
行政院國家科學委員會專題研究計畫  期中進度報告 

 

 

子計畫三:網路內容分類的系統架構：設計、實作與評估

(1/3) 

 

 
計畫類別：整合型計畫 

計畫編號：NSC93-2213-E-009-112- 

執行期間：93年08月01日至94年07月31日 

執行單位：國立交通大學資訊科學學系(所) 

 

 

 

 

計畫主持人：林盈達 

 

 

 

 

 

報告類型：精簡報告 

報告附件：出席國際會議研究心得報告及發表論文 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 94年5月27日

 



 1

一，計畫 
計畫名稱 以內容為基礎之網路安全-子計畫三:網路內容分類的系統架構：設計、實作與

評估(1/3) 

計畫編號  93-2213-E-009-112- 
主持人  林盈達 教授 交通大學資訊科學系 
執行機關  交通大學資訊科學系 
執行期限  2004.08.01 至 2005.07.31 

 
二、關鍵詞 
本文關鍵詞— 字串比對，模式比對演算法，內容安全 
Keywords—string matching, pattern matching 

algorithm, content security 
三、中英文摘要 
 在網際網路中，網路內容安全已經成為大眾所
關切的議題。而字串比對演算法的效率問題是內容

處理的關鍵也漸漸被證實。因此我們剖析一些典型

的演算法來了解各種演算法適合使用在什麼情況。

在剖析的過程中，我們從中觀察出一些實作的設計

議題，諸如選擇適當的雜湊函數與提出新的 CRKBT

演算法來改善舊有演算法的效能。改善後的演算法

在遇到大量字串模式的時候，效能能夠比舊的方法

快 4 倍。我們並選擇三種內容安全套件來實驗並把

各別最有效的演算法實作到這三個套件中。改良後

的套件效能皆有重大突破。例如在ClamAV套件中，

新的方法可以比舊的方法快 5 倍以上。最後，我們

亦觀察在真實的套件中處理真實資料與人造資料有

哪些差異。在真實套件中，套件的處理時間會受到

由特徵值所產生的字元集的分布與英文字母的特性

而與人造的資料有所差異。 
Network content security has become a critical issue 

for the Internet. It is also proved that the efficiency of 
the string matching algorithm is essential to content 
processing. We profile some typical algorithms to 
understand which algorithm is suitable on what 
situation. In the profiling process, we find out some 
practical design issues, such as selecting a best hash 
function, and propose the CRKBT algorithm to 
improve the performance of the RKBT algorithm. Its 
performance is four times faster than the original 
algorithm for a huge pattern set. We select three 
content security applications to experiment and 
implement the most efficient algorithms into them. The 
performance has significant improvement. For example, 
the novel method is five times faster than the original 
method on the ClamAV package. In addition, we also 
observe the difference between the real and synthetic 
data on the packages. The processing time on real 
applications is sensitive to the character set distribution 
generated from the multiple patterns, signatures and 
content keywords, and the property of the English 
words. 

四、計畫目的 
No existing string matching algorithms can scan 

signatures of various characteristics more efficient than 
others. For example, the Wu-Manber algorithm [1] is 
not efficient for a huge pattern set [2]. Furthermore, all 
the above applications have signatures of different 
characteristics. For example, the anti-virus applications 
have a large number of signatures, and the intrusion 
detection systems have short patterns of one or two 
characters. This work investigates the types of 
signatures in these content security applications and 
the type that each string matching algorithm can scan 
most efficiently, and hence the most efficient algorithm 
is derived for each application. 

The efficiency of six typical string matching 
algorithms are profiled for signature sets varying in 
sizes, the minimum length of the signature in them and 
the character set that the signatures are composed of. 
Sample sets of both synthetic and real signatures are 
studied to see if there are deviations in the profiling 
results for both cases. The edges and limitations of 
each algorithm are better understood after the profiling. 
The impacts on performance of memory and cache 
accesses are also measured quantitatively. 

