(1/ 3)

NSC93-2213-E-009-112-
93 08 01 94 07 31

¢)

94 S 27

(1/ 3)

93-2213-E-009-112-

2004.08.01 2005.07.31
Keywords—string matching, pattern matching
algorithm, content security
RKBT
4
ChmAV

Network content security has become a critical issue
for the Internet. It is also proved that the efficiency of
the string matching algorithm is essential to content
processing. We profile some typical algorithms to
understand which algorithm is suitable on what
situation. In the profiling process, we find out some
practical design issues, such as selecting a best hash
function, and propose the CRKBT agorithm to
improve the performance of the RKBT agorithm. Its
performance is four times faster than the origina
agorithm for a huge pattern set. We sdect three
content security applications to experiment and
implement the most efficient algorithms into them. The
performance has significant improvement. For example,
the novel method is five times faster than the original
method on the ClamAV package. In addition, we aso
observe the difference between the real and synthetic
data on the packages. The processing time on real
applications is sensitive to the character set distribution
generated from the multiple patterns, signatures and
content keywords, and the property of the English
words.

No existing string matching algorithms can scan
signatures of various characteristics more efficient than
others. For example, the Wu-Manber algorithm [1] is
not efficient for a huge pattern set [2]. Furthermore, all
the above applications have signatures of different
characteristics. For example, the anti-virus applications
have a large number of signatures, and the intrusion
detection systems have short patterns of one or two
characters. This work investigates the types of
signatures in these content security applications and
the type that each string matching algorithm can scan
most efficiently, and hence the most efficient algorithm
is derived for each application.

The efficiency of six typica string matching
algorithms are profiled for signature sets varying in
sizes, the minimum length of the signature in them and
the character set that the signatures are composed of.
Sample sets of both synthetic and rea signatures are
studied to see if there are deviations in the profiling
results for both cases. The edges and limitations of
each agorithm are better understood after the profiling.
The impacts on performance of memory and cache
accesses are also measured quantitatively.

The contributions are summarized as follows:

e Finding out the most efficient algorithm for each
application of content security

e Proposing the Classified RKBT agorithm to
enhance the performance of the original RKBT
algorithm.

e Comparing performance for synthetic and rea
datain these algorithms.

|. Selected Algorithms

This work categorizes string matching algorithms
into four major approaches according to the design
philosophy and the data structure that drives the
matching: automaton-based, heuristi c-based,
hashing-based and bit-parallelism-based. An
automaton-based approach tracks the partial match of
the pattern prefixes in the text. A heuristic-based
approach relies on one or two heuristic functions to
look up the shift distance. If the shift distance is 0, a
verification algorithm is needed to verify if a true

match occurs. A hashing-based approach checks a
possible appearance of the patterns by hashing a block
of characters in the text and compares the hash value
with those from hashing the blocks in the patterns. A
bit-parallelism-based approach takes advantage of the
paralelism of the bit operations inside a computer
word to simulate the operation of a finite automaton
[3]. Table 1 compares the typical agorithms in these
four categories.

TABLE 1: Classification of typical algorithms.

Algorithms Approach Time Search
Complexity | Type
Aho-Corasick | Automaton-based Linear Prefix
Optimized-AC | Automaton-based Linear Prefix
Boyer-Moore Heuristic-based Sub-linear Suffix
Horspool Heuristic-based Sub-linear Suffix
Set-wise BMH | Heuristic-based Sub-linear Suffix
Wu-Manber Heuristic-based Sub-linear Suffix
Modified-WM | Heuristic-based Sub-linear Suffix
Rabin-Karp Hashing-based Linear Prefix
RKBT Hashing-based Linear Prefix
FNP Hashing-based Sub-linear Prefix
SOG Bit-parallelism-based | Linear Prefix
BG Bit-parallelism-based | Sub-linear Factor

We also select open source packages for observation
and experiments in the profiling because the source
code is avalable They are Snort for IDS,
DansGuardian for Web filtering and ClamAV for virus
scanning.

I1. Practical Design issues

We first use the RKBT agorithm as the searching
algorithm and the details of the RKBT agorithm is
showed on Figure 1. The detailed description about the
RKBT agorithm is as follows. At pre-processing time,
the sorted 32-bit hash table is constructed by the first
hash value, which is formed of the first four bytes of
the pattern, and the second hash is calculated from the
first one by xor’ing together the lower 16 bits and the
upper 16 bits. Then the second hash is used to build a
2'° bitmap. For example, thei’th bit is one, if thereis at
least one pattern with i as its second hash value, and
zero, if no pattern has i as its second hash value. At
searching time, first stage, the program can quickly
check from the 2*° bitmap. When the second hash value
is one, the bit 2345 on figure 1, it will run into second
stage, and it uses the binary search method on the 32
bit hash table in order to do further inspection. If the

hash value is found, it will compare the text with the
candidate pattern.

