
Brief Contributions__

A Hybrid Algorithm of Backward Hashing and
Automaton Tracking for Virus Scanning

Po-Ching Lin, Member, IEEE,
Ying-Dar Lin, Senior Member, IEEE, and

Yuan-Cheng Lai

Abstract—Virus scanning involves computationally intensive string matching

against a large number of signatures of different characteristics. Matching a

variety of signatures challenges the selection of matching algorithms, as each

approach has better performance than others for different signature

characteristics. We propose a hybrid approach that partitions the signatures into

long and short ones in the open-source ClamAV for virus scanning. An algorithm

enhanced from the Wu-Manber algorithm, namely the Backward Hashing

algorithm, is responsible for only long patterns to lengthen the average skip

distance, while the Aho-Corasick algorithm scans for only short patterns to reduce

the automaton sizes. The former utilizes the bad-block heuristic to exploit long shift

distance and reduce the verification frequency, so it is much faster than the

original WM implementation in ClamAV. The latter increases the AC performance

by around 50 percent due to better cache locality. We also rank the factors to

indicate their importance for the string matching performance.

Index Terms—String matching, automaton, filtering, virus scanning.

Ç

1 INTRODUCTION

SCANNING the content on network or storage devices for viruses
involves computationally intensive string matching against a set of
virus patterns. Although designing an efficient method for high-
speed content inspection has sparked a number of innovations in
research lately, most of them look to hardware approaches that
offload string matching to a specialized hardware engine [1],
especially for Snort-style intrusion detection (www.snort.org);
however, as many antivirus applications run on a software
environment (e.g., a commodity computer), deploying a hardware
accelerator is costly and inflexible. Compared with intrusion
detection, antivirus applications used to be relatively inconspic-
uous as a target to be accelerated. Therefore, we believe a scalable
and fast string matching algorithm and its efficient software
implementation are still desired for antivirus scanning.

Software implementation of string matching algorithms faces

new challenges. Malware writers want to escape detection by

antivirus programs. They frequently use obfuscation techniques,

such as packing malware programs with packers (e.g., UPX,

Themida, etc.) [2], to generate a number of variants of a malware

program. Due to this tendency, virus signatures increase very

fast and should be updated frequently. Antivirus applications,

therefore, have much more patterns than Snort, which has only
thousands of patterns. For example, ClamAV (www.clamav.net)
has claimed a set of more than 200,000 patterns. Unfortunately, a
large set of patterns demand large memory space to store them,
so a compact data structure to improve cache locality is critical;
otherwise, string matching will be slowed down due to the
“memory wall”—memory access is slow [3]. This struggle makes
designing fast string matching algorithms more complicated than
ever.

A common class of string matching methods, such as the Aho-
Corasick (AC) algorithm [4], tracks a finite automaton constructed
from the set of patterns. The tracking reads only one character in
the text per iteration, but this approach does not well leverage the
capability of modern processor architectures, which can read
4 bytes or more in the operands of an instruction. Although some
can track multiple characters per iteration for high performance,
the parallelism from hardware assistance [5], [6], software
implementation does not have the blessing from the hardware
parallelism. Moreover, the data structure of the automaton
contains the transitions from each state and the failure links, and
should be compressed in a compact representation to reduce
memory requirement [7], [8]. The existing compression methods
have two limitations. First, many of them rely on hardware
assistance for fast tracking, but their software implementation is
sequential and much slower. Second, the number of patterns in
antivirus applications is much larger than that in intrusion
detection, and virus signatures are generally long (could be up
to hundreds of characters) to avoid false positives [9], making
compressing the patterns even challenging.

Another class of methods moves a search window through the
text to check whether it contains a suspicious match or not [10],
[11]. A suspicious match means that the search window is likely to
be a substring of some pattern, and it is followed by a verification
to see whether that pattern really appears or not. Assuming most
of the text is legitimate, these methods can exclude the legitimate
text very fast, and verify only those suspicious matches. The
patterns can be represented in a compact data structure such as a
shift table [11] or a Bloom filter [12]. There is a trade-off in choosing
the window size [10]. A large window size is preferred because a
long window is less likely to be matched without a true match, and
thus, reduces the verification frequency. However, matching short
patterns within a long window in each iteration is inefficient, since
the patterns will be compared with the substrings in the long
window. Some methods in the class can accelerate the scanning by
skipping the characters not in a match based on algorithmic
heuristics from a block of characters within the search window,
such as the Wu-Manber (WM) algorithm [11]. They are generally
fast, but have the Achilles’ heel—the maximum skip distance (also
the search window) is bounded by the shortest pattern length in
the set of patterns. These methods, therefore, have the problem
with short patterns, whereas short patterns do not represent a
problem for automaton-based methods.

