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Abstract

Control/dummy wafers (also called test wafers) are used to monitor the process quality in
semiconductor manufacturing. Test wafers are reusable by recycle cleaning and can be reused
or downgraded to the downstream processes. Most previous studies on test wafers aimed to
reduce the use of test wafers by making appropriate downgrade decisions. Y et, the effective
improvement of yield in the recycle process of test wafers is seldom explored. This research
have formulated and solved a decision problem for determining the yield improvement target
for each recycle process in order to minimize the use of test wafers, under a given budget for
yield improvement. Genetic algorithm and marginal alocation algorithm were proposed to
solve the problem. The two methods yield very close solutions but the marginal allocation
method is better in requiring much less computation time.

Keywords Test wafers, control wafers, monitor wafers, yield improvement

1. Introduction



In semiconductor manufacturing, test wafers are indispensable materials, used in
ensuring the production quality. Test wafers, also called control wafers or monitor wafers, are
used to monitor the quality of tools and processes. To control a tool/process, test wafers may
be run before or concurrently with product wafers. Output parameters are then taken from test
wafers to make adjustments on the tool/process, if necessary.

A semiconductor fab keeps many types of test wafers with different specifications. Test
wafers of a particular specification are stored in a dedicated buffer, which supplies to one or
many tools. A test wafer, after being used in a tool, is sent to a cleaning recycle process for
possible reuse. The recycled test wafers if meeting the original specification are kept in the
present buffer. Those becoming lower in grade are downgraded to some other buffers. Test
wafersin a buffer can be repeatedly recycled up to alimited number of times.

The process flow of using test wafers typically involves the following five steps:
preprocessing, in-use, cleaning recycle, downgrade, and grinding reclaim. A test wafer for
measuring the quality of an etching process is used to explain these steps. The preprocessing
step isto deposit afilm on the wafer. The in-use step measures the thickness of the film before
and after the etching process to monitor the process quality. The cleaning recycle step, as
mentioned above, is to remove the film and clean the test wafer for reuse. The downgrade step
is to deliver the test wafer to lower-grade buffers. The downgrade relationship among the test
buffers is a directed graph (Fig. 1). The grinding reclaim step is to grind off some 20-30um
silicon materials from the test wafer for reuse; a reclaimed test wafer is functionaly like a
brand-new one.

Much literature on test wafers has been published. Wong and Hood (1994) studied the
impact on cycle time and throughput caused by increasing the number of process monitoring,
which consequently increases the demand of test wafers. Wu (1997) examined the dispatching
policy of test wafers and product wafers in the preprocessing stage. Popovich et al. (1997)
developed an automated ordering process to maximize the reuse of test wafers. Chu (1998)
investigated the policy for setting safety stock level in each test wafer buffer. Watanabe et al.
(1999) proposed a procedure to increase the use ratio of reclaimed test wafers. Some other
addresses the downgrade decision problem; that is, how many test wafers should be delivered
to each of its descendant buffers from a particular buffer. Some studies (e.g., Foster et a., 1998;
Chen and Lee 2000; Chen 2003) developed the downgrade decision methods by considering
the instantaneous WIP level and demand of test wafers. Lu (2003) analyzed the cost structure
of test wafers and solved the problem by considering the long-term demand and supply of
each buffer. In summary, most previous studies focused on the improvement of operation
policies for test wafers, under a given set of system parameters. Yet, very few examine the
improvement of these system parameters, such as yield rates of recycle processes, for reducing
the use of test wafers.

This paper studies how to establish an effective yield improvement plan for cleaning



recycle processes. The decision problem is to determine the target yield rate of each buffer so
that the use of brand-new test wafers can be minimized under a given budget for yield
improvement. We adopt the downgrade decision model developed by Lu (2003) to determine
the usage of brand-new wafers for a particular set of recycling yield rates. Changing the set of
yield rates will change the usage of brand-new test wafers. Two solution methods are
developed to find a set of yield rates in order to minimize the usage of brand-new test wafers.
These two solution methods involve a genetic agorithm (GA) and a marginal allocation
algorithm.