RKBT method

32bit 2)Binary search

Classified RKBT method

Binary search

32bit /
§ 1) 235 —» | 32bit || 32bit || 32bit
1 2345
ENET
0 —T>| NULL
First hash value

Bitmap of the second hash Pointer teble

FIGURE 1: the RKBT agorithm vs. the Classified
RKBT agorithm

As the number of pattern grows huge, the
probability of one occurrence on the second hash
table will increase, and consequently it will
consume the most time in binary search. According
to this observation, we propose the classified
approach to improve the original RKBT agorithm,
named as CRKBT. The CRKBT agorithm also
used two-level hashing and the binary search
method. But the data structure and the steps under
searching stage are not the same. The CRKBT
algorithm uses the pointer table instead of the
bitmap table. For instance, the i’th pointer point to
fixed sorted array, which is constructed at least one
pattern with i as its second hash value, and point to
NULL, if no pattern hasi as its second hash val ue.
At searching time, the program needs to check the
pointer table first. While the pointer exists on
specific dot, it will run binary search on this
specific sorted array. The search scope will be
reduced to a small subset that has the same second
hash value. The efficiency of this algorithm will
continue beyond 100,000 patterns.

16 f
14 /
. /
g 10 / —e—RKBT
2 8 / —8— CRKBT
6
4 / y_
, / /
0 A-Ebzbzﬂfé/\./\ |

of pat.

100
200
500
1k
2k
5k
10k
20k
50k
100k

FIGURE 2: the RKBT agorithm vs. the CRKBT
agorithm

Figure 2 shows the experimental results. When the
number of pattern is small, both algorithms are no need
to run into verification stage. The execution time of
both algorithms is the same. As the number of pattern
increases gradudly, it is increasing that both
algorithms run into verification stage. But the search
scope of the CRKBT dgorithm is smaller than that of
the RKBT algorithm, the performance gain of the
CRKBT algorithm will appear and the CRKBT
agorithm is faster than the RKBT agorithm. For
example, the CRKBT algorithm is four times faster
than the RKBT agorithm when the number of pattern
grows to 100,000 patterns. The CRKBT algorithm is
more efficient than the other and suitable for huge
pattern sets.

[11. Profiling Algorithms

We first implement some earlier algorithms, the AC
and WM algorithm, and some novel agorithms, the
BG and SOG agorithm, and test them to get average
time over 1,000 runs using the same text and patterns.
Moreover, the implementation of the WM agorithm
refers to that of the agrep package and the WM
algorithm discussed below generally points at the
implementation of the agrep package.

Figure 3 shows the benchmarking results which are
tested with LSP=8. We aso compare with the CRKBT
agorithm. This experiment demonstrates that the
Modified-WM algorithm is more efficient than the
others when the pattern set size is smaller than 20,000.
However, when the pattern set size is greater than
20,000, the CRKBT agorithm is the most efficient.
The Modified-WM algorithm and CRKBT agorithm
are the fastest ones, so we select these two algorithms
as traditional algorithms and compare them with two
novel algorithms, the BG+ and SOG+ algorithms.

—&— Aho-Corasick
—— Optimized-AC
/ — — Wu-Manber

seconds

—— Modified-WM
// ///// —¥— Classified RKBT
7 7] X

orvwrnowooSERBREERE
T T T T T T

L ﬁ i/ *_,T__gséé L # of pat.

FIGURE 3 Earlier Algorithms Benchmarking
Results

Figure 4 shows the benchmarking results which are
also tested with LSP=8. We can find out the traditional
algorithms are less efficient than the others. The

2-gram BG+ agorithm is the fastest one than the
others when the pattern set size is smaller than 50,000.
As the pattern set size is greater than 50,000, the
3-gram BG+ algorithm is the fastest one.

In the experiments of earlier and novel agorithms,
we can conclude the BG+ agorithm is the more
efficient algorithm than the others for LSP=8. As to
verify the benchmarking results, we will do interna
profiling later.

