (@) < K(E(En, X(@)) v L7 (En, X())),

By Lemma4

0y(En, X (@) < (HM _qU®
Mn .k

btk -
s Mn .k

¢ s) [X ()]s = O (D(n)).

This proves 26).
Collecting the estimates, we obtain

nk<— Z ((:Uﬂk 1) j’k_l_i_(l‘v;—j,k) hn—j,k) -I—O(D(n)s_l).

1<j<n

Thus,h, x = O(an,k,u;j(), wherea, ; satisfies {4) with

bn,k =0 (Mfz,kD(n)s_l) )

and suitable initial conditions. Theorefnthen follows from applying the different types of asymptoti
transfer given in Lemma3and5. |

Remark. Note that the proof of Theorer also yields a rate of convergence of ord(((R(n) +
1)/1,)*~ 1) for ¢, for the range < o < e.
Recently, S. Janson (private communication) showed thainha&6 also holds with 25) there replaced
by
é‘w(Xv Y) S Kew(X, Y)
This inequality leads to an improvement of the error term iredrem4 for the range2 < o < e to
O((R(n) + 1)/An).

4  Asymptotics of moments

We prove in this section the moment estima#&exhose proof is more involved than the asymptotic transfer
in Lemma3. The idea is to first derive a crude bound for higher momentg,qf, which holds uniformly
for 1 < k < n. Then a more refined analysis leads@p (

Note that them-th factorial moments ofY, x and them-th moments are asymptotically equivalent
whenu, x — oo, or roughly whenx < e.
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A uniform estimate for higher moments. For convenience, defing (v) = 1 and

1

We now prove by induction that
4% = 0 (pn (@A) 7P05"))  m =), 27)

uniformly for 1 < k < n, where0 < v < m!'/=1,
Obviously, 7) holds form = 1 by (17). By (13) and induction, we have fdr < v < (m — 1)1/"=2

B = 0( > (’Z)wh(v)wm_h(w
1<h<m
a3 () k) (Wl PR j)”)'"h)

1<j<n

= 0| @uot ™ 3 = HOT @A) T () T2

1<h<m
1<j<n

—0 (<pm_1(u)(vxn)—m/%—k’"n’"”) , (28)
uniformly for1 < k < n.
By (19),
B™

A™ =B™ 4+ 3 Y Bk ’[ T+ ] (1+ ) (29)

1<j<n0=<r=k j<t<n

Substituting the estimat@®) into (29) gives for0 < v < m /=1

Ai(l”;c) =0 B,S"',? D I (79 ey L Y 78 (A I | (1 + %)

1<j<n 0<r=<k j<t<n

= 0 (B} + gn(®) (i) 2nmu k),

similar to the proof of Lemma&. This proves27).

Note that wheny < m!/®=1 — ¢ the optimal choice of in (27) minimizing n*v=* isv = a,x,
which yields the estimatﬂfl’,”) = O(Ak/k!), uniformly in k. Whena > m!/"=D — ¢ the optimal choice
is thenv = m!/m=D _ ¢ This says that the asymptotic behaviormff}? whena < m!'/=1 s very

different from that wherx > m!'/®=1_ More precise estimates can be derived, but they are noedeed
here; see Drmota and Hwang (2005a) for asymptotic apprdionsto the variance (covering all ranges).
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Asymptotics ofA(’”). Since the case = 0 will be treated separately, we assume throughout thissecti
thata > 0. We reflne the above inductive argument and show that

m m Ak "
A1(1k) ~ U (00) gy g ~ Vm (et )(m) ; (30)

for eachm > 1 andk /A, — o < m'/™=D wherev,,(«) denotes the moment sequenceXafr) given in
(7). This will prove the moment convergence part of Theodem

Note that by ), (30) holds form = 1 with v;(e) = 1. Assume that0) holds for all 4%, with
i < m. We split the right-hand side o29) into three parts

B
AN =B+ S Y+ Y v Y )J’J’f’[u’](u+1)]_[(1+;f)

0<r<k \1=<j<en en<j<(1—e&)n (1—e)n<j<n j<f<n

. B 4 40 (m) (m)
=: B, + A, (1] + 4,721 + 4,7/ [3].

By the same proof used for Lemr3awe have

b

A;(:;c)[l] -0 (va—vm(pm(v))\;(m+l)/2nmvv—km)
A1) = O (egm(u)hy D2y
Lettinge — 0, we see that, byX7),

AN+ A1) = 0(4T).

Asymptotics of Afl”’}(): the dominant terms. We start by showing that fdr < o < (m — 1)!/"=2)
( ) )\,k m
" —r > 2), 31
~ V(@) (F(l +a)k!) (m = 2) (31)

where

v (@) = Z (’Z) Vi (@) Vp—n (@) /01 ul® (1 — u) =M dy,

1<h<m

By (13), induction and 80), we have, fo < o < (m — 1)/

(m) m 1 Wil oM, N
B ~ Z (h)Vh(Ol)Vm—h(Ol); Z (I‘(1+a)(k—1)!) (I‘(l—t—a)k!)

