
行政院國家科學委員會專題研究計畫 成果報告

DNA測試和連接網路

計畫類別：個別型計畫

計畫編號：NSC93-2115-M-009-013-

執行期間：93年08月01日至94年07月31日

執行單位：國立交通大學應用數學系(所)

計畫主持人：黃光明

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 94年8月30日

期末報告

中文摘要：

最長共有子序列問題是分子生物學上一個重要的問題。現有的解

法分為兩類：動態規劃法需「線性」空間和「兩項式」時間，非動態

規劃法可縮短時間但需增加空間。本文提出一改良的非動態規劃法，

保持了短時間的優點，且也達到空間的最小度。

An Almost-Linear Time and Linear Space

Algorithm for the Longest Common Subsequence

Problem

J.Y. Guo∗ and F.K. Hwang∗

Department of Applied Mathematics
National Chiaotung University
Hsinchu, Taiwan, ROC 30500

Abstract

There are two general approaches to the longest common subsequence
problem. The dynamic programming approach takes quadratic time but
linear space, while the non-dynamic-programming approach takes less
time but more space. We propose a new implementation of the latter
approach which seems to get the best for both time and space for the
DNA application.

Keywords: LCS, Longest Common Subsequence, dynamic program-
ming, DNA sequencing.

1 Introduction

Mutations in DNA arise naturally in an evolution process. These mutations
include substitutions, insertions and deletions of nucleotides, leading to “edit-
ing” of DNA texts. A sequence comparison of two DNA sequences attempts to
align the two sequences to minimize a function of these mutations. The most
commonly used function is the so-called edit distance first introduced by Leven-
shtein [5] which simply counts the number of mutations. If substitutions are not
allowed, then the alignment minimizing the edit distance will produce a longest
common subsequence (LCS) of the two sequences. Note that the LCS problem
had been studied by mathematicians for general sequences long before the edit
distance was introduced for DNA sequences.

Assume that both sequences are of O(n) length. Needleman and Wunsch
[6] gave an O(n2) time and O(n2) space dynamic programming algorithm for
the LCS problem. Hirschberg [2] improved to O(n) space by using a divide-
and-conquer technique. Later, Hunt and Szymanski [4], and Hirschberg [3],

∗Research partially supported by ROC National Science council grant NSC 90-2115-M-
009-007

1

both noticed that not all steps in the dynamic-programming procedure need
to be processed and they proposed more efficient non-dynamic-programming
algorithms. Hunt and Szymanski’s algorithm was improved by Apostolico [1]
to require O(n log n) time and O(n + l) space, where l denotes the number of
matches between two sequences. Hirschberg’s algorithm requires O(Ln) time
and O(n + Ln) space, where L is the length of an LCS. Pevzner and Weterman
[7] recognized that these algorithms can be cast into a primal-dual set-up. The
derived primal-dual algorithm, as presented by Pevzner and Waterman, takes
O(l + Ln) time and O(l + Ln) space. In this paper we give an O(nL) time and
O(n) space implementation of the primal-dual algorithm.

2 The primal-dual algorithm

Let I = {I1, I2, . . . , Im} and J = {J1, J2, . . . , Jn} denote two DNA sequences
when Ii, Jj ∈{A, C, G, T}. Define P = {(i, j) : Ii = Jj}. Assume m = O(n).
Then typically, |P| = O(n2). This is the case if each nucleotide independently
has probability pA, pC, pG, pT of being A, C, G, T, respectively. We will also
denote P = {p1, p2, . . . , pl} where each pk is a pair (ik, jk). The partial order ≺
is defined by

px ≺ py if ix < iy, jx < jy.

The conjugate partial order ≺∗ is defined by

px ≺∗ py if ix ≤ iy, jx ≥ jy.

Sometimes we write a Â b or a∗Â b as b ≺ a or b ≺∗ a.
Let @ denotes the partial order such that

px @ py if either px ≺ py or px ≺∗ py.