—&— Modified-WM
—8— Classified RKBT

— — 2-gram SOG+
2-gram BG+

/ ’ —¥— 3-gram SOG

f / —8—3-gram BG

seconds
T T —
I

FIGURE 4 Novel Algorithm Benchmarking
Results

After the externa profiling, we can know what
agorithm is the most efficient. But some results need
to verify. For example, why does the BG+ algorithm
has good efficiency and the Modified-WM agorithm is
more efficient than the WM algorithm? We will go
through the internal profiling so as to answer the
questions. The shift distance, the potential matching
and the memory accesses of each algorithm are
profiling as follows.

Both the WM and BG+ agorithms are the
sub-linear ones. The WM agorithm uses the shift table
to record the shift value. The BG+ agorithm also uses
the B table plus the bit-parallelism method to calculate
the shift value, where the B table keeps whether each
character of al patterns occurs or not. So we will
profile the shift distance in order to justify the prior
results.

Figure 5 shows the profiling results of the
average shift distance. According to the results of the
average shift distance, we can find out the average shift
distance of the WM algorithm is close to one character
when the pattern set size between 5,000 and 100,000.
So the WM dgorithm is not suitable for huge pattern
sets. The average shift distance of the Modified-WM
algorithm is greater than that of the WM algorithm.
This result easily proves the Modified-WM agorithm
is more efficient than the WM algorithm. In addition, it
is clearly proved that the 2-gram BG+ algorithm is
more efficiency when the pattern set size is smaller
than 20,000 and the 3-gram BG+ algorithm has larger

shift distance than 2-gram BG+ algorithm while the

pattern set size between 20,000 and 100,000.

£ 80
T0 [ey = =
60 _\.\L’t\\‘
i ~ \l \ —— Wu-Manber
10 o \ N\ —B— Modifie-WM
30 N\ __||[——2gamBG
20 \\ R —|—7—3gamBG
10 —— g
0.0 Il Il Il Il Il Il Il Il Il
O O O x Xx x X X x X
S8 7YY 3 RBS ki

FIGURE 5 the Shift Distance Profiling

Some algorithms are filtering ones that need the
verification algorithm to check whether the potential
match is a true match or not. As the number of
potential matches increase, the string matching
performance will decrease and the verification become
a bottleneck. The number of the potential matches will
be profiled in each filtering algorithm in this section.

Figure 6 shows the percentage of the potentia
matching for al filtering algorithms. The result shows
the potential matching of the Modified-WM algorithm
is less than that of the WM dgorithm. This result
proves the Modified-WM algorithm is more efficient
than the WM algorithm, too. In addition, the thing that
the potential matching of the WM algorithm increases
fast aso proves the WM algorithm is less efficiency
while the pattern set size is more than 10,000. Finally,
it is adso proved that the BG+ agorithm is more
efficient than the Modified-WM algorithm.

100% —

90%

80%

0% / //' ——RKBT
%’ 60% / ’/ —=— Wu-manber
g 7 /| |~ Modfietwi
= 40%

/ / /] X||-—2gans0G

30% /

20% { / y X— 2-gram BG

= e

o e ARy "

FIGURE 6 the Potential Matching Profiling

Figure 7, 8 and 9 show the results of the number of
total memory accesses from program level profiled
from Valgrind [4]. The memory accesses of these three
figures are the same as well as the results of the
externa profiling, because the properties of these three
types of algorithms are the same. For example, the

RKBT and CRKBT agorithms have the same hash
function, hash table size and cache miss rate. In
addition, it is also proved here again that the CRKBT
agorithm is more efficient than the RKBT algorithm.

——RKBT
—— CRKBT

memory access

of pat.

100
200
500
1k
2k
5k
10k
20k
50k
100k

FIGURE 7 RKBT vs. CRKBT

—&— Wu-manber
—— Modified- WM

memory access

of pat.

100
200
500
1k
2k
5k
10k
20k
50k
100k

FIGURE 8 Wu-Manber vs. Modified-WM

1000000000
900000000
800000000 [

—&—2-gram SOG
—#— 2-gram BG
— —2-gram SOG+
——2-gram BG+
- 2% - 3-gram SOG
- @ - 3-gram BG

700000000 |-
600000000
500000000
400000000 F
300000000 |-

memory access

200000000

100000000 y 4
0 - T —c T L L I - \- -\

of pat.

100
200
500
1k
2k
5k
10k
20k
50k |@
100k |@

FIGURE 9 BG+ vs. SOG+

When the algorithms of different properties are
compared with each other, the results are not the same
as above under the huge pattern sets. Because huge
pattern sets can bring about many verifications and the
cache miss rate are not smilar to each other. This
result can be observed on figure 10.