The remainder of this paper is organized as follows. Section 2 reviews the downgrade
decision model developed by Lu (2003). Section 3 describes the problem of planning the yield
improvement of cleaning recycle. Section 4 presents the two solution methods as well as the
experiment results. Experiment results are presented in Section 5 and concluding remarks in
Section 6.

2. Downgrade Decision Model
2.1 Cost Analysis

The cost of test wafers in a fab involves three magjor items. (1) the cost of machine
idleness due to lack of test wafers, (2) the usage cost of test wafers, and (3) the storage cost of
test wafer (WIP) in shop floor. By interviewing several 8" fab sites in industry, Lu (2003)
estimates that the storage cost of test wafersis about 2.4% of the usage cost; and is a most 5%
of the machine idleness cost.

From the cost analysis, the safety stock level of test wafers can be assumed to be high
enough to always fulfill the time varying demand. Based on such an assumption, Lu (2003)
modeled the downgrade decision as a static decision problem. That is, the input and output
average daily flow rates of each test wafer buffer should be balanced.

2.2. Downgrade Decision Problem

In atypica fab, the downgrade relationship among test wafer buffersis a directed graph.
Referring to Fig.1, the directed graph involves four types of buffers. Working buffers (c;-Cs)
directly supply test wafers to tools. The releasing buffer (co) releases brand-new or reclaimed
test wafers to working buffers. The reclaiming buffer (c;) reclams test wafers, and sent them
to either the releasing buffer or the scrapping buffer. The scrapping buffer (cg) scraps the test
wafers that cannot be reclaimed further.

A working buffer stores m categories of test wafers, where m denotes the maximum
number of cleaning recycles. Category i (1<i < m) represents test wafers that have received
I times of cleaning recycle. A test wafer in category i, after receiving one more cleaning
recycle, becomes one in category i+1. Any test wafer in a particular working buffer, whatever
category it belongs to, is regarded as the same in specification. Each cleaning recycle in a



certain buffer has a distinct yield rate. Fig. 2 shows various categories of test wafers in a
working buffer.

The downgrade decision problem is to determine the daily flow rate of test wafers to be
downgraded among buffersin order to minimize the usage of brand-new test wafers.

2.3 Notations

Let the downgrade path between the reclaiming buffer and the releasing buffer be called
the feedback path. By eliminating the feedback path, the directed graph becomes one without
loop, which can be denoted by G = (V, E) where V={c, Ci,..., G, C+1} iSafinite set of buffers
and E is a set of arcs. An arc represents an ordered pair of two buffers. A path from ¢; to ¢;
exists if one can traverse from ¢; to ¢; through passing k arcs (k > 1) . If there is a path from ¢;
to ¢, then ¢; is said to be an ancestor of ¢;, and ¢; is said to be a descendant of ¢;. Additionally
including the feedback path, the overall downgrade relationships can be denoted by S= (G f),
where f is the arc ¢, - ¢y, Referring to S= (G f), the following notations are used to formulate
the downgrade decision problem.

Designations and Sets

Ci: designation of test bufferi; 0 i r+1, ¢y isthereeasing buffer; c; isthe reclaiming buffer,
Cr+1 iSsthe scrapping buffer, and ¢ (1 1 r-1) isaworking buffer.

P(i): the set of ancestor buffers of ¢; in diagraph G, excluding co; i.€. Co ¢ P(i)

S(i): the set of descendant buffers for ¢; in diagraph G

Parameters

Di: average daily demand of test wafersinc,1 i r-1

m(i): maximum number of cleaning recycleinc,1 i r-1

r!“: theyield of k-th cleaning recycleinc, 1k m()

n: maximum number of grinding reclaimin ¢;

h*: theyield of k-th grinding reclaiminc,1 k n

Variables

O;;: daily quantity of test wafers downgraded from ¢; to ¢; in diagraph G

Ni: daily quantity of brand-new test wafers downgraded to ¢; fromcy 1 1 r-1
r-1

N: daily quantity of brand-new test wafers downgraded fromcy; N = z N,
i=1

Y;: daily quantity of reclaimed test wafers downgraded to ¢; from ¢

Z™M: daily quantity of test wafers, with k times of reclaim, sent to ¢, from ¢;