The contributions are summarized as follows: 
z Finding out the most efficient algorithm for each 

application of content security 
z Proposing the Classified RKBT algorithm to 

enhance the performance of the original RKBT 
algorithm. 

z Comparing performance for synthetic and real 
data in these algorithms. 

五、研究方法及結果 
I. Selected Algorithms 

This work categorizes string matching algorithms 
into four major approaches according to the design 
philosophy and the data structure that drives the 
matching: automaton-based, heuristic-based, 
hashing-based and bit-parallelism-based. An 
automaton-based approach tracks the partial match of 
the pattern prefixes in the text. A heuristic-based 
approach relies on one or two heuristic functions to 
look up the shift distance. If the shift distance is 0, a 
verification algorithm is needed to verify if a true 



 2

match occurs. A hashing-based approach checks a 
possible appearance of the patterns by hashing a block 
of characters in the text and compares the hash value 
with those from hashing the blocks in the patterns. A 
bit-parallelism-based approach takes advantage of the 
parallelism of the bit operations inside a computer 
word to simulate the operation of a finite automaton 
[3]. Table 1 compares the typical algorithms in these 
four categories. 

TABLE 1: Classification of typical algorithms. 

Algorithms Approach Time 
Complexity 

Search 
Type 

Aho-Corasick Automaton-based Linear Prefix 

Optimized-AC Automaton-based Linear Prefix 

Boyer-Moore Heuristic-based Sub-linear Suffix 

Horspool Heuristic-based Sub-linear Suffix 

Set-wise BMH Heuristic-based Sub-linear Suffix 

Wu-Manber Heuristic-based Sub-linear Suffix 

Modified-WM Heuristic-based Sub-linear Suffix 

Rabin-Karp Hashing-based Linear Prefix 

RKBT Hashing-based Linear Prefix 

FNP Hashing-based Sub-linear Prefix 

SOG Bit-parallelism-based Linear Prefix 

BG Bit-parallelism-based Sub-linear Factor 

We also select open source packages for observation 
and experiments in the profiling because the source 
code is available. They are Snort for IDS, 
DansGuardian for Web filtering and ClamAV for virus 
scanning. 

 
II. Practical Design issues 

We first use the RKBT algorithm as the searching 
algorithm and the details of the RKBT algorithm is 
showed on Figure 1. The detailed description about the 
RKBT algorithm is as follows. At pre-processing time, 
the sorted 32-bit hash table is constructed by the first 
hash value, which is formed of the first four bytes of 
the pattern, and the second hash is calculated from the 
first one by xor’ing together the lower 16 bits and the 
upper 16 bits. Then the second hash is used to build a 
216 bitmap. For example, the i’th bit is one, if there is at 
least one pattern with i as its second hash value, and 
zero, if no pattern has i as its second hash value. At 
searching time, first stage, the program can quickly 
check from the 216 bitmap. When the second hash value 
is one, the bit 2345 on figure 1, it will run into second 
stage, and it uses the binary search method on the 32 
bit hash table in order to do further inspection. If the 

hash value is found, it will compare the text with the 
candidate pattern. 

RKBT method

32bit
32bit
32bit
32bit

0

1

0

1

32bit32bit32bit32bit 32bit32bit

Classified RKBT method

1

2 Binary search
1 2

Binary search

32bit32bit32bit32bit
2345

2345

First hash value

Bitmap of the second hash

NULLNULL

Pointer table

 
FIGURE 1: the RKBT algorithm vs. the Classified 

RKBT algorithm 
 

As the number of pattern grows huge, the 
probability of one occurrence on the second hash 
table will increase, and consequently it will 
consume the most time in binary search. According 
to this observation, we propose the classified 
approach to improve the original RKBT algorithm, 
named as CRKBT. The CRKBT algorithm also 
used two-level hashing and the binary search 
method. But the data structure and the steps under 
searching stage are not the same. The CRKBT 
algorithm uses the pointer table instead of the 
bitmap table. For instance, the i’th pointer point to 
fixed sorted array, which is constructed at least one 
pattern with i as its second hash value, and point to 
NULL, if no pattern has i as its second hash value. 
At searching time, the program needs to check the 
pointer table first. While the pointer exists on 
specific slot, it will run binary search on this 
specific sorted array. The search scope will be 
reduced to a small subset that has the same second 
hash value. The efficiency of this algorithm will 
continue beyond 100,000 patterns. 