Pevzner and Waterman proved that @ is a linear order p1 @ p2 @ · · · @ pl. Note
that |@| = |P| = l which is typically O(n2).

The algorithm, as presented in [7], assigns p1, p2, . . . one at a time (in order)
to sets C1, C2, . . . such that the elements in a given Ck can be linearly ordered
in ≺∗. Suppose that p1, p2, . . . , pu have been assigned to C1, C2, . . . , Cv. Let
p∗1, p

∗
2, . . . , p

∗
v denote the ≺∗-maximum elements of C1, C2, . . . , Cv, respectively.

Let k, 1 ≤ k ≤ v, be the minimum index such that p∗k ≺∗ pu+1. Assign pu+1

to Ck. If no such k exists, assign pu+1 to Cv+1. We also set a counter b(pu+1)
such that

b(pu+1) =

0 if k = 1,
p∗k−1 if 2 ≤ k ≤ v,
p∗v if k does not exist.

Note that if b(pu+1) 6= 0, then b(pu+1) ⊀∗ pu+1. Suppose p1, p2, . . . , pl are
assigned to C1, C2, . . . , CL. Then L is the length of an LCS. An LCS can be
backtracked from any element in CL by using the b function. Once an LCS
is identified, a corresponding (nonunique) alignment can be obtained by filling

2

in between pk and pk+1 the unmatched nucleotides from both sequence in an
arbitrary order as long as being consistent with each sequence order.

The following example, taken from [7], illustrates the algorithm.

I =
I1

T
I2

G
I3

C
I4

A
I5

T
I6

A J =
J1

A
J2

T
J3

C
J4

T
J5

G
J6

A
J7

T

P = {
p1

(1, 2),
p2

(1, 4),
p3

(1, 7),
p4

(2, 5),
p5

(3, 3),
p6

(4, 1),
p7

(4, 6),
p8

(5, 2),
p9

(5, 4),
p10

(5, 7),
p11

(6, 1),
p12

(6, 6)}

@: p3, p2, p1, p4, p5, p7, p6, p10, p9, p8, p12, p11

For example, p3 @ p2 since p3 ≺∗ p2, while p1 @ p4 since p1 ≺ p4.
The assignment of pu+1, u = 0, 1, . . . , 11, and b(pu+1) are

C1 C2 C3 C4

p3 p2 p1 p6 p11 p4 p5 p8 p7 p9 p10 p12

b(pu+1) 0 0 0 0 0 p1 p1 p6 p5 p5 p7 p9

To find an LCS, we can start from p12 to obtain p12 Â p9 Â p5 Â p1 or from
p10 to obtain p10 Â p7 Â p5 Â p1. Using the former, an optimal alignment can
be

–TGCAT –A –
AT –C –TGAT

It takes O(n+l) time and space to construct P and O(l log l) time to @-order
P. It takes O(lL) time and O(l + L) space to construct C1, . . . , CL.

3 An O(nL) time and O(n) space implementation

We construct a table X with 5 rows marked by j,A,C,G,T and n + 1 columns
marked by n, n− 1, . . . , 1, 0(the indices of J). Column n is empty. If index n is
of nucleotide N , then column n− 1 has entry n in row N and copies the other
entries from column n. In general, if index j is of nucleotide N , the column
j − 1 has entry j in row N and copies the other entries from column j.

For example, if J =ATCTGAT, then

j 7 6 5 4 3 2 1 0
A – – 6 6 6 6 6 1
C – – – – – 3 3 3
G – – – 5 5 5 5 5
T – 7 7 7 4 4 2 2

3

It is easily verified that the entries in each row are nonincreasing in j. Next
we construct a table Y with L + 1 columns (L is unknown at the beginning)
marked by C0, C1, . . . , CL, and 6 rows marked by j, i,A,C,G,T. Along with table
Y , we also set up a backtrack function b. At the beginning, only the C0 column is
filled with entries 0, 0, A(0), C(0), G(0), T (0), the last four entries from table X.
Then we proceed with the indices of I one by one in order to construct Y . Sup-
pose index 1 is of nucleotide N . Inspect row N in Y and we find only one index
T (0). Fill column C1 with entries T (0), 1, A(T (0)), C(T (0)), G(T (0)), T (T (0)),
and set b(1, T (0)) = (0, 0).