Z: daily quantity of reclaimed test wafers sentto o from¢;, Z =)z
k=1

X1 daily quantity of test wafers in ¢; with k-th cleaning recycle
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2.4 Model

Lu (2003) formulates an LP model for the downgrading decision as follows. The model
assumes that the input flow rate should equal the output flow rate for each buffer. Otherwise,
the WIP level of each buffer may increase to infinity.

r-1
Min >N,
i=1

S.t.

r-1 r-1
N+Z=>'N,+>, D)

j=1 j=1
Nj+Yi+ > O = X[ 1<j<r-1 2

ieP(j)

[kl _ [K] [k-1] i
X=X 1<j<r-1 3
m(i)XEk] = Dj 1<j<r-1 (4)
k=0
0,= X 1<j<r-1 (5)

jes(i)
Yo,= Y z9+o0,,, 1<j<r-1 (6)
jeP(r) k=1
Z[l] — h[1] N (7)
Z[k] — h[k] ,Z[kfl] (8)
O,.=N (9)
N, 20,Z >20Y, 20,0, >0 (10)

The objective function is to minimize the daily usage of brand-new test wafers.
Constraint (1) denotes the flow balance relationship in buffer cp. Constraints (2) indicate the
inputs to a working buffer. Constraints (3) describe the yield relationship of a cleaning recycle
in aworking buffer. Constraints (4) denote that the demand in a working buffer ¢; is supplied
by severa categories of test wafers. Constraints (5) indicate the output of a working buffer.
The left-hand side describes where the output test wafers are downgraded. The right-hand side
denotes the sources of the output.

Constraint (6) denotes the flow balance relationship of the reclaming buffer c¢;. The
inputs are from all working buffers, represented in the left-hand side. The output involves two
types of reclaimed test wafers, either within specification for reuse or out-of-specification for
scrapping. Constraints (7) and (8) represent the yield relationships of grinding reclaim.
Constraint (9) denotes that flow balance of the whole fab; that is, all the brand-new buffers



finally have to go to the scrapping buffer ¢.+1. Constraints (10) denote that all variables are
non-negative.
3. Problem of Planning Yield Targets

The decision problem of planning the recycle yield rate for each working buffer is
discussed below. The cleaning recycle of test wafersis usually executed in a wet etch process.
That is, putting test wafers in chemical solution for some time to clean the surface of test
wafers. By changing recipes and process parameters, such as solution concentration or the
time of bathing, the yield rate of recycle would change. Engineers need to experiment for the
yield improvement. According to engineers experiences, the higher is the target yield
improvement, the more is the number of experiments and consequently the higher is the cost
incurred.

To explain the yield planning problem, the following notations as well as those presented
in Section 2 are referred.

Notations

R = [Ry, Ry, ..., R.]: the current yield vector of the fab, where R = [ &, .. r["VI]:

denotes the current yields at buffer ¢; and ™™ istheyield of k-th recycle.
R=[R,R,,...R_]: anew yield vector of the fab, where R =[F1 714 FI")] denotesthe
new yields at buffer ¢; and 7 isthe new yield of k-th recycle.

X = [Xy, Xz ..., Xt an yield improvement plan, where X, = R — R =

1

[ X, x? . ™ Jdenotes the yield improvement targets at buffer ¢, and

x4 =719 I denotes the yield improvement target of k-th recycle

C(x) : the cost incurred for the yield improvement in k-th recycle at buffer ¢;

I‘lml

cxX)= >, Z C(x™) : the cost incurred for ayield improvement plan X

i=1 I=1
B : the budget for improving the recycle yield of working buffers
The LP model presented in Section 2 can be dternatively interpreted asN =L (R). That is,
given ayield vector R, the LP model L can compute the minimum daily usage of brand-new
test wafers N. The problem of planning yield improvement targets can thus be formulated as
follows.