According to the above observation, either class of methods has
its limitations. In other words, not a single class of methods can
scan for all the virus signatures efficiently. It is, therefore,
tantalizing to combine the merits of both classes to keep the data
structure of the patterns manageable and fast scan through the
text, while handling short patterns well. This work presents a
hybrid method that combines the AC algorithm and a variant of
the WM algorithm, namely the backward hashing (BH) algorithm.
The patterns of virus signatures are partitioned into long and short
ones, separated by a length threshold. The BH algorithm scans for
only long patterns to derive long shift distance of the search

594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 4, APRIL 2011

. P.-C. Lin is with the Department of Computer Science and Information
Engineering, National Chung Cheng University, 168 University Rd.,
Min-Hsiung., Chiayi, 621, Taiwan. E-mail: pclin@cs.ccu.edu.tw.

. Y.-D. Lin is with the Department of Computer Science, National Chiao
Tung University, 1001, Da-Hsueh Rd., Hsinchu City, 300, Taiwan.
E-mail: ydlin@cs.nctu.edu.tw.

. Y.-C. Lai is with the Department of Information Management, National
Taiwan University of Science and Technology, 43, Sec. 4, Jilong Rd., Da-An
District, Taipei City, 106, Taiwan. E-mail: laiyc@cs.ntust.edu.tw.

Manuscript received 14 Jan. 2009; revised 22 Jan. 2010; accepted 30 Mar.
2010; published online 15 Apr. 2010.
Recommended for acceptance by P. McDaniel.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-01-0023.
Digital Object Identifier no. 10.1109/TC.2010.95.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

window, while the AC algorithm scans only the relatively small set
of short patterns.

The backward hashing mechanism is an incremental improve-
ment over the WM algorithm in that it can look backward from the
end of the search window to verify whether a true match occurs,
while exploiting long shift distance if there is a chance. A large
shift is preferred, since the search window can skip more
characters not in a match, and thus, speed up the search. The
BH algorithm can reduce the impact on performance due to short
shift distance and frequent verification due to the nonuniform
character distribution in both the patterns and the text. The hybrid
method, which is applied to ClamAV to improve its performance,
can make the data structure of the automaton compact, and thus,
save memory space. This work also examines several factors in
software implementation such as cache locality, and compares
their significance to the overall performance in practice.

The rest of the paper is organized as follows: Section 2 reviews
the existing work for string matching for virus scanning. Section 3
presents the details of the hybrid method and the practical
implementation issues, followed by the performance evaluation
of the algorithm in Section 4. Finally, Section 5 concludes the paper
and points out future work.

2 REVIEW OF EXISTING WORK

This section briefly reviews the background related to this work,
including existing string matching algorithms and the inner
working of ClamAV on which this work is based. string matching
algorithms have been developed for a diversity of applications for
decades. To not distract the attention, we restrict to algorithms that
have been usually used for security applications (e.g., intrusion
detection and virus scanning) herein. For foundational work of
string matching and other applications, we refer the readers to
books such as [13] and [14]. Security applications usually involve a
large number of patterns to be matched, so algorithms that scan for
a single pattern at a time, e.g., the Boyer-Moore algorithm [15], are
too slow for these applications. In this context, we therefore review
the algorithms that scan for a large number of patterns
simultaneously for speed.

2.1 String Matching Algorithms for Security Applications

Algorithms that scan the text for multiple patterns typically track
the partially matched prefixes with a finite automaton that accepts
the patterns, or filter the text with a search window along the text to
weed out unsuccessful matches and verify only suspicious matches.
The former ones read the characters in the text sequentially to drive
the automaton transition, and feature linear execution time even
though algorithmic attacks are present to exploit the worst case of
an algorithm. But the data structure of the automaton usually
demands large memory space to store the transition information.
The latter ones leverage a memory-efficient hashing mechanism to
fast check whether the search window contains a substring of one of
the patterns. Such algorithms can execute very fast, but must
carefully deal with possible algorithmic attacks.