0

2

4

6

8

10

12

14

16

18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

se
co
nd
s

RKBT
CRKBT

 
FIGURE 2: the RKBT algorithm vs. the CRKBT 

algorithm 
 



 3

Figure 2 shows the experimental results. When the 
number of pattern is small, both algorithms are no need 
to run into verification stage. The execution time of 
both algorithms is the same. As the number of pattern 
increases gradually, it is increasing that both 
algorithms run into verification stage. But the search 
scope of the CRKBT algorithm is smaller than that of 
the RKBT algorithm, the performance gain of the 
CRKBT algorithm will appear and the CRKBT 
algorithm is faster than the RKBT algorithm. For 
example, the CRKBT algorithm is four times faster 
than the RKBT algorithm when the number of pattern 
grows to 100,000 patterns. The CRKBT algorithm is 
more efficient than the other and suitable for huge 
pattern sets. 
 
III. Profiling Algorithms 

We first implement some earlier algorithms, the AC 
and WM algorithm, and some novel algorithms, the 
BG and SOG algorithm, and test them to get average 
time over 1,000 runs using the same text and patterns. 
Moreover, the implementation of the WM algorithm 
refers to that of the agrep package and the WM 
algorithm discussed below generally points at the 
implementation of the agrep package. 

Figure 3 shows the benchmarking results which are 
tested with LSP=8. We also compare with the CRKBT 
algorithm. This experiment demonstrates that the 
Modified-WM algorithm is more efficient than the 
others when the pattern set size is smaller than 20,000. 
However, when the pattern set size is greater than 
20,000, the CRKBT algorithm is the most efficient. 
The Modified-WM algorithm and CRKBT algorithm 
are the fastest ones, so we select these two algorithms 
as traditional algorithms and compare them with two 
novel algorithms, the BG+ and SOG+ algorithms. 

FIGURE 3 Earlier Algorithms Benchmarking 
Results 

 
Figure 4 shows the benchmarking results which are 

also tested with LSP=8. We can find out the traditional 
algorithms are less efficient than the others. The 

2-gram BG+ algorithm is the fastest one than the 
others when the pattern set size is smaller than 50,000. 
As the pattern set size is greater than 50,000, the 
3-gram BG+ algorithm is the fastest one.  

In the experiments of earlier and novel algorithms, 
we can conclude the BG+ algorithm is the more 
efficient algorithm than the others for LSP=8. As to 
verify the benchmarking results, we will do internal 
profiling later. 

 
FIGURE 4 Novel Algorithm Benchmarking 

Results 
 After the external profiling, we can know what 

algorithm is the most efficient. But some results need 
to verify. For example, why does the BG+ algorithm 
has good efficiency and the Modified-WM algorithm is 
more efficient than the WM algorithm? We will go 
through the internal profiling so as to answer the 
questions. The shift distance, the potential matching 
and the memory accesses of each algorithm are 
profiling as follows. 

Both the WM and BG+ algorithms are the 
sub-linear ones. The WM algorithm uses the shift table 
to record the shift value. The BG+ algorithm also uses 
the B table plus the bit-parallelism method to calculate 
the shift value, where the B table keeps whether each 
character of all patterns occurs or not. So we will 
profile the shift distance in order to justify the prior 
results. 