Max L(R—L (R)

X= R—R

C(X)<B

The decision variables are represented by a yield improvement plan X. The objective
function is to maximize the saving in the usage of brand-new test wafers, under a given budge
B.

4. Solution Methods
Two solution methods have been developed for solving the yield planning problem. One
isagenetic algorithm and the other isamarginal allocation algorithm.

4.1 Genetic Algorithm

Genetic algorithm (GA) techniques, widely applied in various areas, are a random-search
method for locating efficiently a near-optimal solution in the enormous space (Holland 1975;
Gen and Chen 2000; Chen et a. 2001). A GA is an iterative procedure that maintains a
constant-sized population P(t) of candidate solutions (called chromosomes). During each
iteration step t, called a generation, new chromosomes are created by invoking some genetic
operators. Each existing and newly generated chromosome is evaluated to determine its
fitness value, which denotes how good the solution is. Based on these evaluations, a set of
chromosomes are chosen by a selection procedure to form the new population P(t+1). The
procedureis iteratively performed until the termination conditions are met.

The proposed GA for solving the yield planning problem is presented bel ow.

A. Chromosome and Initial Population
A chromosome, a yield improvement plan, is denoted by X = [Xy, X5, .., X.1] consisting

of r-1 strings, where a string X; = [ X, x(@,..., X™1] contains m(i) positive numbers. Let
UB(x') represents the upper bound of X and the interval [0, UB(x))] be divided into n

segments, where n = round-up( ). Each of the first n-1 segments has a distance d, and

UB(x)
d
the distance of the last segment is UB( x")-(n-1)d. The value of x! is chosen from the set
of the n+1 end points, denoted by S(x'). Let N be the total number of chromosomes in

the population P(t). The initial population P(0) is created by randomly generating N,

6



chromosomes.

B. Fitness Function

The fitness function of X is defined as follows, where the first term denotes the objective
function.

FOX) =[f(R) - f(R)] = Y[C(X) - B],

whereY =0 if C(X)<B
=M else, where M is avery large positive number

The second term is a penalty function (Rietman and Frye 1996), which leads to a small
fitness value if the solution violates the budget constraint. A chromosome with a small fitness
value is less likely to survive during the evolution of the population and tends to finally be
excluded from the population. The penalty design is to keep “good genes’ in the population.
For a budget violation chromosome, particular segments of its genes may exactly match a part
of the optimum solution. Possibly carrying good genes, violation chromosomes shall not be
forcibly excluded from each population.

C. Crossover and Mutation Operators
The proposed GA defines two genetic operators, crossover and mutation, to create new
chromosomes.

The crossover operator is designed to create N xP, new chromosomes in each
generation, where P, is a predefined crossover probability. This operator is applied by first

randomly choosing N x P, chromosomes from P(t) and randomly grouping them into

(N,xP,)/2 pairs. For each pair of chromosomes, a position in a chromosome (called the

crossover point) is randomly chosen, and the segments to the right of the crossover point
exchanged.

The mutation operator is designed to create N x P, new chromosomes from P(t),
where P,,, isapredefined probability of mutation. This operator is applied by first randomly
selecting N, xP,,, chromosomes from P(t). For each chosen chromosome, a gene X is

randomly selected and is subsequently replaced by a number randomly chosen from the set

(%)



D. Selection Strategy
The chromosomes in population P(t) and the newly created chromosomes are put in a

pool, caled S where the number of chromosomes is h=N_ -(1+P, +P,) . N,

chromosomes are to be selected from Sto the population P(t +1), by the rank-space method
(Winston 1992) for preventing the genetic search from becoming trapped at a local optimum
solution. The procedure of the rank-space method is presented bel ow.

Step 1: Sort in descending order the chromosomes in S according to their fitness values. Let
Z,Z,,..Z, bethe sorted result. Such a ranking of Z,, termed quality-ranking, is

represented by R (Z)).