In recent years, automaton-based approaches focus on fast
tracking a compressed automaton with hardware assistance [5],
[16], [17], [18], [19], but their software implementation is not as
efficient as the hardware counterpart. Although some compression
methods are independent of hardware [8], [20], their scalability to a
large set of long virus patterns could be a problem. First, the
transition table is not so sparse due to the large set of patterns.
Second, the method to simplify repetitions in the patterns [20] is
unable to compress the characters in the long patterns.

A filtering-based approach can map part of the search window
(or the entire window) with one or more hash functions to see
whether that part (or the window) matches an entire pattern or

part of a long pattern. Verification for a true match follows if a

suspicious match occurs. This approach is very memory efficient

because a pattern is stored as only a hash value or several bits in a

few addresses. The search window must be long enough to reduce

the verification frequency, but has two side effects: longer time in

hash computation and inability to match shorter patterns [10].
The WM algorithm is a well-known example of the filtering-

based approach. In the search stage, the shift distance of the search

window is derived by looking up the suffix of the window in the

shift table (built in the preprocessing stage), and the search

window can be safely shifted to the next position without missing

a match. The shift is safe because of the heuristic described below.
Suppose that the search window is m characters long (set to the

shortest pattern length), and let X be the block of b characters in

the window suffix. The heuristic looks up the block in a shift table

to derive the shift distance as follows:

1. The search window can be shifted by m� bþ 1 characters
if X is not a substring of any patterns. Any shift shorter
than m� bþ 1 cannot lead to a match because this would
contradict that X does not appear in any patterns.

2. Otherwise, the shift value is m� j, assuming the rightmost
occurrence of X ends at position j of some pattern. If j ¼ m
(i.e., zero shift value), X is the suffix of one or more
patterns, so whether a true match occurs should be
verified. If the verification fails, the search window is
shifted by one character and the process goes on.

The correctness of this heuristic was proved in [11], so we will

not repeat that herein. Fig. 1 illustrates how this heuristic works

with a trivial example in which the WM algorithm searches only

two patterns in the text: P1 and P2. The shortest pattern length is

five, so m ¼ 5. We arbitrarily set b ¼ 3 in this example. The shift

table is built for substrings of b ¼ 3 characters in the patterns

according to the above heuristic. By looking up the suffix MAT in

the shift table, the algorithm knows that the search window can be

safely shifted by two characters without losing any match. In the

next iteration, the shift value from the table lookup is 0, meaning

that a suspicious match is found. The algorithm then verifies the

occurrence of a true match.
There is a trade-off with the size of the shift table. Mapping

multiple blocks to the same table entry and filling in the minimum

shift value of these blocks can compress the shift table in the

memory space. Reducing the table size also improves cache

locality, but at the cost of smaller shift values (due to the minimum

shift values) and more frequent verification (due to the increasing

likelihood of a zero shift value). On the contrary, a large shift table

can derive larger shift values due to fewer blocks mapped to the

same entry, on average, but at the cost of worse cache locality.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 4, APRIL 2011 595

Fig. 1. A trivial example of the WM algorithm.

With an increasing number of patterns, the hash collisions will
also increase significantly, and maintaining a small table for good
cache locality becomes difficult. The problem with scalability to a
large set of patterns also occurs in other filtering-based algorithms
[21], such as [22], [23], [24], and [28]. Zhou et al. [21] proposed a
multiphase dynamic hash (MDH) algorithm that attempts to
increase the scalability. This algorithm allows a compressed shift
table and adds an additional hash table to separate blocks hashed to
nonzero shift values from those hashed to zero shift values. This
approach can reduce the chances of verification due to hash
collisions that contain a zero shift value, but it is unable to reduce
those due to blocks really mapped to a zero shift value. Such blocks
might be frequent because of the nonuniform distribution of
characters in the text and patterns in practice, and result in an
amount of verification. The nonuniform distribution means that
some characters or blocks appear more frequently than the average
in probabilistic analysis. If a frequent block in the text happens to be
the suffix of some pattern, the chances of verification will increase.
This problem should be handled to further reduce the chances of
verification in practice. We will look into this issue in Section 3.1.
Lin et al. [28] proposed a BFAST architecture to derive good shift
values for a large set of patterns using Bloom filters with hardware
parallelism. However, the parallelism is not feasible in software
implementation. An efficient software-based approach is still
needed.