1<h<m en<j=<(1—e)n

Ak m m 1 j kh/\n 7 k(m—h)/An
~(ravan) Z (Dwemsey 3 #(0)(-0)

1<h<m en<j=<(1—e)n

which proves 81). The errors introduced for terms with < e¢n and forj > (1 — ¢)n can be easily
bounded by using?(?).
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To evaluateél,(l’,'}() [2], we first observe that

I (1+;;):exp( S +0(|”2))

j<t<n j<t<n
= (/)" (140 (lul*j™")).
uniformly for finite complex: and j — oo. It follows that
Wl 1 (1 N u) (log(n/J))’ (1 Lo (rj_z)) ’
j<t<n !

uniformly foren < j < (1 —¢)nand0 < r < k = o(4/Jj). Consequently, by28) and 31),

(m) : Mo\ 1y ma

An,k [2] ~ v, (@) (m) 6n<j;_e)nj (j/n)

x 3 am ((log(n/j))"1 n (log(n/j))’)

rzo r—1) !
kk m  al1—¢ oy
~ Vm(a)((x —l— 1) (m) \/; X dx.

Lettinge — 0, we then obtain, byX9), that

1 Ak m
A(m) ~ ¥ 1 m 1 / mo—o—1 d n
n,k Vm(a) ( + (O[ + ) o X X) (F(l T O[)k')

., . ma+1 Ak "
= (@) _ ,
ma —a™ \T'(1 + a)k!

where
. mo+1 1 m gy L(ha + 1)I((m — h)a + 1)
Vm(a)moc —am m—am] 1<§<:m (h)vh(a)vm_h(a)a '(ma + 1)
= Vm(a),

form > 2, by (7). This completes the proof o29) and thus Theorerh (ii). 1

Moment convergence §). Convergence of all moments implies convergence in digiohuf the mo-
ment sequencé@) uniquely characterizes the distribution. By considefingx) := v, ()T (ma+1)/m!,
we easily obtain by induction that,(«) = O(K™) for « € [0, 1] (see Hwang and Neininger, 2002), and
thus convergence in distribution &f, /i, x follows from (6) whena € [0, 1].

5 The central rangea = 1

We prove Theoren2 in this section. The proof proceeds essentially along theede as we did above
but with one major difference: we consider central momemsseiad of factorial moments. This minor
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step is crucial in dealing with the cancellations involvedhe asymptotics of higher central moments. For
simplicity, the case whef, x| — oo andz, x = o(%,) is first analyzed; then the same method of proof is
extended to the case whegn, = O(1). Justifications of the error terms are similar to those&fﬁﬁ,'(;() given
above but become more complicated.

Recurrence of central moments. ConsiderP, x(y) := E(eXnr—#n6)¥) = P, 1 (e?)e Hnx7; see (2).
Then we have the recurrence

P k—1(3) Puj i (y)erk 0 (n>2k>1),

Isn,k(y) =
n ,
1<j<n
where
An,k(‘]') = Wjk—1t HUn—jk — Mnk
and P, o(y) = Py (y) = 1forn, k > 1.
Let nowP,f’;’() = 13,5’7() (0) denote then-th central moment ok, «. ThenP,fl,z = 0 and form > 2

m 1 m m m
P = > (P,(k) L+ P )) +0"  (m=2k=1), (32)

where

(m) ._ (@) (b) AC .
0= X ()it TP a0

a+b+c=m 1<]<"

and Py = 0forn,m > 1.

Outline of the proof of Theorem 2. Similar to the proof of 80), we divide the proof of Theorerinto
three main steps.

— We first derive a uniform estimate fay, . () for 1 < j, k < n, which then implies a uniform bound
for P,ff’,? for 1 < k < n. This bound is sufficient for our uses except whken- 1,,| = o(v/Ay).

— We then derive a second estimateAgyy (7 ) uniformly valid fork ~ A,. This in turnimplies a tight
bound forP,ff’,? whenk ~ A,, and an asymptotic approximationf(jf’,? whenl < |t x| = o(An).

— Afiner estimate fo\, (/) is needed to deal with the case whgp = O(1).

An integral representation for A, x(j). By (2),

— I,k -1
=T le)(1+0(n )-

Then

Mk = 3 g /) (140G (= ) du 33

uniformly for1 < j < n (whenj orn— j is bounded, th&-term becoming)(1) instead ob(1)), where

I =x)"tux"—1
PUX) = 1
Here and throughout this sectipwe takev = 1 + o(1) sincek ~ A,.
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A uniform estimate for A, x(j). Since¢(1,x) = 0, we have

[p(u. x)| = O(lu —1])  (x €[0,1]).
Substituting this estimate int@8) gives

T
An,k(j) =0 (U—an/ Ueie _ 1‘ n—v(l—cos@)de)

T

= 0 (v =11+ 27"/, 20 ). (34)

uniformly for1 < j, k < n.