Step 2: Move the best quality-ranking chromosome from Sto P(t+1).
S=S-{Z};
Pt+1) « Z;
Y, =Z2,; [* renamethe chromosome selected for P(t+1) */
N=1; /* countthechromosomenumberin P(t+21)*/
Step 3: For each chromosome Z, in § compute the diversity index D(Z,)
N 1
D(Z)= ;—M =
Step 4: Sort in ascending order the chromosomes in Saccordingto D(Z,) . Such aranking of
Z, , termed diversity-ranking, isrepresented by R,(Z,).
Step 5: Compute the sum of quality-ranking and diversity-ranking of Z, inS

T(Zi): Rq(zi)+ Rd(zi)

Step 6: Sort in ascending order the chromosomes in Saccordingto T(Z;) . Such aranking of
Z, , termed combined-ranking, isrepresented by R.(Z;).

Step 7: For each chromosome in S, compute the probability of putting Z in P(t+1)
r=R(Z);

Prob(Z,) = p-(1- p)'™; /* pisapredefined probability, typically set to 0.667*/

; I*Ygisachromosomein P(t+1) */

Step 8: Generate arandom number and determine which chromosome in Sis selected. Let Z |
be the selected chromosome.
S=S-{Z.}; *Move Z_ 6 fromSto P(t+1)*/
Pt+1) « Z,;
Yo=2.; * rename the chromosome selected for P(t+1) */
N=N+1; /* update the chromosome numberin P(t+1) */
Step 9: Termination Check



If N<N, thengotoStep 3

Else Stop

E. Terminating Conditions
Population P(t) is iteratively updated until a particular chromosome keeps the best

solution for over Ng generations or Ng generation has been created.

4.2 Marginal Allocation Algorithm

The proposed marginal allocation algorithm is an analytica method. The idea of this
algorithm is by computing the cost and benefit caused by one unit yield improvement for each
recycle at each buffer. Then, select the one, which is the most beneficial and meets the budget
constraint, to update the yield parameters. The process is repeated until the cost incurred is
over the budget. The procedure of this algorithm is presented below.
Step O: Initialization and Function Definition

X=[0,0,...,0];i.e, xM=0,for 1<i<r-21<k<m()
E': aunit vector by replacing thevalueof x™ in X by 1
k= Up_Arg(R") /*define function Up_Arg()*/

i = Low_Arg(R") / *define function Low_Arg()*/
Step 1: Compute the benefit of increasing yield by one unit of d
R=R+(X +d-EX); for 1<i<r-L1<k<m()
Step 2: Select the most beneficial alternative
p=Up_Arg(Max(R");for 1<i<r-1 1<k <m(i)
ik

g= Low_Arg(|\/|ax(F~§k)) ;for 1<i<r-11<k<m(i)
ik
Step 4: Check if the cost is within the budget
If C(X+d-Ej) >B

then return X; Stop

Else X =X+d-E; /* updatetheyield improvement plan X*/



GotoStep 1

5. Experiment Results

Experiments for justifying the two solution methods are executed by using a simplified
fab involving six working buffers as shown in Fig. 1. The daily demand of test wafers and the
current yield rate of each recycle at each working buffer are listed in Table 1. Assume

UB(x™)=9% for 1<i<r-land1<k <m(i). The cost function for improving the yield of

k-th recycle at each buffer isthe same, i.e., C(x"))= C(x{"') for i j, asshownin Table2.

The budget for yield improvement is B = $50,000 and the unit yield increment isd = 1%. The
current daily usage rate of brand-new test wafers, computed by the LP model, is L(R) =
1188.79. Table 3 shows the cost and benefit of the solution obtained by applying the marginal

allocation method, where L(F~{) =1036.76. Notice that buffers c;, c,, and ¢s are not suggested

to improve the yield at the present budget. This implies that their local improvements have
very few or no impact to the global improvement. Buffer ¢cs has the highest priority for yield
improving. Such ayield target planning can effectively guide engineers to prioritize their jobs
in order to maximize their contributions.