 Figure 5 shows the profiling results of the 
average shift distance. According to the results of the 
average shift distance, we can find out the average shift 
distance of the WM algorithm is close to one character 
when the pattern set size between 5,000 and 100,000. 
So the WM algorithm is not suitable for huge pattern 
sets. The average shift distance of the Modified-WM 
algorithm is greater than that of the WM algorithm. 
This result easily proves the Modified-WM algorithm 
is more efficient than the WM algorithm. In addition, it 
is clearly proved that the 2-gram BG+ algorithm is 
more efficiency when the pattern set size is smaller 
than 20,000 and the 3-gram BG+ algorithm has larger 

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

# of pat.

se
co
nd
s

Aho-Corasick
Optimized-AC
Wu-Manber
Modified-WM
Classified RKBT

0
1
2
3
4
5
6
7
8
9

10
11
12

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

# of pat.

se
co
nd
s

Modified-WM
Classified RKBT
2-gram SOG+
2-gram BG+
3-gram SOG
3-gram BG



 4

shift distance than 2-gram BG+ algorithm while the 
pattern set size between 20,000 and 100,000. 

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

# of pat.

ch
ar
.

Wu-Manber
Modified-WM
2-gram BG
3-gram BG

 
FIGURE 5 the Shift Distance Profiling 

 
Some algorithms are filtering ones that need the 

verification algorithm to check whether the potential 
match is a true match or not. As the number of 
potential matches increase, the string matching 
performance will decrease and the verification become 
a bottleneck. The number of the potential matches will 
be profiled in each filtering algorithm in this section. 

 Figure 6 shows the percentage of the potential 
matching for all filtering algorithms. The result shows 
the potential matching of the Modified-WM algorithm 
is less than that of the WM algorithm. This result 
proves the Modified-WM algorithm is more efficient 
than the WM algorithm, too. In addition, the thing that 
the potential matching of the WM algorithm increases 
fast also proves the WM algorithm is less efficiency 
while the pattern set size is more than 10,000. Finally, 
it is also proved that the BG+ algorithm is more 
efficient than the Modified-WM algorithm. 

FIGURE 6 the Potential Matching Profiling 
 

Figure 7, 8 and 9 show the results of the number of 
total memory accesses from program level profiled 
from Valgrind [4]. The memory accesses of these three 
figures are the same as well as the results of the 
external profiling, because the properties of these three 
types of algorithms are the same. For example, the 

RKBT and CRKBT algorithms have the same hash 
function, hash table size and cache miss rate. In 
addition, it is also proved here again that the CRKBT 
algorithm is more efficient than the RKBT algorithm. 

 

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

8000000000

9000000000

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

# of pat.

m
em
or
y 
ac
ce
ss

RKBT
CRKBT

 
 

FIGURE 7 RKBT vs. CRKBT 
 

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

7000000000

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k # of pat.

m
em
or
y 
ac
ce
ss

Wu-manber
Modified-WM

 
 

FIGURE 8 Wu-Manber vs. Modified-WM 

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

1000000000

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

# of pat.

m
em
or
y 
ac
ce
ss

2-gram SOG

2-gram BG

2-gram SOG+

2-gram BG+

3-gram SOG

3-gram BG

 
FIGURE 9 BG+ vs. SOG+ 

 
When the algorithms of different properties are 

compared with each other, the results are not the same 
as above under the huge pattern sets. Because huge 
pattern sets can bring about many verifications and the 
cache miss rate are not similar to each other. This 
result can be observed on figure 10. 

 
 
 

0%
10%

20%
30%

40%
50%

60%

70%

80%

90%

100%

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

# of pat.

pe
rc
en
ta
ge

RKBT
Wu-manber
Modified-WM
2-gram SOG
2-gram BG



 5

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

800000000

900000000

1000000000

1100000000

1200000000

10
0

20
0

50
0 1k 2k 5k 10
k

20
k

50
k

10
0k

# of pat.

m
em
or
y 
ac
ce
ss CRKBT

Modified-WM
Aho-Corasick
2-gram BG+

 
FIGURE 10 the number of memory accesses 

 
The number of memory accesses from the 

program level is insufficient to justify the prior results. 
Because the penalty of L2 cache misses dominate the 
total performance. For this reason, we profile the 
number of L2 cache misses to verify the exceptional 
results. 