A uniform estimate for P").  From the recurrence3p) and the estimate3#}), we deduce, by an induc-
tion similar to that used for27), that

0. P = 0 ((w =11+, (120 n?) ") mz2), (35)

uniformly for 1 < k < n. This bound is however not tight whékh — A,| = o(+/A,), the reason being
simply thatv is not properly chosen to minimize the error term (the ﬁr,_',s't/z) in (34).

A finer estimate than (34). For a more precise estimate th&d), we use the two-term Taylor expansion

¢(u,x) = ¢, (1,x)(u—1) + O(ju — 1],
where¢, (1, x) = x + xlogx + (1 — x) log(1 — x), which leads to

: k—1
By =04 (12) G =) ™2 (140G 4+ 0= y7)
) <(|v 12 4 X;I)X;I/zv_kn”) . (36)
Takingv = k/A, gives
Ak—l
Auk(j) = O (<|k L ) (37)

This bound holds uniformly fok ~ A, and1 < j < n since¢,(1,x) = O(x|logx|) asx — 0.

A uniform bound for PZZ) whenk ~ A,. From @37), we deduce, again by induction, that

m m m Aﬁ_l "
0y Py = 0((Ik—kn| +1)( - ) ) (m = 2). (38)

uniformly for k ~ A,. The proof differs slightly from that for30) in that we split all sums of the form
1<), into three parts

2= Xt >+

1<j<n 1<j<n/M} n/AP<j<n—n/A}' n—n/Aj'<j<n

and then apply38) and @7) to the middle sum, andp) to the remaining two sums.
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Asymptotics of P,ff’,? when |z, x| — oo andt, x = o(A,). In this case, the estimat86) has the form

) : )\k 1
By ~ 8 (1.1 s (39)
n k!
uniformly in k whenen < j < (1 — ¢)n. Then we show that
) kk 1
P~ &m (tn,k 7(! ) (m=1), (40)
wherego = 1, g; = 0 and form > 2
m—+1 m ! a , c
a="10 % ( )gagb [ (41)
— a,b,c 0
a+b+c=m
0<a,b<m
0<c<m

Equivalently, this can be written as

1
_ m o c
Em = Z (a,b’c)gagb/(; x4(1—x)°¢! (1, x)° dx.

a+b+c=m
0<a,b,c<m

In particular,
1 7'[2
g, =3 qb;(l,x)zdx:Z—?.

The inductive proof is almost the same as thatA{ij, with the factor(k — A,,)™ handled by direct
expansion and then estimated term by term. Also we needltcssms of the formp _, _; _,, into five parts

)DL D DS D DI D DR D D
1<j<n 1<j<n/M? n/Aj'<j<en en<j<(l—e)n (1—e)n<j=<n—n/A] n—n/Aj<j<n

and then apply40) to the middle sum, and the two estimat85)(and 38) to the other four sums.

The moment sequencél) is easily checked to have the property of uniquely chareitg the distri-
bution; see Hwang (2005) for similar details.

This proves the first part of Theore?n

The periodic case wherv,x = O(1). In this case, we need a more precise expansion tB&8nas

follows.
)\k 1 - .
nk(.])N (¢u( ’ )tnk__¢uu (lvi))’ (42)

uniformly for j/n € [e,1 — ¢] andk ~ A,, where

¢, (1,x) = (xlogx + (1 —x)log(l — x))* = 2(1 — y)¢, (1, x).

This is proved by expanding more terms¢fu, x) atu = 1 and then estimating the error terms (see
Hwang, 1995 for similar details).
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With the approximation4?2), we first prove that forn > 0

k 1
IE()(n,k - /’Ln,k)m P( " ~ pm(tn k) ( Il ) s (43)

where p,, (¢, k) is a polynomial irv,, . of degreem with po(t,x) = 1 and p;(¢,x) = 0. This will imply
that fork = |A,] + £, wherel € Z,

Xn,k — MUn,k "
E (W) ~ Pm(L —{An}),

form > 0, where{\, } denotes the fractional part &f,. Then we apply an argument based on the Frechet-
Shohat moment convergence theorem similar to that used @mnCénd Hwang (2001a) to prove that
(Xux — tnk)/(A%=1/k!) does not converge to a fixed limit law. The proof {a¢, x — tnx)//V(Xuk)
is similar.

To prove @3), we use again induction. Assume> 2. Then a similar analysis as above leads to

) kk \"
Qn, ~ qm(tn k) px ,

whereg,, () is a polynomial of degree: defined by

1
dmtn) = ) (a’ZC) /0 (1= )"

a+b+c=m
0<a,b<m
0<c<m

/ l 1! ¢
X pa(tn — 1 =109 y) pp(tux —log(l — »)) (qbu(l, Wtnj — 5%(1, y)) dy.