Suppose we are dealing with index y of nucleotide N where Ck is the large
x such that Cx is nonempty. By our construction, entries in row j of Y are
increasing(easily observed after we finish describing the implementation). Hence
entries in row A,C,G,T are nondecreasing. Inspect row N which, say, has entries
n0 ≤ n1 ≤ · · · ≤ nk for k ≤ L. For each ni in the order from large to small, we
do the following:

Let jw denotes the value of j in column Cw, 0 ≤ w ≤ k. Compare nk

with jk, jk−1, . . . until the first column Cw(k) such that jw(k) < nk. We fill the
column Cw(k)+1(or replace its entries) with nk, y, A(nk), C(nk), G(nk), T (nk).
Set b(y, nk) = (i, j) where (i, j) is from Cw(k). In general, suppose nz has just
filled the column Cw(z)+1 with z, y, A(nz), C(nz), G(nz), T (nz). Let nv be the
next ni < nz. We compare nv with jw(z), jw(z)−1, . . . until Cw(v) is found. Set
b(y, nv) = (i, j) where (i, j) is from Cw(v).

We demonstrate this procedure by the example

I
index

: T
1
G
2
C
3
A
4
T
5
A
6

J
index

: A
1
T
2
C
3
T
4
G
5
A
6
T
7

We will fill in Y column by column until a column needs to be replaced, then
we draw a new Y with the new column in.

C0 C1 C2 C0 C1 C2 C3 C0 C1 C2 C3 C4

j 0 2 5 0 2 3 6 0 1 3 6 7
i 0 1 2 0 1 3 4 0 4 3 4 5
A 1 6 6 1 6 6 – 1 6 6 – –
C 3 3 – 3 3 – – 3 3 – – –
G 5 5 – 5 5 5 – 5 5 5 – –
T 2 4 7 2 4 4 7 2 2 4 7 –

b(1, 2) = (0, 0) b(3, 3) = (1, 2) b(5, 7) = (4, 6)
b(2, 5) = (1, 2) b(4, 6) = (3, 3) b(4, 1) = (0, 0)

C0 C1 C2 C3 C4 C0 C1 C2 C3 C4

j 0 1 2 4 7 0 1 2 4 6
i 0 4 5 5 5 0 6 5 5 6
A 1 6 6 6 – 1 6 6 6 –
C 3 3 3 – – 3 3 3 – –
G 5 5 5 5 – 5 5 5 5 –
T 2 2 4 7 – 2 2 4 7 7

b(5, 4) = (3, 3) b(6, 6) = (5, 4)
b(5, 2) = (4, 1) b(6, 1) = 0

4

Finally, take a pair (i, j) from any CL column, we can trace an LCS with
length L through the b function. In the above example, (6, 6) is a pair in C4.
From b(6, 6) = (5, 4), b(5, 4) = (3, 3), b(3, 3) = (1, 2), we obtain the LCS:(I1, J2),
(I3, J3), (I5, J4), (I6, J6). If we start from the pair (5, 7), then we have (I1, J2),
(I3, J3,), (I4, J6), (I5, J7).

We now prove that this procedure is indeed an implementation of the primal-
dual algorithm. Note that we process the pairs in P in the lexicographical order
of (i, j). So pairs with the same i, called the i-batch, are processed consecutively.

Suppose we are processing the i-batch, and C1, . . . , Ck are nonempty. Let
(i1, j1), . . . , (ik, jk) be the maximal pair with respect to @ in C1, . . . , Ck respec-
tively. Then j1 < j2 < · · · < jk.