2.2 Virus Signatures and String Matching in ClamAV

The virus database in ClamAV has been growing very fast lately,
containing more than 200,000 signatures at the time of writing
(October 2008). The database contains four types of virus
signatures: basic patterns, multipart patterns, MD5 patterns, and
phishing patterns (See clamdoc.pdf and signatures.pdf in
the source package). A basic pattern is simply a string of characters
for exact match, while a multipart pattern consists of multiple parts
of basic patterns to be matched in sequence for virus identification.
The former is sufficient to detect nonpolymorphic viruses and the
latter allows specifications such as wildcard characters and
bounded gaps (the minimum or maximum distance between two
consecutive parts) to detect polymorphic viruses. The MD5
matching computes the 16-byte (i.e., 128-bit) MD5 values from
sections in the Portable Executable (PE) file and then checks
whether the values match one of the MD5 patterns. The phishing
matching checks whether a URL is in the URL list of phishing
patterns. Matching the latter two types of patterns is much simpler
than matching the others. Rather than scanning along the long file
content for multiple patterns, either the MD5 value or the URL is
stored in a short buffer, and the match checks inside the fixed
buffer, simply using hashing and verification to match the MD5
patterns and tracking the automaton of phishing patterns with the
characters in the buffer.

Some patterns come with contextual information such as target
file type, position of the pattern in the text, and so on to reduce
false positives. For example, the signature W32.Deadc0de is a
four-character basic pattern: 0xdec0adde. The occurrence of this
pattern must start from the 64th byte in a file of PE format, or the
match will not be claimed. ClamAV separates the signatures other
than generic ones (i.e., not pertinent to any specific file type) into
individual data structures for each target file type. Therefore, after
determining the target file type of the text, ClamAV can scan the
text for only the signatures associated with that type, besides the
generic signatures. The current version of ClamAV (version 0.92)
scans the text with both the AC algorithm and the WM algorithm.1

The AC algorithm looks for the parts in the multipart patterns and
claims a match if all the parts of a pattern appear and the

relationship between the parts satisfies the specifications of the

pattern. For example, the bounded gaps between two consecutive

parts are all satisfied. On the other hand, the WM algorithm is

responsible for matching basic patterns. Table 1 summarizes the

number of basic patterns or parts (of multipart patterns). The

minimum/maximum lengths of these basic patterns or parts are

also listed for the two algorithms in each target type.
An old version of ClamAV simplified the AC automaton to a

trie structure up to a maximum height, say, h. The patterns with

identical prefixes of h characters are stored in a linked list pointed

by a leaf node at level h. Because the minimum length of the

patterns (actually parts in the multipart patterns) for the AC

algorithm is only two characters, h was set to 2, and the linked list

became increasingly longer as the set of patterns grew. Traversing

the long linked list is, therefore, time-consuming. Miretskiy et al.

[25] proposed a trie structure that can store a pattern at the lowest

possible level as soon as the pattern’s unique prefix is identified,

but an automaton still needs the space to accommodate thousands

of patterns. The more the patterns, the more the nodes are built in

the trie. The trie structure is inherently expensive in space because

each node in it must contain 256 pointers, each of which either

points to the next node or is null. If a pointer takes 4 bytes, the

pointers alone in a node take 1 KB space.
Erdogan and Cao [10] presented a filtering approach named

Hash-AV to weed out most of the legitimate text with a Bloom filter

[12], which can reside in the L2 cache due to its space efficiency. The

design selects a window of seven characters with four hash

functions mapped to a Bloom filter for filtering out the text not in

a match. The four hash functions are applied sequentially to each

window sliding along the text. If a hash function can filter out the

window, the rest of the hash functions are skipped. Because the

Bloom filter is unable to handle the patterns shorter than seven

characters, they are left to the AC algorithm for multipart patterns.

The search window in Hash-AV does not skip any characters in the

text, unlike the original WM algorithm in ClamAV. Hash-AV

prefers to abort the benefit of skipping because the search window

is rather short in ClamAV due to the short patterns, and the short

window significantly limits the skip distance. Deriving the skip

distance with only three characters in ClamAV also results in high

false positive rate. However, skipping a long distance is still

beneficial to high performance if the search window is long.

Moreover, Hash-AV does not attempt to speed up the AC algorithm

in ClamAV at all.

596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 4, APRIL 2011

1. ClamAV calls it the Boyer-Moore (BM) algorithm, but the algorithm
actually operates in the same way as the WM algorithm.