Then by 32), we deduce that fan > 2

k—1\ " p

r=0

X (gm(tppe —7 — 1 —=109x) + ¢ty —r —logx)) dx,

the infinite series on the right-hand side being convergenes;,, is a polynomial of degree:. This
proves 43) and the second part of Theoréin
Note that by induction

1
pn®) = an@) + [ 37 (e = 1-103) + pult ~log) dx (= 2).
0
Straightforward calculation of the integrals gives theresgion 10) for p,(z,.x)-

Extrema of |[E(X, x —nx)™|. To prove the maximum order & (X, » —tn.x)™, We consider two cases.
First, when|k — A,| < A2/3, we apply 88), so that

max_ [P =0 A2 max (1, + 1)e—mt3_k/(zxn)
‘k_)‘-nlf)\.,%/3 ’ s

=0WX"n"),
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the maximum being reached whgn, ~ ++/A,.
On the other hand, whei — ,,| > A2/3, we apply the estimat&6) and bound the maximum by the
sum

2/3
lk=An|=An k<A,—A2/3  k=A+A2/3

max [PV =0|lv—1"A," 2 >+ ) )v’"k .

1/3

Takingv = 1 — A, '/? in the first sum an@ = 1 + A,,'/* in the second, we obtain

1/3
max [P =0 (A},“‘S’"/“nme‘m” /2).
k=Aal=A33
Thus
max |E(X,x — puni)™| = O (A,"n™).

1<k<n

The proof for the minimum order is similar. This proves Ctan} 5.

6 Asymptotic normality when a = 0
The approach we use in this section relies on manipulat@ggiturrences of two sequences of polynomials

defined from the bivariate generating functiabg(z, y) := Y, E(y*»#)z". It can not only be applied to
prove Theoren3 but also gives an alternative proof of the moment converg@act of Theoreml.

Main steps. Let

)L,%k_l
Ok =N =Dk — 1)’
X = Xng — Ak /kY)/ouk, andA := A,/ k. The proof of Theorerd uses the following estimates.

Proposition 2. The characteristic functions of *, satisfy the two estimates:)

. 0 03
E(eX”-klO) . 6—92/2‘ -0 (6_02/2| |\—I/—K| | + n—&‘) ’ (44)

uniformly for|8] < eA'/¢; and (i)
E(e*nxi?) = 0(e™/* +n7®), (45)
uniformly fore A'/® < 0] < ev/A.

Theorem3 then follows from applying the Berry-Esseen smoothing usdiy (see Petrov, 1975).
These estimates are derived by singularity analysis (sgeléi and Odlyzko, 1990), starting from
Cauchy’s integral representation

1 .
— 27" Pz, e'%onky dz.

E(eXn,kio/O'n,k) —
2mi |z|=¢

We then need estimates for the generating functi®nsand for that purpose, we introduce two sequences
of polynomials and derive approximations® via those for the two polynomials.
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Two sequences of polynomials. By (12), the generating functio®, satisfies

yz
Py(z,y) =14+ —,
1—z

Z Pr— —1
0

t

dt) k> 1).

It is more convenient to work with

Pr(z,e®)—1
Oulz.s) 1= HED =T
Then
es
QO(sz) = 1 ’
—Z Lz (46)
Qk(Z,S):eXp(/ Qk—l(tvs)dt)’ (kZ 1)
0
Now, write L(z) := —log(1 — z). We define two sequences of polynomi&landW as follows.
Vim(L(2)) ,,
Ok(z,s) = exp(z %s )
m>0 ’
_ 1 Wk,m(L(Z)) m
Tl—z n;) m! o

Lemma 7. The two sequences of polynomials satisfy the recurrences

View () = /0 Wicim@Od (k> 2),

Wiem(x) = % > (’;l)jvk,j(x)Wk,m—j(x) (m = 1),

1<j<m

(47)

whereV; ,, = x form > 0 and Wy o(x) = 1 for k > 1.

Proof. The first relation follows from46) and the second from taking derivative with respect émd then
collecting the coefficient af”* on both sides. 1
Mean value and variance. We first rederive the mean and variance by sugh#-polynomial approach.
By (47) with m = 1, we obtain
xk
Via(x) = Wi (x) = T (k=1). (48)

Consequently, withh = L(z),

o z Lk(z)_s(n,k+l)
Pk = T T T =1y
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which rederives?). The asymptotic behavior @f, » whenk = o(A,) is derived as follows.

_[ k] (” )(1+0(n_1))

N ! o 2k
! Z (k — )AL .[uJ]I‘(l + u) + O (nk!)

