行政院國家科學委員會專題研究計畫 成果報告

DNA 測試和連接網路

計畫類別：個別型計畫
計畫編號：NSC93－2115－M 009－013
執行期間：93年08月01日至94年07月31日
執行單位：國立交通大學應用數學系（所）

計畫主持人：黃光明

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國94年8月30日

期末報告

中文摘要：
最長共有子序列問題是分子生物學上一個重要的問題 \cdot 現有的解法分爲兩類：動態規劃法需「線性」 空間和「兩項式」時間，非動態規劃法可縮短時間但需增加空間。本文提出一改良的非動態規劃法，保持了短時間的優點，且也達到空間的最小度。

An Almost-Linear Time and Linear Space Algorithm for the Longest Common Subsequence Problem

J.Y. Guo* and F.K. Hwang*
Department of Applied Mathematics
National Chiaotung University
Hsinchu, Taiwan, ROC 30500

Abstract

There are two general approaches to the longest common subsequence problem. The dynamic programming approach takes quadratic time but linear space, while the non-dynamic-programming approach takes less time but more space. We propose a new implementation of the latter approach which seems to get the best for both time and space for the DNA application.

Keywords: LCS, Longest Common Subsequence, dynamic programming, DNA sequencing.

1 Introduction

Mutations in DNA arise naturally in an evolution process. These mutations include substitutions, insertions and deletions of nucleotides, leading to "editing" of DNA texts. A sequence comparison of two DNA sequences attempts to align the two sequences to minimize a function of these mutations. The most commonly used function is the so-called edit distance first introduced by Levenshtein [5] which simply counts the number of mutations. If substitutions are not allowed, then the alignment minimizing the edit distance will produce a longest common subsequence (LCS) of the two sequences. Note that the LCS problem had been studied by mathematicians for general sequences long before the edit distance was introduced for DNA sequences.

Assume that both sequences are of $O(n)$ length. Needleman and Wunsch [6] gave an $O\left(n^{2}\right)$ time and $O\left(n^{2}\right)$ space dynamic programming algorithm for the LCS problem. Hirschberg [2] improved to $O(n)$ space by using a divide-and-conquer technique. Later, Hunt and Szymanski [4], and Hirschberg [3],

[^0]both noticed that not all steps in the dynamic-programming procedure need to be processed and they proposed more efficient non-dynamic-programming algorithms. Hunt and Szymanski's algorithm was improved by Apostolico [1] to require $O(n \log n)$ time and $O(n+l)$ space, where l denotes the number of matches between two sequences. Hirschberg's algorithm requires $O(L n)$ time and $O(n+L n)$ space, where L is the length of an LCS. Pevzner and Weterman [7] recognized that these algorithms can be cast into a primal-dual set-up. The derived primal-dual algorithm, as presented by Pevzner and Waterman, takes $O(l+L n)$ time and $O(l+L n)$ space. In this paper we give an $O(n L)$ time and $O(n)$ space implementation of the primal-dual algorithm.

2 The primal-dual algorithm

Let $I=\left\{I_{1}, I_{2}, \ldots, I_{m}\right\}$ and $J=\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$ denote two DNA sequences when $I_{i}, J_{j} \in\{\mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$. Define $\mathcal{P}=\left\{(i, j): I_{i}=J_{j}\right\}$. Assume $m=O(n)$. Then typically, $|\mathcal{P}|=O\left(n^{2}\right)$. This is the case if each nucleotide independently has probability $p_{\mathrm{A}}, p_{\mathrm{C}}, p_{\mathrm{G}}, p_{\mathrm{T}}$ of being $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$, respectively. We will also denote $\mathcal{P}=\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ where each p_{k} is a pair $\left(i_{k}, j_{k}\right)$. The partial order \prec is defined by

$$
p_{x} \prec p_{y} \quad \text { if } \quad i_{x}<i_{y}, j_{x}<j_{y} .
$$

The conjugate partial order \prec^{*} is defined by

$$
p_{x} \prec^{*} p_{y} \quad \text { if } \quad i_{x} \leq i_{y}, j_{x} \geq j_{y} .
$$

Sometimes we write $a \succ b$ or $a^{*} \succ b$ as $b \prec a$ or $b \prec^{*} a$.
Let \sqsubset denotes the partial order such that

$$
p_{x} \sqsubset p_{y} \quad \text { if either } \quad p_{x} \prec p_{y} \text { or } p_{x} \prec^{*} p_{y} .
$$

Pevzner and Waterman proved that \sqsubset is a linear order $p_{1} \sqsubset p_{2} \sqsubset \cdots \sqsubset p_{l}$. Note that $|\sqsubset|=|\mathcal{P}|=l$ which is typically $O\left(n^{2}\right)$.