 Figure 11 shows the number of L2 cache 
misses for the CRKBT algorithm is less than that 
for the Modified-WM algorithm and the number 
of L2 cache misses for the 2-gram BG+ algorithm 
is the least. According with these results, we can 
easily prove the prior results, include that the 
CRKBT algorithm is more efficient than the 
Modified-MW algorithm as the pattern set size is 
more than 50,000. In addition, it is also proved 
again that the 2-gram BG+ algorithm has best 
efficiency under huge pattern sets. 

 

0

20000000

40000000

60000000

80000000

100000000

120000000

10k 20k 50k 100k

# of pat.

th
e 

nu
m

be
r o

f c
ac

he
 m

is
se

Aho-Corasick
2-gram BG+
Modified-WM
CRKBT

 
 

FIGURE 11 the number of L2 cache misses 
 

The profiling results are summarized in figure 12. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 12 the profiling summary 
 
Figure 13 concludes which package is located on 

which position and suits for which algorithm by means 
of the profiling results. 

 

pattern length

# of pat.

1 2 3 4 5 6 7 8

5k

200

500

1k

2k

100

10k

20k

50k

100k

C=256

2-gram BG+

3-gram BG+

Anti-VirusAnti-Virus

A
ho

-C
or

as
ic

k

M
od

ifi
ed

W
M

9 10

FN
Pw

2
A

ho
-C

or
as

ic
k

IDSIDS

CFCF

 
FIGURE 13 the profiling summary 
 

 
IV. Conclusion 

In this research, we present the CRKBT algorithm 
and prove it is more efficient than the RKBT algorithm 
in accordance with the external and internal 
benchmarking. The efficiency of the CRKBT 
algorithm is 4 times faster than the RKBT algorithm 
for huge pattern sets. Moreover, the BG+ and SOG+ 
algorithms that use it as the verification algorithm are 
also 2 times faster than the original algorithm. 
 The external and internal profiling shows the AC 
algorithm is suitable for LSP=1, the Modified-WM 
algorithm is suitable for the LSP between 2 and 3, and 
the 2-gram BG+ algorithm is suitable for LSP ≥ 4. 
These results are also justified by means of the real 
application experiments. Some applications have 
dramatically improvement as well. These results also 
help to select an efficient algorithm to design a novel 
application in the future. 

 In addition, this work also observes the difference 
between the real and synthetic data by means of the 
real application experiments. The anti-virus application 
is not sensitive to the synthetic data or the real data, 
because the character set distribution is close to 

pattern length

# of pat.

1 2 3 4 5 6 7 8

5k

200

500

1k

2k

100

10k

20k

50k

100k

C=256

2-gram BG+

3-gram BG+

A
ho

-C
or

as
ic

k

M
od

ifi
ed

W
M

9 10

FN
Pw

2
A

ho
-C

or
as

ic
k



 6

uniform distribution. But the application of content 
filtering is sensitive to the data type, real data or 
synthetic data, because all patterns in the 
DansGuardian package is biased to English word. 
Moreover, we observe the bottleneck in content 
filtering application is to verify all potential matching 
in order to find out all matched content keywords, 
because the plenty of content keywords have the same 
hash value. 

 
References 
 
[1] S. Wu, and U. Manber, “A Fast Algorithm for 

Multi-pattern Searchin,” Report TR-94-17, 
Department of Computer Science, University of 
Arizona, 1994. 

[2] J. Kytojoki, L. Salmela, and J. Tarhio, “Tuning 
String Matching for Huge Pattern Sets,” CPM 2003, 
LNCS 2676, pp. 211-224, 2003. 

[3] A. Aho, and M. Corasick, “Efficient String 
Matching: An Aid to Bibliographic Search,” 
Communications of the ACM 18, pp. 333-340, 
1975. 

[4] Valgrind, http://valgrind.org/. 
 