0=<j=<k

F.
Form = 2, we have, again by(),
2k—1

k — )22k — 1)

Via(x) = / Wi12() di = + / Vir 2(0) dr
0 0

2j) xk+j .
= : — (49)
OEJZ.;,((J (k +/)!
and then
Wi a(x) =V, V2 (x) = AN A
k2(x) = Via(x) + k’l(X)_ost;k(j)(k—Fj)!.
Hence,
o E 2J)L"+f'(z): (2j)s(n,k+J+1)
[2]1_2 0;]{(]’ (k + j)! O;k j (n—1)!
27i\: & nt _
= 2 () e 0+ 007

0<j<k

cf. Meir and Moon (1978) and van der Hofstad et al. (2001). Nabvgerve that fok = o(A,)

2% P ni . ni 2 B k2k2k—2
(k)[uz]F(l—l—u)_([ ]r(1+ )) _0( k12 )

kzk—l

V(Xn,k) ~ (k _ 1)1'12(2k — l) (k = 0()\”)),

which proves the variance estimate in Theof&m

This line of computations can be extended to higher momédsds.example, a similar reasoning for
m = 3yields

Vies(x) = /0 Viera(t) dt + / (3Vimr 2O Vit () + Vi, ()

2 20 k+j+4 3 k+2j
—3 Y z(f)(” )— +Z(.¥.)7x .
¢ (k+j+0! ot I (k +2))!

0<t<k 0<j<{

B 2j j + 2/ xk+j+ﬁ 3j xk+2j
man=3 ¥ ¥ () a2 00 e

0<l<k 0<j<( 0<j<k

which was used to compul X, x — i,.x)* in Figurel. However, the resulting expressions soon become
very involved. Thus we focus directly on asymptotics of thpslynomials and not on exact expressions.

It follows that

and
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Asymptotics of the V and W polynomials. First, by @8), we have

k

X
Vii(x) = Wi i(x) ~ T (x € ©),

fork = o(|x]).
Next, by @9), we have the following estimates for= o(x)

(2k—1 2k — 1 k-t k-t
Vk’Z(x):(k—l)!z(Zk—l) (1+ Z 2k—j l—[ ( X .2kj€))

1<j<k 1<t<j

x2k—1

Tk —-DR22k—1)

and
2k

X
Wica(x) = Viea(x) + V2, (x) ~ JAER

The general pattern is as follows.

Lemma 8. If &k = o(|x|), wherex € C is large, then

me=1)+1
V ,m(x) ~ ’
" (k — DI (m(k —1) + 1) (50)
xm
Wiem(x) ~ 2o

Proof. We use induction om:. We already provedsQ) for m = 1,2. Assumem > 3. By (47) and
induction

Viem(x) = / Wi—1.m(t) dt
0

1 m X lj(k_2)+1 t(k—l)(m—j) g x g
~ — ] . . - dr + Vi—1,m(t) dt
mljzm(f)’/o TR &, e

x(k—l)m+l

N kDM Dm+ D |
Hence, by iteration,

/ Vi—1.m () dt.
0

xk+im=1)
jm (k4 j(m— 1))
yk=Dm+1

T =Dk —Dm+ 1)
Moreover, by applying47) and induction again

1 m xj(k—l)-H xk(m—j)
Wiem ~ — j . . n
ST lzm (J)’(k— DUGKk =D +1) Kk
ka
T me

This proves§0). 1
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Proof of Proposition 2. By Cauchy’s formula, we have

. 1
E (eXn,kzé)/an,k) = z7"Qk (z,i0/0n k) Oz.
27i Jiz1=¢

We then deform the integration circle onto the left contdwowen in Figure3, wheres, = A2/n. For the
larger circle, we have

1

2700 J |z =1+8,/n \2l=1+6, /1

z7"Qk(z, i0/opr)dz = O (e_)‘% sup |Qx(z, i@/O‘n’k)|) .

Now by the estimate

A
_ 1/2"%%n
Onk = O(A k')

and 60), we have
Vim(log(n/o)ory = 0 (A=22)  n = 1),

for any complex sequenee, satisfyingl < |w,| = O(AKX). It follows that the contribution from the
large circle is bounded above by

1

270 J\z1=1468,/n

z7"Qk(z2,i0/0nx)dz = O (n)L’:Ze—)»%—i-KA) ’

uniformly for [0] < ev/A.
When:z € H;, we make the change of variables> 1 — t/n and apply the estimat&(Q), which gives

0 Ak I 02 I
on(1=5:3) = teofam (10 (49) -5 (o (529))

o))

m=3

From this we deduce thatfif| < sA'/¢, then

0 Ak 02 I
o (-5 22) - on{go- ) (o (om 52

and ifeA'/% < |f] < eA'/?, then

Qk( ‘E 19 ) -0 (i |_L,|—ee—t92/2+K93/«/K)
T

_ n_—0%4
‘O(MF” )’

for sufficiently smalle.
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These estimates then yield

xrae, _ €O et 5 |logz]| 7|2 .
E(e¥ini?) = —— LO?(1+0((|0|+|0| )—A )) (1+0(—n )) dr + O (n™®)
_ 072 |9|+|9|3)) e
e (1—!—0(—7\ + 0,

uniformly for |#] < eA /¢, where the contouk{, is shown in Figure, and similarly

E(eX:.kie) =0 (e—92/4 + n—e) ’

uniformly for eA'/¢ < |0| < eA'/2. This completes the proof of Propositi@n

1+ 6, z T

Figure 3:The Hankel contours used to derive the asymptotics of theemisnofX, x.