TABLE 1
The Number of Parts in Multipart Patterns (Scanned by AC)

and Basic Patterns (Scanned by WM), as well as
Their Minimum/Maximum Lengths in Each File Type

3 THE HYBRID ALGORITHM AND PRACTICAL ISSUES

This work partitions the patterns (either basic patterns or parts in
multipart patterns) in ClamAV into long and short ones. The
BH algorithm is responsible for only long patterns to lengthen the
average skip distance and reduce the frequency of verification,
while the AC algorithm scans for only short patterns to reduce the
automaton sizes. Table 2 lists the symbols used in the text to clarify
the explanation.

3.1 The BH Algorithm

The implementation of the WM algorithm in ClamAV faces several
practical performance issues. First, the block in the suffix of the
search window to derive the shift distance consists of only three
characters (i.e., b ¼ 3). Considering the huge space of j�jb ¼ 2563

possible blocks in the window suffix, the block size seems
sufficient to weed out most false positives (i.e., suspicious matches
that should be verified) from a probabilistic aspect, but it is not the
case in practice due to nonuniform block distribution. For example,
the block “0x00 0x00 0x00” is frequent in Windows executable files.
If this block happens to be the suffix of some pattern, the false
positive rate due to this block will be relatively high, up to around
37 percent in our study on a sample set of Windows executable
files. Extending the block size can reduce the false positive rate, but
has three side effects: 1) Computing the hash function to look up a
large block in the shift table takes longer time. 2) The maximum
shift distance in the WM algorithm is m� bþ 1. Increasing b will
also shorten the maximum distance. 3) Although the heuristic such
as that in [26] allows the maximum distance up to m characters,
filling up the shift table in the preprocessing stage will be time-
consuming for large b. We will discuss this point in detail later.
Second, the search window in the implementation is rather short
because the shortest pattern for the WM algorithm has only four
characters (see Table 1). Skipping longer than the shortest pattern
length may miss the shortest pattern if it happens to appear in a
position between two consecutive skips. This factor restricts the
effectiveness of applying the WM algorithm to ClamAV.

We use the following methods in the BH algorithm to solve the
aforementioned problems.

3.1.1 A Better Heuristic to Determine the Shift Distance

The heuristic in the WM algorithm is conservative because it
considers only the entire block to derive the shift distance—if the
rightmost block X is not a substring of any patterns, the shift value
is m� bþ 1. The value could be larger if X’s suffix is also
considered. For example, if neither X appears in the patterns nor
anyX’s suffix is a prefix of some pattern, the shift value ofm is safe,
i.e., no match will be missed. Liu et al. have a similar observation in
their method that indexes the shift table from the prefix sliding
window (PSW) [26], i.e., the prefix of the search window, but the
forward search may result in false negatives. Fig. 2 illustrates an
example to show that the shift should not go beyond the PSW. In
this example, the shift distance derived from the above heuristic
with the PSW could bem ¼ 5, but the pattern MATCH will be missed

with that shift. Generally, if the characters beyond the PSW are not

examined, no possible match should be excluded.
In the hybrid algorithm, BH looks for only long patterns, so it is

safe to assume m > b. The new heuristic is formally stated as
follows:

1. If neither X is a substring of any patterns nor any suffix of
X is a prefix of any patterns, the shift value can be m.

2. X is not a substring of any patterns, but it has at least one
suffix that is also the prefix of some pattern. Let k be the
longest length of such a suffix. The shift value can be
m� k.

3. X is a substring of some pattern. The shift value is m� j,
assuming that the rightmost occurrence of X ends at
position j of some pattern. If j ¼ m, X is the suffix of
some pattern, and whether a true match occurs should
be verified.

For example, if the search window in Fig. 1 contains ANMAX, the

search window could be shifted by m ¼ 5 characters without any

missing match, since neither MAX is a substring of any patterns nor

any suffix or MAX is a prefix of any patterns.
In the preprocessing stage, the BH algorithm builds a shift table

according to the above heuristic, much similar to that in the WM

algorithm. Suppose that a block X is mapped to the table with the

hash function h. The steps of building a shift table are as follows:

1. Initialize each entry in the shift table to maxðm; bÞ. This
value is filled because the maximum shift distance is m if
m � b, and b otherwise.

2. For all x ¼ x1 . . . xq that is a prefix of some pattern, where
1 � q < minðm; bÞ and x 2

Pq , set SHIFT[hðyxÞ] to
maxðm; bÞ � q, for all y 2

Pb�q .
3. For every block X that is a substring of some pattern, set

SHIFT[hðXÞ] to m� j, where the rightmost occurrence of
X ends at position j. If b > m, this step will be ignored
because no such X exists.