The GA is coded in C™ which calls the downgrade decision LP model implemented in
CPLEX. The parameters of GA are set as follows: Py, = 0.8, Ppy = 0.05, Np = 100, Ng = 500,
and Ng = 10,000. Table 4 shows the results of 20 experiment runs. These 20 different yield

improvement plans are quite close in the C(X) and L(R)— L(F~{) . The mean of L(R)-— L(F~{)

is 150.09 and the standard deviation is 1.526.

The results obtained by the marginal allocation method are dlightly better than those
obtained by GA. Also, the computation time per run for GA takes about 30 min. while that for
the marginal allocation method takes only 10 sec. A typical fab may include more than 100
working buffers, which implies that a chromosome may involve 400 genes. Accordingly, the
computation time of GA method may increase substantially. The marginal alocation method
seems better in solving the addressed problem in the real world.

6. Concluding Remarks

This research formulates and solves a problem for planning the yield targets of test wafer
recycle processes. Test wafers are used for monitoring tool or process quality in
semiconductor manufacturing. Test wafers after use are often recycled for possible reuse. A
test wafer alows a limited number of recycles. The cost and benefit for improving the yield
rate in each recycle at each buffer may be different. The addressed problem is to determine the
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allocation of yield improvement targets in order to maximize the benefit under a given budget.

An LP model is used to evaluate the benefit of ayield improvement plan, by computing
the minimum daily usage of brand-new test wafers. Based on the benefit evaluation module,
two methods for finding an optimum yield improvement plan are proposed. One is the genetic
algorithm and the other is the marginal alocation algorithm. The solution obtained by the
marginal allocation method is slightly better, which also takes much less time in computation.
This fast computation feature becomes much more important when the problem size
substantially increases.

The solution of the addressed problem can effectively guide engineers to prioritize the
jobs of yield improving in order to maximize their contributions. Inappropriate priority setting
may increase the yield of a particular buffer but have very little or no impact to the saving of
brand-new test wafers.
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Figure 1. Downgrade relationships among test buffers

Figure 2: A working buffer stores several categories of test wafers
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Table 1: Daily demand and current recycle yields at working buffer ¢

C C C3 Cy4 Cs Ce
D; 3665 2538 2226 2336 6110 1448
r 90% 90% 90% 90% 90% 90%
i 80% 80% 80% 80%- 80% 80%
% 70% 70% 70% 70% 70% 70%
it 60% 60% 60% 60% 60% 60%

Table 2: Cost function of yield improvement for k-th recycle

Variable
definition

Cost Function

y=x" |C(y)=100 + 450y + 30y?

y=x7 |C(y)=100 +500 y+35y?

y=x |1C(y) =100 + 550 y + 40 y?

y=x* 1C(y) =100 + 600 y + 45 y?

Table 3: Cost and benefit of the solution obtained by marginal allocation method

Chromosome C(X) L(R) - L(R)

0000]0000]9800]9900]9991/0000 $49,985 152.03
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Table 4. Solutions obtained by 20 runs of GA with P, = 0.8 and Py, = 0.05

Chromosome C(X) LR -L(R)
0000]0000]9700|8810]9985|0000 $49,845 150.588
0000]0000]9900]9740]9980|0000 $49,925 150.924
0000]0000]9730]9800]9991|0000 $49,975 151.937
0000]0000]9901/8900}8991|0000 $49,905 147.39
0000]0000]9900]9910]9963|0000 $49,880 149.779
0000]0000]9620|7850]9982|0000 $49,765 149.506
0000]0000]9500]9761|9990|0000 $49,840 150.115
0000]0000]9530]9900]9920|0000 $49,965 151.739
0000]0000]9820]9500]9994|0000 $49,860 151.529
0000]0000]9900]9900]9891|0000 $49,985 149.927
0000]0000]9700]9900]9992|0000 $49, 695 151.832
0000]0000|7700]9600]9997|0000 $49,785 149.66
0000]0000]9700]9813|8991|0000 $49,900 147.046
0000]0000]9700]9900]9992|0000 $49,695 151.832
0000]0000]9900|8741]9980|0000 $49,710 149.566
0000]0000]9900|7800]9993|0000 $49,685 150.48
0000]0000]9760]9700|8990|0000 $49,975 147513
0000]0000]9900]9910]9980|0000 $49,795 150.981
0000]0000]9700]9940]9980|0000 $49,925 151.046
0000]0000]9700]9680]9970|0000 $49,820 148.348
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Abstract: This paper presents a dispatching algorithm for a semiconductor fab which has a
feature called machine-dedication, a constraint imposed on the process route. The performance
criterion is hit rate, the percentage of on-time completion. Simulation experiments show that
the proposed algorithm outperforms previous major methods for short-routing process, and
very close to the best for long-routing processes.