Proof of Theorem3. We now apply the Berry-Esseen smoothing inequality (semPet975)

. _o-L
fﬁ‘@P(X"’k <x)-—®x)| =0 («/X + J),

where

VA |E (Xik?) = e~/2
J = / dé
—e/A 6

eX,;ﬁkie) _ o972

E
o e L) o
[0|<A—1/2 A—1/2<|f|<eAl/0 eN1/6<|0|<eA1/2 0

= J1+ Jo+ Js.
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The integral/; is assessed as follows.

E (eX:’k"e) —1
J1 S/ de +[
|0|§A—1/2 |0|§A—1/2

60
<EX}?) |(9|d0—|—/ 10| do
o Jigl=a-12 9|<A—1/2

= O(A™).

=02 _

do
60

By (44), the integral/, satisfies

J, =0 (A—W/ (14 6%)e /2 do + n_S/ 16! de)
A—1/2<]0|<eA1/6 A—1/2<]0|<eA1/6

—0 (A—l/2 tnt IogA)

= 0(A712).

The last integral/; is estimated by usingtf)

J3 =0 (/ 0 e /4 dp + nt log A)
eA1/6<|0|<eA1/2

=0(A712).

This proves Theorerd. 1
In particular, Theoren3 implies and completes the case= 0 in Theoreml.

An alternative proof of Theorem 1 (ii). The above approach based B -polynomials can also be
refined to give an alternative proof of TheorédmWe outline the main steps.
First, by @7) and induction, we can prove that

k k m—1 mk
Viem(X) ~ &m (;) ( /),2 ' )]i!m :
k mk
Wk,m(x) ~ Sm (;) )]iv,

uniformly for 0 < k/|x| < m'/®=1 and large complex, wheret,, (1) is defined recursively by

O L PAV R Y
m—u h

1<h<m

with & (u) = 1.
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Then whernk /A, — o, 0 < a < m!/m=1,

zZ

E(X,) = [2"] Wiem(L(2))

11—z

[ et w o (ogn /1)) de
2mi Jy

En@) [ o O —logn)™
- et ——AQar
2mi H

klm
Ak
"’Sm(a) n _'/er_[—l—motdr
L Jn

~

kim 27
Em(a) Amk
ra+mao) kim
ra+a™
~ Sm(a)mﬂn,k’

for a suitably chosen Hankel contot. And it is straightforward to check, by, that

T(l+a)"

Sm(a)m = vp(a).

Note that this approach does not apply to profiles of binaayctetrees.

7 Profiles of random binary search trees

We consider briefly in this section random binary searchstrdgose profiles have been widely studied; see
Drmota and Hwang (2005a) and the references therein. Ouratief moments and contraction method
apply. While the results for both trees are very similarréhie no range for binary search trees where the
limit law of the profile is normal.

Let Y, denote the number of external nodes at distandeom the root andZ, » the number of
internal nodes at leved (root being at leved) in a random binary search treemhodes (as constructed
from a random permutation afelements). Then fak,n > 1

2

4 *
Yn,k = YJn,k—l + Yn_l_Jn’k_la

9
Zl’l,k = Z-]n,k_l + Z:—I—Jn,k—l’
with the initial conditionsY, o = 8,0 and Z,o = 1 — 8,0, WhereJ, is uniformly distributed over

. 9 % *

LI - ' = ’ n . n =
{0 n — 1}, the summands are independent afg Yoo Znk Z, - Note thatZ, «
Zj>k Y”,J'zj_k'

IS

Mean values. The expected value df, ; satisfies (see Drmota and Hwang, 2005a and the references

therein)
2k 2)n)* 1
B0 = stk = e (140 (57))

the O-term holding uniformly forl < k < KA,,.
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For internal nodes, the asymptotic behavior is different
k

E(Zup) = o3 3500 /)
C >k

2k _ (24,)" if 1<k <t,— KAn:
(1 _an,k)r(an,k)nk!’ N N ’

~ 4 2K (—xnp), if xp s i= (k — An)/ Do = 0((hn)/6);

(24)" it 2, + K/hr <k < KA
(an,k - I)F(an,k)nk!’ " " N i

where the error terms in the first and the third approximateme of the form

k
of @\
Ik — An|Pnk!

and that of the middle i©((1 + |x,x|*)/~/Ax); see b1) below.