If there is a hash collision, the table entry with the collision is set to

the minimum of the shift values, exactly the same approach taken

in the WM algorithm.
There is a trade-off with choosing the block size b. Increasing b

can reduce the false positive rate, but also complicate building the

shift table. Consider q ¼ 1 in the second step of the above heuristic,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 4, APRIL 2011 597

TABLE 2
The Symbols Used in the Text

Fig. 2. The illustration of a missed match.

for example, we need to set j�jb�1 entries in the shift table for each
pattern. In other words, the number of entries to be set is
exponential with b, making building the shift table with large b

very time-consuming.

3.1.2 The Bad-Block Heuristic

The bad-block heuristic intends to reduce the false positive rate
and exploit a large shift value if possible, while keeping the block
size manageable. The block size is still 3, but the heuristic refrains
from immediate verification of the entire search window, which is
costly. The idea of this heuristic is simple. If looking up the
block Bj in the shift table derives a zero shift value, where Bj

denotes the jth nonoverlapping block counted backward from the
suffix of the search window, it is possible to also look up Bjþ1 for
exploiting a larger shift value. The entire window is verified only
when looking up the blocks B0, B1; . . . ; Bbm=bc�1 all implies a
suspicious match, i.e., SHIFT[Bj]� jb, for all j ¼ 0 . . . bm=bc � 1 (to
be discussed later).

Fig. 3 illustrates the above idea with a trivial example. Suppose
the algorithm scans for only a pattern PREFIX. The block B0 in the
search window matches the suffix of the pattern (derived from
SHIFT[B0]=0), so the lookup goes on to the next block B1. In this
example, SHIFT[B1]=6, which implies that B1 is neither a substring
of the pattern nor any of B1’s suffixes is a prefix of the pattern.
Note that the values in the shift table are derived based on B0, so
they are not applicable to B1. The distance from B1 to B0 should be
deducted from the values to meet the reasoning in the WM
algorithm. Therefore, the safe shift distance is 6� 3 ¼ 3, since B1 is
three characters away from B0.

Two subtleties are in the heuristic: 1) To compress the shift
table, multiple blocks are mapped to the same entry in which the
minimum shift values of them are filled. The shift value derived in
the heuristic may be smaller than it should be, but it is still
safe—no match will be missed. 2) The shift table does not keep the
exact information such as whether a block appears in a specific
position or appears multiple times in the patterns. Losing the
information will sometimes result in suboptimal shift values or
unnecessary verification. Fig. 4 illustrates an example in which
SHIFT[B0]=0 because DNS is the suffix of the pattern. When the
bad-block heuristic looks up B1 in the shift table, it only knows that
DNS is in the suffix of the pattern. Whether DNS also appears at

position 4-6 is unknown from the table. The heuristic therefore has

to look at B2 further, even though a shift of 6 characters is safe in

this case.
In general, if SHIFT½Bj� > jb, a shift of SHIFT½Bj� � jb

characters is safe; otherwise, the bad-block heuristic is unable to

determine a shift value, and had better keep on looking up Bjþ1

for not missing any match. If a shift value larger than 0 cannot be

determined from all the blocks B0; . . . ; Bbm=bc�1, the entire search

window is then verified.
The correctness of the bad-block heuristic is proved as follows:

Theorem 1. The shift value derived in the bad-block heuristic is safe.

That is, if SHIFT ½Bj� > jb, a shift of SHIFT ½Bj� � jb characters

is safe.

Proof. Suppose a match occurs when the search window is shifted

by s, where s < SHIFT½Bj� � jb. This means that there is a

block Bj ending at position m� jb� s of the matched pattern.

SHIFT[Bj] is then set to m� ðm� jb� sÞ ¼ jbþ s according to

the heuristic described in Section 3.1 (also the heuristic in the

WM algorithm), which says that the shift value is m� k,

assuming the rightmost occurrence of X ends at position k of

some pattern.2 SHIFT[Bj] may be smaller due to hash collisions

in table compression or another block with the same content

closer to the suffix of some pattern than Bj. The reasoning

implies that

SHIFT½Bj� � jbþ s
< jbþ SHIFT½Bj� � jb
¼ SHIFT½Bj�:

ð1Þ

Equation (1) leads to a contradiction, i.e., if the search window

is shifted by less than SHIFT½Bj� � jb, no match should occur.