INTRODUCTION

Semiconductor manufacturing is more complicated than most other production processes, due
to with re-entry process routes and unexpected machine failures. Reentry process routes
denote that awafer lot hasto enter atool group severa times; and in each enter an operation is
to be processed. Herein, a tool group is one that involves several functionaly identical
machines. The product completion time of a semiconductor fab is thus complex and
unpredictable, consequently leading to low hit rate—the percentage of on-time completion.
This paper addresses how to use dispatching to improve the hit rate of a make-to-order
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semiconductor fab.

Dispatching is to determine which wafer lot to process first, while a number of lots are
waiting before an available machine. Much research on semiconductor dispatching has been
published, afew representative ones include Wein (1988), Lu, Ramaswamy andKumar (1994),
Kim, Kim, Lim and Jun (1998), Dabbas and Fowler (2003). Yet, the fab concerned by most of
these studies did not address a phenomenon known as machine-dedication, a constraint
imposed on the process route due to the advance of manufacturing technology.. As stated, a
wafer lot has several operations to be processed by a tool group. For a non-dedicated tool
group, any machine in the tool group can freely process the associated operations of alot. Yet,
for a dedicated tool group, the associated operations of a lot have to be all dedicated to a
particular machine.

A recent study (Wu, Huang, Chang, and Yang 2004) emphasized the machine-dedication
feature, and proposed an algorithm (called LBSA) for a semiconductor fab to improve the hit
rate. The LBSA dispatching algorithm outperforms many other algorithms for short-routing
products, but not so for long-routing products. This paper presents a method that enhances the
LBSA algorithm in order to achieve good performance in both short-routing and long-routing
products.

DISPATCHINGALGORITHMS

In a fab, machines can be classified into two types. series and batch. A series machine
processes a wafer at a time until a lot of wafers are completed, while a batch machine
processes severa lots of wafers at a time. This research focuses on the dispatching of series
machines.

Dispatching for Dedicated M achines

The dispatching for dedicated machine is developed based on two paradigms:. (1) keeping the
production line balance and (2) giving higher priority to the lots that tend to be urgently late.
The line-balance paradigm models a production route by a number of segments. Each
segment is ended with an operation processed by a dedicated-machine. A dedicated machine,
with relatively higher investment cost, is usually the bottleneck of throughput. Due to the
reentry characteristics, a dedicated machine has to process the WIPs located in many segments.
Appropriately dispatching these WIPs could therefore control the throughput of each segment.
The idea of the line-balance paradigm is keeping the throughput of each segment as
uniform as possible. Higher throughput on a particular segment tends to produce its WIPs
earlier than expected; and lower throughput tends to delay the WIP progress. Consequently,
non-uniform throughput would reduce the resulting hit rate. Therefore, we give highest
dispatching priority to the segment that has the highest throughput. If more than one lots arein
the segments, CR (critical ratio) is used to prioritize the dispatching of lots. Here, CR, a
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popular index in dispatching, refers to the ratio of the remaining time divided by the remaining
processing time of alot.

Such a line-balanced approach may have a drawback. Lots that are substantially delayed
but located in a low-priority segment have little chance to remedy their progresses. To
overcome the drawback, we define an exception to the application of the line-balance
approach. The exception is that lots urgently late in progress, irrespective of which segments
they might stay, always have higher dispatching priority than all other lots and CR is used to
prioritize them.