Note that
logE(Yn,k)
>
An
and the right-hand side is positive when < o < o4, whered < o« < 1 < « are the two real zeros of
the equatiorr — 1 — zlog(z/2) ore*~1/? = z/2. These two constants are sometimes referred to as the
binary search tree constangsr the fill-up level and height constants, respectively).

a—1—alog(a/2),

The limit law. Define the map
. g a—1 g _ a—1zx*
Twm»M,VHcQU Z+351-0) Z),

whereZ, Z*, U are independentanf(Z) = L(Z*) = v.

The constant is defined bys := 2 when2 — v2 < ¢ < 2+ +/2andl < s < o whena €
(a—,a4) \ (2—+/2,2 + +/2), wherep € (1, 2] solves the equatiop(a — 1) + 1 = 2(a/2)°.

Similar to Propositiori, we have the following properties.

Proposition 3. If «— < o < a4, then the restriction of” to M, (1) has a unique fixed poirit (). In
addition,E|Y («)|? = oo fora € (a—,ay) \ (2 — /2,2 4+ V/2).

Limit distribution when «_- < o < a4. The above estimates for the mean valuedpf and Z,,
say roughly that internal nodes are asymptotically fullgiaes2*) for the firsti,, — K /A, levels, while
external nodes are relatively sparse there. Observe thaettond order term &(Z,, x) is asymptotically
of the same order ds(Y, x) whena < 1. This suggests that we should consider

- 2k — 7w, fa_<a<I:
Lok = ’ .
’ Zn’k, ifl<ac< o,

Theorem 5. Let Y («) and ¢ be defined as in PropositioBh Assume that = aA, + o(A,). Then for
o <a <o,

Y, Zy 7
ko _Lnk 7 (),
with convergence of all moments f@re [1, 2] but not fore outside(l, 2].
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Chauvin et al. (2005) proved almost sure convergenc&fa/E(Y, ) wheno_ < o < ay; their
result is stronger than convergence in distribution busdus imply convergence of all moments.

As in Theorem¥, we can derive a convergence rate for thalistance whe — v2 < o < 2 4+ /2
and for¢; whena € (a.ay) \ (2 — 2,2 + V2).

Moments of the limit law. The integral moments,,(«) of Y («) satisfy (when they existyo(a) =
n1 () = 1 and form > 2

B (a/2)™ m F'he—1)+ DIC((m—=h)(e—1)+1)
) = T + 1 =2/ 2 (h)"”(“)”’""’(“) T(n(e—1) + 1) '

1<h<m

Observe that the polynomiat(z — 1) + 1 — 2(z/2)™ has two positive zeros,, andz,, wherez = €
2-+2,1) andz}t € 2,2+ V2] for m > 2. And the two sequences of zeros for increagingatisfy (see
Tablel)

z, T 1, zh | 2.
Thus the intervall, 2] is the only range where convergence of all moments holds.

More preciselyn. («) is finite whenz,, < « < z;} and we have convergence of the firsth moment
(but not the(m + 1)-st moment) forY,, x /E(Y, 1) and Z, x /E(Z,x) there. In particular, itr. < o <
2—+2o0r2+4 2 < a < a4, thenY(«) has no second moment. This is consistent with the result in
Drmota and Hwang (2005a).

m 2 3 4 5 6
Z, || 0.58578 | 0.69459 | 0.76045 | 0.80420 | 0.83509
zb || 3.41421 | 3.06417 | 2.86989 | 2.74376 | 2.65416
m 7 8 9 10 11
Z, || 0.85790 | 0.87533 | 0.88903 | 0.90006 | 0.90912
zb 1| 2.58668 | 2.53372 | 2.49085 | 2.45532 | 2.42531
Table 1:Approximate numeric values gf, andz! form =2,...,11.

Limit distributions when « = 1. Note thatY (1) = Y(2) = 1.
The following theorem states that there is a delicate diffee between the limit distribution of,
and that ofZ, x (properly normalized) whea = 1 + O(1/+/A,).

Theorem 6. Assumé = A, + #,k, Wheret, . = o(A,). If |t x| — oo, then

Yn,k - E(Yn,k)
2k (2An)k71/ (nk!)

Loy

if £, x = O(1), then the sequence of random variabl&s, — E(Y, x))/+/V(Y,x) does not converge to a
fixed limit law.
For internal nodes, uniformly fof, . = o(%,),

Zn,k - IE(Zn,k) M ’
ek T
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Thus the periodicity does not play a special role for intenuales wherr = 1. Note that the normal-
izing constants differ by the factog, x — 1 = t,,.4/An.
The limit law Y'(1) can also be defined as

s 1 1 1 1
Y'(1) Z SY' () + EY’(I)* + 1+ 5 logU + - log(1 —U).

with independent summands aid(1) Z Y'(1)*. Note that the random variablgjZO Z,.j/2) have
mean equal tc):lﬁjﬁn j~! and converge td’(1) (after centered and normalized).