1200000000
1100000000 [f
1000000000
900000000 |- /
» 800000000
g —— CRKBT
8 700000000 |- B
z 600000000 B Modified-WM
g 500000000 |- — — Aho-Corasick
£ —— 2-gram BG+
400000000
300000000 |- n
200000000 ———— — — — — — 4 o
100000000 |- .
0 m—m—»z«—»;.—»;.-—»z._z// #0f pat.
8 8 8 x x x x X x ¥
g g § % &8 B» g 2 3 8

FIGURE 10 the number of memory accesses

The number of memory accesses from the
program level is insufficient to justify the prior results.
Because the penalty of L2 cache misses dominate the
total performance. For this reason, we profile the
number of L2 cache misses to verify the exceptional
results.

Figure 11 shows the number of L2 cache
misses for the CRKBT algorithm is less than that
for the Modified-WM algorithm and the number
of L2 cache misses for the 2-gram BG+ agorithm
Is the least. According with these results, we can
easily prove the prior results, include that the
CRKBT agorithm is more efficient than the
Modified-MW algorithm as the pattern set size is
more than 50,000. In addition, it is also proved
again that the 2-gram BG+ agorithm has best
efficiency under huge pattern sets.

120000000
100000000
[/
£
© 80000000
-é —&— Aho-Corasick
S —8—2-gram BG+
5 60000000 i
® — — Modified- WM
£ —<CRKBT
5 40000000
£
20000000
— # of pat.
o L S——
10k 20k 50k 100k

FIGURE 11 the number of L2 cache misses

The profiling results are summarized in figure 12.

C=256

1

ol .
#of pat. s i 3-gram BG+

O R,

/' ¢ dmimim i —————
50k T g M.
. B
20k T n 1 I
ok — I Qé‘/! i
5K 1 '((% 1 i

a4 TG 2gram 8+

1 1. § .
1k RS !
g & o
500 S1 X .
(S 1
200 TS 1 .
< . 1
100 — 1 ;
o t

1273 4 5 6 7 8 9 10 paternlength

FIGURE 12 the profiling summary

Figure 13 concludes which package is located on
which position and suits for which agorithm by means
of the profiling results.

C=256

1
. 1
#of pat. K g 3-gram BG+

wk S =

S o
o ’I ; : ___________________ Antl-Vlrus__>
o T 01 i
ok _'i M

1
sk . :./'\
% ! CE 2-gram BG+
1 .

1k !
50

1DS —k
200 /
100 H

F ; t t + + + t t t

1 2 3 4 5 6 7 8 9 10 pattern length

FIGURE 13 the profiling summary

IV. Conclusion

In this research, we present the CRKBT agorithm
and prove it is more efficient than the RKBT agorithm
in accordance with the externa and interna
benchmarking. The efficiency of the CRKBT
algorithm is 4 times faster than the RKBT agorithm
for huge pattern sets. Moreover, the BG+ and SOG+
algorithms that use it as the verification algorithm are
also 2 times faster than the original algorithm.

The externa and internal profiling shows the AC
agorithm is suitable for LSP=1, the Modified-WM
algorithm is suitable for the L SP between 2 and 3, and
the 2-gram BG+ algorithm is suitable for LSP>4.
These results are also justified by means of the rea
application experiments. Some applications have
dramatically improvement as well. These results also
help to sdlect an efficient algorithm to design a novel
application in the future.

In addition, this work also observes the difference
between the real and synthetic data by means of the
real application experiments. The anti-virus application
is not sensitive to the synthetic data or the real data,
because the character set distribution is close to

uniform distribution. But the application of content
filtering is sensitive to the data type, real data or
synthetic data, because al patterns in the
DansGuardian package is biased to English word.
Moreover, we observe the bottleneck in content
filtering application is to verify all potential matching
in order to find out all matched content keywords,
because the plenty of content keywords have the same
hash value.

References

[1] S. Wu, and U. Manber, “A Fast Algorithm for
Multi-pattern ~ Searchin,” Report TR-94-17,
Department of Computer Science, University of
Arizona, 1994.

[2] J. Kytojoki, L. Salmela, and J. Tarhio, “Tuning
String Matching for Huge Pattern Sets,” CPM 2003,
LNCS 2676, pp. 211-224, 2003.

[3] A. Aho, and M. Corasick, “Efficient String
Matching: An Aid to Bibliographic Search,”
Communications of the ACM 18, pp. 333-340,
1975.

[4] Vagrind, http://valgrind.org/.