The algorithm, as presented in [7], assigns p_{1}, p_{2}, \ldots one at a time (in order) to sets C_{1}, C_{2}, \ldots such that the elements in a given C_{k} can be linearly ordered in \prec^{*}. Suppose that $p_{1}, p_{2}, \ldots, p_{u}$ have been assigned to $C_{1}, C_{2}, \ldots, C_{v}$. Let $p_{1}^{*}, p_{2}^{*}, \ldots, p_{v}^{*}$ denote the \prec^{*}-maximum elements of $C_{1}, C_{2}, \ldots, C_{v}$, respectively. Let $k, 1 \leq k \leq v$, be the minimum index such that $p_{k}^{*} \prec^{*} p_{u+1}$. Assign p_{u+1} to C_{k}. If no such k exists, assign p_{u+1} to C_{v+1}. We also set a counter $b\left(p_{u+1}\right)$ such that

$$
b\left(p_{u+1}\right)= \begin{cases}0 & \text { if } k=1 \\ p_{k-1}^{*} & \text { if } 2 \leq k \leq v \\ p_{v}^{*} & \text { if } k \text { does not exist }\end{cases}
$$

Note that if $b\left(p_{u+1}\right) \neq 0$, then $b\left(p_{u+1}\right) \nprec^{*} p_{u+1}$. Suppose $p_{1}, p_{2}, \ldots, p_{l}$ are assigned to $C_{1}, C_{2}, \ldots, C_{L}$. Then L is the length of an LCS. An LCS can be backtracked from any element in C_{L} by using the b function. Once an LCS is identified, a corresponding (nonunique) alignment can be obtained by filling
in between p_{k} and p_{k+1} the unmatched nucleotides from both sequence in an arbitrary order as long as being consistent with each sequence order.

The following example, taken from [7], illustrates the algorithm.

$$
I=\begin{aligned}
& I_{1} I_{2} I_{3} I_{4} I_{5} I_{6} \\
& \text { TGCATA }
\end{aligned} \quad J=\text { ATCTGAT }
$$

$$
\begin{aligned}
& \mathcal{P}=\{(1,2),(1,4),(1,7),(2,5),(3,3),(4,1),(4,6),(5,2),(5,4), \\
& \left.\left.\stackrel{p_{10}}{(5,7),}, \stackrel{p_{11}}{6,1}\right),(6,6)\right\}
\end{aligned}
$$

$$
\sqsubset: p_{3}, p_{2}, p_{1}, p_{4}, p_{5}, p_{7}, p_{6}, p_{10}, p_{9}, p_{8}, p_{12}, p_{11}
$$

For example, $p_{3} \sqsubset p_{2}$ since $p_{3} \prec^{*} p_{2}$, while $p_{1} \sqsubset p_{4}$ since $p_{1} \prec p_{4}$.
The assignment of $p_{u+1}, u=0,1, \ldots, 11$, and $b\left(p_{u+1}\right)$ are

	C_{1}					C_{2}			C_{3}		C_{4}	
	p_{3}	p_{2}	p_{1}	p_{6}	p_{11}	p_{4}	p_{5}	p_{8}	p_{7}	p_{9}	p_{10}	p_{12}
$b\left(p_{u+1}\right)$	0	0	0	0	0	p_{1}	p_{1}	p_{6}	p_{5}	p_{5}	p_{7}	p_{9}

To find an LCS, we can start from p_{12} to obtain $p_{12} \succ p_{9} \succ p_{5} \succ p_{1}$ or from p_{10} to obtain $p_{10} \succ p_{7} \succ p_{5} \succ p_{1}$. Using the former, an optimal alignment can be

$$
\begin{aligned}
& -\mathrm{TGCAT}-\mathrm{A}- \\
& \mathrm{AT}-\mathrm{C}-\mathrm{TGAT}
\end{aligned}
$$

It takes $O(n+l)$ time and space to construct \mathcal{P} and $O(l \log l)$ time to \sqsubset-order \mathcal{P}. It takes $O(l L)$ time and $O(l+L)$ space to construct C_{1}, \ldots, C_{L}.

3 An $O(n L)$ time and $O(n)$ space implementation

We construct a table X with 5 rows marked by $j, \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$ and $n+1$ columns marked by $n, n-1, \ldots, 1,0$ (the indices of $J)$. Column n is empty. If index n is of nucleotide N, then column $n-1$ has entry n in row N and copies the other entries from column n. In general, if index j is of nucleotide N, the column $j-1$ has entry j in row N and copies the other entries from column j.