Detail steps of the dispatching algorithm for dedicated machines are presented below,
with its notation firstly explained. Consider a fab that produces only one product family that
has a product route with s segments. Let L;; denote the j-th lot in segment i. The processing

time of Ljj is represented by tjj, and its CR value is by CR;. The average cycle time of

segment i isrepresented by CT; and the number of lotsin segment i is represented by n(i).

Step 1 Check if urgently late lots exist
DeIay_Set:{Li,-lcgjg;, 1<i<si1<j<n()}
Step 2 Dispatch
If Delay Set#¢, Then (i',j")= ArgMin(CR,) for all Lije Delay_Set
Elseif Delay Set= ¢
Compute average flow rate of segment i , Viznz(iit”/m-i; 1<i<s
=i
Identify highest priority segment " = ArgMax(v,); for 1<i<s

Prioritize highest priority lot, -~ arqgmin(cr. )

Step 3: Output the ot to be dispatched Likj* ; STOP.

Dispatching for Non-dedicated Machine

A starvation avoidance paradigm is proposed for the dispatching of non-dedicated machine.
As stated, the ending operation of a segment is processed by a dedicated machine, which is
bottleneck and critical to the fab throughput. Therefore, non-dedicated machine should be so
dispatched that dedicated machines would not be starving.

Detail steps of the dispatching algorithm for non-dedicated machines are illustrated
below, based on the following notation. Consider afab with K dedicated machines, of which a
non-dedicated machine is to be dispatched. The WIPs in segment i has K types; each type is

21



assigned to a particular dedicated machine. Let the total number of WIPs in segement i be
represented by in(i’k), and L;jx represent the lot associated with dedicated machine k, located

insegment i, and 1< j <n(i,k)isthelot identification.
Step 1 Check if urgently delay lots exist
Delay_Set = { Lijx | CRy <7 1<i<s1<j<n(i,k)}
Step 2 Dispatching
If Delay_Set#z¢ then (' " k')=argmincr,) foral Lije Delay_Set

Elssif Delay Set= ¢

Compute v, == ; 1<i<s, 1<k<K
CT,

(' .kK)=AgMax,) for 1<i<s, 1<k<K

j" = ArgMin(CR. )

Step 3: Output Li*jxk, , the lot to be dispatched; STOP

PERFORMANCE COMPARISON

By simulation, the proposed dispatching algorithm in terms of the hit rate performance
has been compared with the LBSA and CR algorithms. The scenario of the simulation was
provided by a fab in the real world. Three logistic product families, which involve 1P3M,
1P5M and 1P7M (M means metal layer), are used in the comparison. The higher the number
of metal layers the longer the process route.

Experiment results show that the proposed algorithm outperforms the LBSA agorithm in
all three tested products; much better than CR in short-routing products (1P3M and 1P5M),
and is dlightly worse than CR in long-routing products such as 1P7M. Statistic testing
indicates that the difference is not significant.

In terms of some other performance measures such as mean cycle time, the proposed
algorithm also performs well, better than the other two in all tested products (Table 2).

Algorithm 1P3M 1P5SM 1P7M
CR 66.99 % 75.55 % 96.67 %
LBSA 87.22% 88.94 % 70.80 %
Proposed 95.23 % 97.48 % 94.67 %
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Table 1: Comparison of hit rate

Algorithm 1P3M 1PSM 1P7M
CR 475.53 568.60 744.73
LBSA 461.60 552.33 731.73
Proposed 459.07 551.93 714.60

Table 2: Comparison of mean cycletime

CONCLUDING REMARKS

This paper presents a dispatching algorithm for semiconductor manufacturing with
machine-dedication feature. The feature is a constraint imposed on the process route, which
has just recently appeared due to the advance of manufacturing technology and did not get too
much attention in previous relevant literature. A recently developed algorithm LBSA, which
addresses the feature, has shown good performance in hit rate for short-routing products but
not well for long-routing products.

The proposed agorithm outperforms the LBSA algorithm both in hit rates and mean
cycle time for both short and long process routes. Further comparison, including other logic
products and other dispatching algorithm, isto be carried out in the near future.
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