Therefore, a shift of SHIFT½Bj� � jb is safe. Fig. 5 helps to

visualize the scenario in the proof. tu

3.2 The Hybrid Method

The performance of the BH algorithm is subject to the shortest

pattern length, so we leave out the patterns shorter than ‘ to the

AC algorithm. On the contrary, patterns longer than or equal to ‘

for the AC algorithm are left to the BH algorithm. This approach is

feasible because both algorithms track with basic patterns without

special characters such as wildcards, which are left to the

verification stage. The difference is that the AC algorithm needs

to track whether the individual parts in the multipart patterns are

matched in the sequence as specified.

598 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 4, APRIL 2011

Fig. 3. The heuristic in the bad-block heuristic.

Fig. 4. An example to illustrate the information lost in the shift table.
2. We deliberately use the dummy variable k to avoid confusion with j in

the proof.

Fig. 5. The scenario in proving correctness of the bad-block heuristic.

In the hybrid method, the short patterns left to the AC
algorithm, which treats them as a special case of the multipart
patterns (i.e., only one part) and verifies the match with the
optional contextual information (if any) if the single-part pattern is
found. The function for tracking multiple parts in the AC algorithm
can be duplicated in the BH algorithm so that the BH algorithm can
track the match when the individual parts of the multipart patterns
are found. Both algorithms scan the same text in turn, and the
tracking information of multipart patterns (which parts have been
found in which position) is shared for either to resume the tracking.

Since the block size is three, the length threshold is chosen to
be a multiple of three for easy implementation. Here, we set
‘ ¼ 9; 12, and 15, and sort out the patterns according to the
threshold. Table 3 lists the number of parts or basic patterns in
each target type after the rearrangement. In the table, the number
of AC patterns is only 24:7 � 41:4% of the original number, on
average, while the patterns moved to the BH algorithm contribute
just 9:1 � 11:7% more patterns to it.

4 PARAMETER SELECTION AND PERFORMANCE

EVALUATION

4.1 Parameter Selection

The hybrid method should properly choose several parameters to
optimize the performance, including the size of the shift table for
good cache locality and the length threshold to separate the
patterns. The following sections will discuss the choices. We run
the experiments on a PC with a 1.6 GHz Xeon E5310 quad-core
CPU, which has L1 cache of 64 Kbytes for each core and 2� 4 MB
L2 cache on the chip. Table 1 has listed the characteristics of the
patterns from ClamAV version 0.92.

For the experiments, we collected a set of 13 Windows
executable files of around 70 MB, such as winword.exe (for
MS Word), skype.exe (for Internet phone call), and wire-

shark. exe (network protocol analyzer), since most signatures in
ClamAV are generic ones and those for files of Microsoft PE
format. These files come without viruses, but they are sufficient if
the purpose is measuring the performance of virus scanning, not
the accuracy of finding out a virus. Most executable files are clean
in practice, so using normal executable files is close to the real
scenario. Moreover, a virus signature is generally much shorter
than the entire executable file, so its significance to the scanning
speed is relatively small.

The WM algorithm in ClamAV maps a three-character block
with the hash function hðx1; x2; x3Þ ¼ 211x1 þ 37x2 þ x3, where x1,
x2, and x3 are the three characters in the block. The search window
consists of only three characters due to the shortest pattern length.3

According to the heuristic in the WM algorithm in which the
maximum shift distance is m� bþ 1 (see Section 2.1), where m ¼ 3

and b ¼ 3 in the ClamAV implementation, the shift values are very
short, consisting of only 0 and 1. Around 46.6 percent of the entries
are 0 in the shift table for generic signatures, and around
75.9 percent are 0 for signatures associated with MS PE format.
Therefore, the average shift value is only 0.28 characters, meaning
that most of the scanning time is spent in verification and the
benefits of skipping in the WM algorithm are sacrificed.

We tested the performance for various table sizes and the
length thresholds. The experiment controls the table sizes by
tuning the hash functions. The size is roughly doubled by the
hash function hðx1; x2; x3Þ ¼ 422x1 þ 74x2 þ x3, quadrupled by
hðx1; x2; x3Þ ¼ 844x1 þ 148x2 þ x3, and so on. The larger the table
size, the larger the average shift values because fewer blocks are
mapped to the same table entry. However, a large table also
reduces cache locality. The length thresholds are set at
‘ ¼ 9; 12; and 15. Table 4 presents the shift values for various
cases in the experiment, where 1x denotes the original table size
in ClamAV implementation, 2x denotes doubling the size, and
so on.