For example, if $J=$ ATCTGAT, then

j	7	6	5	4	3	2	1	0
A	-	-	6	6	6	6	6	1
C	-	-	-	-	-	3	3	3
G	-	-	-	5	5	5	5	5
T	-	7	7	7	4	4	2	2

It is easily verified that the entries in each row are nonincreasing in j. Next we construct a table Y with $L+1$ columns (L is unknown at the beginning) marked by $C_{0}, C_{1}, \ldots, C_{L}$, and 6 rows marked by $j, i, \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$. Along with table Y, we also set up a backtrack function b. At the beginning, only the C_{0} column is filled with entries $0,0, A(0), C(0), G(0), T(0)$, the last four entries from table X. Then we proceed with the indices of I one by one in order to construct Y. Suppose index 1 is of nucleotide N. Inspect row N in Y and we find only one index $T(0)$. Fill column C_{1} with entries $T(0), 1, A(T(0)), C(T(0)), G(T(0)), T(T(0))$, and set $b(1, T(0))=(0,0)$.

Suppose we are dealing with index y of nucleotide N where C_{k} is the large x such that C_{x} is nonempty. By our construction, entries in row j of Y are increasing(easily observed after we finish describing the implementation). Hence entries in row A,C,G,T are nondecreasing. Inspect row N which, say, has entries $n_{0} \leq n_{1} \leq \cdots \leq n_{k}$ for $k \leq L$. For each n_{i} in the order from large to small, we do the following:

Let j_{w} denotes the value of j in column $C_{w}, 0 \leq w \leq k$. Compare n_{k} with j_{k}, j_{k-1}, \ldots until the first column $C_{w(k)}$ such that $j_{w(k)}<n_{k}$. We fill the column $C_{w(k)+1}$ (or replace its entries) with $n_{k}, y, A\left(n_{k}\right), C\left(n_{k}\right), G\left(n_{k}\right), T\left(n_{k}\right)$. Set $b\left(y, n_{k}\right)=(i, j)$ where (i, j) is from $C_{w(k)}$. In general, suppose n_{z} has just filled the column $C_{w(z)+1}$ with $z, y, A\left(n_{z}\right), C\left(n_{z}\right), G\left(n_{z}\right), T\left(n_{z}\right)$. Let n_{v} be the next $n_{i}<n_{z}$. We compare n_{v} with $j_{w(z)}, j_{w(z)-1}, \ldots$ until $C_{w(v)}$ is found. Set $b\left(y, n_{v}\right)=(i, j)$ where (i, j) is from $C_{w(v)}$.

We demonstrate this procedure by the example

$$
\underset{\text { index }}{I}: \underset{1}{\text { TGCATATA }} \quad \underset{i_{5}}{J}: \text { index }_{1}^{\text {ATCTGGAT }}
$$

We will fill in Y column by column until a column needs to be replaced, then we draw a new Y with the new column in.

Finally, take a pair (i, j) from any C_{L} column, we can trace an LCS with length L through the b function. In the above example, $(6,6)$ is a pair in C_{4}. From $b(6,6)=(5,4), b(5,4)=(3,3), b(3,3)=(1,2)$, we obtain the LCS: $\left(I_{1}, J_{2}\right)$, $\left(I_{3}, J_{3}\right),\left(I_{5}, J_{4}\right),\left(I_{6}, J_{6}\right)$. If we start from the pair $(5,7)$, then we have $\left(I_{1}, J_{2}\right)$, $\left(I_{3}, J_{3},\right),\left(I_{4}, J_{6}\right),\left(I_{5}, J_{7}\right)$.

We now prove that this procedure is indeed an implementation of the primaldual algorithm. Note that we process the pairs in \mathcal{P} in the lexicographical order of (i, j). So pairs with the same i, called the i-batch, are processed consecutively.

Suppose we are processing the i-batch, and C_{1}, \ldots, C_{k} are nonempty. Let $\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)$ be the maximal pair with respect to \sqsubset in C_{1}, \ldots, C_{k} respectively. Then $j_{1}<j_{2}<\cdots<j_{k}$.