It suffices to prove jw < jw+1. If (iw, jw) is processed before (iw+1, jw+1),
then

iw ≤ iw+1 and jw < jw+1

or (iw+1, jw+1) would be assigned to Cw. If (iw, jw) is processed afterwards,
and (i′w, j′w) was the maximal pair of Cw when (iw+1, jw+1) was processed, then

iw ≤ i′w ≤ iw+1 and jw ≤ j′w < jw+1.

Note that all pairs (i′, j′) processed before the i-batch have i′ < i. Hence
an i-pair can either ∗Â (i′, j′), or be noncomparable, but not smaller. More
specifically (i, j) ∗Â (ih, jh) if and only if j ≤ jh. So an i-pair (i, j) joins Ch if
and only if

jh−1 < j ≤ jh

and if j > jh, then (i, j) starts a new Ck+1. Thus pairs in the i-batch are
partitioned into several intervals where pairs in the same interval go to the same
Ch. Also note that i-pairs are always comparable in ≺∗ since j∗1 < j∗2 < · · · < j∗g
implies

(i, j∗) ∗Â (i, j∗2) ∗Â . . . ∗Â (i, j∗g).

So we only need to assign one pair (i, j) in each interval h to Ch where j is
minimal among all i-pairs in the interval. It is easily verified that the (i, j) pair
in column Ch of table Y is indeed the maximal pair (ih, jh) of Ch. So the entry
in row N and column Ch gives the minimal index x > jh of a nucleotide of
type N . Therefore, if N is the next nucleotide to be processed, then all the
j-values of the maximal pairs in C1, . . . , Ck,(C0 gives the overall minimum j)
are provided by row N .

We now check the time complexity of this implementation. Table X can
be constructed in O(n) time. To construct the dynamic table Y , we need to
go through the O(n) elements of I. Since the entries in both row j and row
N are ordered, starting from comparing the maximal entries of both row, each
comparison eliminates one entry from further comparisons. Since there are
at most 2L entries in the two rows, it takes O(L)-time to locate the entries
{ni} of row N . Inserting the column of ni(and possibly deleting a column)
takes constant time. The backtrack function needs to be updated at most L
times, and it takes constant time to update it. So processing each element of I

5

takes O(L) time, and the construction of table Y takes O(nL) time. We have
an O(nL) time algorithm. It is also easily seen that tables X and Y can be
constructed in O(n) space.

4 Conclusions

For the LCS problem, the dynamic programming approach requires quadratic
time but linear space, while the non-dynamic-programming approach requires
O(n log n) time or O(Ln) time, which is almost linear when the length of an LCS
is small compared to n, but more than linear space. We gave a non-dynamic-
programming implementation with O(Ln) time and O(n) space, efficient in both
time and space.

Although our presentation is for a DNA sequence, the implementation is
valid for any general sequence with, say, p alphabets. If p is treated as a variable,
then the time complexity would be O(n(L+p)) and the space complexity O(np).
We may also drop the assumption that both sequences are of lengths of O(n)
order. If the lengths of the two sequences, m < n, are not equal, then either the
time complexity would be O(mp + nL) and the space complexity O(mp), or m
and n are interchanged in the above complexities.

References

[1] A. Apostolico, Improving the worst-case performance of the Hunt-Szymanski
strategy for the longest common subsequence of two strings, Inform. Process.
Lett. 23(1986) 63-69.

[2] D.S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Communication of ACM, 18(1975) 341-343.

[3] D. S. Hirschberg. Algorithms for the longest common subsequence problem,
J. ACM, 24(1977) 664-675.

[4] J.W. Hunt and T.G. Szymanski, A fast algorithm for computing longest
common subsequences, Commun. ACM 20(1977) 350-353.

[5] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reverls. Soviet Physics Doklady, 6(1966) 707-710.

[6] S.B. Needleman and C.D. Wunsch. Ageneral method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molec-
ular Biology, 48(1970) 443-453.

[7] P.A. Pevzner and M.S. Waterman. Generalized sequence alignment and du-
ality. Advances in Applied Mathematics, 14(2)(1993) 139-171.

6