Since the distribution ot ’(1) is uniquely characterized by its moment sequence, the cgaree in
distribution is also implied by the Frechet-Shohat momemntvergence theorem.
The quicksort limit law when « = 2.

Theorem 7. Assumey, x = 2 + ty /Ay, Wheret, x = o(A,). If |t, x| — oo, then

Yn,k - IE(Yn,k) Zn,k - IE(Zn,k)
2k 2An)*7V/ (k)" 28, 1 2A0)* =1/ (nk!)

L Y');

if £, x = O(1), then neither of two sequences

Yﬁk'_JE(YhJ) szk'_JE(szk)
VT VV(Zug)
converges to a fixed limit law.

The limit law Y’ (2) is essentially the quicksort limit law (see Hwang and Negein 2002)
: |
YQ ZUY' Q) +(-U)Y'Q" + 5 +UlogU + (1-U)log(l - V).

with independent summands on the right-hand sidelat2l) Z Y'(2)*.

Convergence in distribution in the case whg.| — oo is also implied.

The approach given in this paper gives not only the bimoglalfithe variance&/ (Y, ) andV(Z, x)
but also the extremal (reachable) ordersofY, » — E(Y,x))™| and|E(Z,x — E(Z,))"| form > 3
whena = 2.

Sketch of proofs. We sketch a few steps for internal nodes, external nodeglsamlar and simpler.
Starting from the recurrence for the probability genegfumction of Z,,

1
Pri(y) = p Y Pkt Puciju(y) (= 2k = 1),

0<j<n

with Pyo(y) = 1 and P, o(y) = y forn > 1, we have the recurrence for the mean value

B(Zn)=> Y BZj)  z2kzl)

0<j<n
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Lemma 9. The solution to the recurrence

2
nk = Z aj -1+ bu,

0<j<n
is given explicitly by
ank = bug + %()SJZEH ong;k bj,k—l—r[ur]jdr[n (1 + 2%) ,
wherebg x 1= ao k-
Then we have, by applying the exact solution withy = 1 for » > 1 andb,, x = 0 otherwise,

2z = 211 Y ] (1+27“)

1<j<nj<l<n

= Pk ( Tz + u) 1)

u—1\T(n+ DL u+1)
2k 1 —1
=— k! (" T ) . (51)
2700 Jjuj=ay 1> 1 u—1 n
Thus
E(Zjx-1) + E(Zp—1-j k1) —E(Zu )
2k k1 u— . . o
=5 u " e, j/n) (140G + (n—j)™") du,
Tl lul=ctp i
where

ux*“ ' +u(l—x)*1-2
2N (u)(u — 1)
Note that, unlike recursive trees and external nodes ofpsearch treeg(1, x) isnotzero ang (1, x) =
143 log x+% log(1—x). This is why there is no periodic case for internal nodes when140(1/+/A,).
All estimates required foE(Z, x) and for its differencé&(Z; x—1) + E(Zn—1-j k—1) — E(Z,) can
be derived as for recursive trees. For example, we havegramiij for A, + K+/A, < k < KA,

¢ (u, x) =

(2hn)*

E(Znie) ~ (@ — D (a)k'n”

8 Conclusions

Most random trees in discrete probability or data structin@ve height of order either ign or in logn;

see Aldous (1991). While profiles and other related prosedsined on random trees gfi-height have
been thoroughly studied in the literature (see Aldous, 1¥®inota and Gittenberger, 1997, Kersting,
1998, Pitman, 1999, and the references therein), profilesees with logarithmic height have received
little attention (except for digital search trees; see Alsland Shields, 1988, Jacquet et al., 2001). This
paper shows that the phenomena exhibited in such trees asécdily different yet highly attractive.
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A detailed study of more general random search trees (imgua-ary search trees, quadtrees, fringe-
balanced binary search trees, etc.) will be given elsewhere

Many questions remain unclear at this stage. For exam@é¢hare more “humps” or valleys for higher
central moments or cumulants in the central range? Are th&seesting process approximations? How
to simulate the limit laws appearing in this paper? And wlegigens when = e for recursive trees and
o = o_, a4 for binary search trees? Do we still have the same conveegendistribution forX,, x /iy «
whenu, x — co? Note that for recursive treeB( X, ) — oo for k < eA, —e; logA,, wheree; > 1/2,
but V(X,x) — oo fork < =1, — e, logA,, wheree, > 1/(2log4). Since4/log4 ~ 2.88 > e, there

log4
is still a small range ik where the mean goes to zero but the variance goes to infinity.
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