It suffices to prove $j_{w}<j_{w+1}$. If $\left(i_{w}, j_{w}\right)$ is processed before $\left(i_{w+1}, j_{w+1}\right)$, then

$$
i_{w} \leq i_{w+1} \text { and } j_{w}<j_{w+1}
$$

or $\left(i_{w+1}, j_{w+1}\right)$ would be assigned to C_{w}. If $\left(i_{w}, j_{w}\right)$ is processed afterwards, and $\left(i_{w}^{\prime}, j_{w}^{\prime}\right)$ was the maximal pair of C_{w} when $\left(i_{w+1}, j_{w+1}\right)$ was processed, then

$$
i_{w} \leq i_{w}^{\prime} \leq i_{w+1} \text { and } j_{w} \leq j_{w}^{\prime}<j_{w+1}
$$

Note that all pairs $\left(i^{\prime}, j^{\prime}\right)$ processed before the i-batch have $i^{\prime}<i$. Hence an i-pair can either ${ }^{*} \succ\left(i^{\prime}, j^{\prime}\right)$, or be noncomparable, but not smaller. More specifically $(i, j)^{*} \succ\left(i_{h}, j_{h}\right)$ if and only if $j \leq j_{h}$. So an i-pair (i, j) joins C_{h} if and only if

$$
j_{h-1}<j \leq j_{h}
$$

and if $j>j_{h}$, then (i, j) starts a new C_{k+1}. Thus pairs in the i-batch are partitioned into several intervals where pairs in the same interval go to the same C_{h}. Also note that i-pairs are always comparable in \prec^{*} since $j_{1}^{*}<j_{2}^{*}<\cdots<j_{g}^{*}$ implies

$$
\left(i, j^{*}\right)^{*} \succ\left(i, j_{2}^{*}\right)^{*} \succ \ldots{ }^{*} \succ\left(i, j_{g}^{*}\right) .
$$

So we only need to assign one pair (i, j) in each interval h to C_{h} where j is minimal among all i-pairs in the interval. It is easily verified that the (i, j) pair in column C_{h} of table Y is indeed the maximal pair $\left(i_{h}, j_{h}\right)$ of C_{h}. So the entry in row N and column C_{h} gives the minimal index $x>j_{h}$ of a nucleotide of type N. Therefore, if N is the next nucleotide to be processed, then all the j-values of the maximal pairs in $C_{1}, \ldots, C_{k},\left(C_{0}\right.$ gives the overall minimum $\left.j\right)$ are provided by row N.

We now check the time complexity of this implementation. Table X can be constructed in $O(n)$ time. To construct the dynamic table Y, we need to go through the $O(n)$ elements of I. Since the entries in both row j and row N are ordered, starting from comparing the maximal entries of both row, each comparison eliminates one entry from further comparisons. Since there are at most $2 L$ entries in the two rows, it takes $O(L)$-time to locate the entries $\left\{n_{i}\right\}$ of row N. Inserting the column of n_{i} (and possibly deleting a column) takes constant time. The backtrack function needs to be updated at most L times, and it takes constant time to update it. So processing each element of I
takes $O(L)$ time, and the construction of table Y takes $O(n L)$ time. We have an $O(n L)$ time algorithm. It is also easily seen that tables X and Y can be constructed in $O(n)$ space.

4 Conclusions

For the LCS problem, the dynamic programming approach requires quadratic time but linear space, while the non-dynamic-programming approach requires $O(n \log n)$ time or $O(L n)$ time, which is almost linear when the length of an LCS is small compared to n, but more than linear space. We gave a non-dynamicprogramming implementation with $O(L n)$ time and $O(n)$ space, efficient in both time and space.

Although our presentation is for a DNA sequence, the implementation is valid for any general sequence with, say, p alphabets. If p is treated as a variable, then the time complexity would be $O(n(L+p))$ and the space complexity $O(n p)$. We may also drop the assumption that both sequences are of lengths of $O(n)$ order. If the lengths of the two sequences, $m<n$, are not equal, then either the time complexity would be $O(m p+n L)$ and the space complexity $O(m p)$, or m and n are interchanged in the above complexities.

References

[1] A. Apostolico, Improving the worst-case performance of the Hunt-Szymanski strategy for the longest common subsequence of two strings, Inform. Process. Lett. 23(1986) 63-69.
[2] D.S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Communication of ACM, 18(1975) 341-343.
[3] D. S. Hirschberg. Algorithms for the longest common subsequence problem, J. ACM, 24(1977) 664-675.
[4] J.W. Hunt and T.G. Szymanski, A fast algorithm for computing longest common subsequences, Commun. ACM 20(1977) 350-353.
[5] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and reverls. Soviet Physics Doklady, 6(1966) 707-710.
[6] S.B. Needleman and C.D. Wunsch. Ageneral method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(1970) 443-453.
[7] P.A. Pevzner and M.S. Waterman. Generalized sequence alignment and duality. Advances in Applied Mathematics, 14(2)(1993) 139-171.

[^0]: *Research partially supported by ROC National Science council grant NSC 90-2115-M-009-007