Two observations are from Table 4. First, scanning for only the
long patterns can significantly increase the average shift distance.
Second, the average shift distance is still much shorter than the
maximum one (i.e., ‘) because of the compressed table. Despite the
short shift distance, on average, the frequency of verification is
significantly decreased—the verification follows only when check-
ing every block in a long search window in the backward hashing
is unable to derive a shift value larger than 0.

Table 5 presents the execution time of the BH algorithm in each
case. The execution time includes only that in buffer scanning to
make the effect of the BH algorithm obvious. The other stages, such
as buffer loading, decompression, and so on, are not counted.
Although the shift values increase with ‘, as presented in Table 4,
the differences in the execution time are insignificant. The
insignificance of the execution time has two implications. First,
checking the blocks in a search window of ‘ ¼ 9 characters is
sufficient to reduce the verification frequency. Increasing ‘
contributes little to reduce the frequency, and in turn, the
execution time. Second, the bottleneck is the verification, but the
backward hashing can effectively reduce its frequency. Combining
the benefits of a long search window and backward hashing, the
BH algorithm is much faster than the original implementation,
which takes 14.19 seconds.

Because the AC algorithm has fewer patterns, its execution is
also faster than the original implementation, but the acceleration is
not so significant as that in the WM algorithm. The original AC
algorithm takes 15.74 seconds to scan these executable files. The
execution time becomes 10.55, 10.71, and 10.78 seconds for
‘ ¼ 9; 12; and 15, respectively. The results again show that ‘ ¼ 9
is a proper length threshold. The AC algorithm is still much slower

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 4, APRIL 2011 599

TABLE 3
The Number of Parts or Basic Patterns

in Each Target Type After Sorting Them Out

3. The shortest pattern length in the WM algorithm is 4, so the
implementation could be a little bit more aggressive to set m ¼ 4.

TABLE 4
The Shift Values for Various Table Sizes and Length Thresholds

TABLE 5
The Execution Time (in Seconds) for

Various Table Sizes and Length Thresholds

than the WM algorithm, and a bottleneck to be further improved in
the future work.

4.2 Performance Evaluation

Three major factors affect the execution time in the BH scanning:
1) shift distance, 2) cache locality, and 3) verification frequency.
The three factors interact with each other. For example, increasing
cache locality means smaller data structure, implying more
information is “compressed,” and higher verification frequency.
Reducing verification frequency needs a long search window,
implying the chance to exploit long shift distance.

The BH algorithm, which can reduce the verification frequency,
is much faster than the ClamAV implementation, even though a
large table implies worse locality. For example, when the table size
is eight times larger in Table 5, the BH algorithm is still much faster
than the original implementation. We can infer that reducing the
verification frequency is more effective than cache locality. Also
note that reducing the table size too much has a negative effect
because compressing the information in the table size too much
increases verification frequency, even though the locality of
accessing the table increases.

Looking at the rows in both Tables 4 and 5 simultaneously, it
can be seen that longer shift distance does not imply better
performance because the cache locality becomes worse due to a
larger shift table. But if we fix the table size, we can still see the
benefit of longer shift distance when the table size is large enough,
e.g., the table size 8x. Therefore, reducing cache locality is more
effective than increasing the shift distance. The importance of the
three factor becomes

verification frequency > cache locality > shift distance:

Note that reducing verification frequency needs a long search
window. Although long shift distance looks not very beneficial, it
is still a bonus and can be “piggybacked” in the implementation of
a long search window. There is no reason not to allow longer shift
distance for a fixed table size when we have a chance from a long
search window.

Table 6 compares the throughput between the original method
and the hybrid method. In the original implementation, the
AC algorithm and the WM algorithm scan for polymorphic and
nonpolymorphic signatures, respectively. The hybrid method
changes the patterns for the AC and BH algorithms as described
in Section 3.2. After the revision, the BH algorithm is 109 times
faster than the original WM algorithm, due to the longer shift
distance and the lower verification frequency. Despite the
impressive acceleration for the WM algorithm, the improvement
over the AC algorithm is only 49 percent faster. ClamAV scans the
same file content in two passes with the WM/BH algorithm for
generic patterns and file-type-specific patterns (see Table 1),
respectively, and in another two passes with the AC algorithm
for the two types of patterns. The overall throughput without
counting the MD5 matching is 54.72 Mbps (the total file length
divided by the total scanning time in two passes of both
algorithms).

If we count the MD5 matching, according to the discussion in
Section 2.2, this matching checks whether a 16-byte buffer of the
MD5 value matches one of the MD5 patterns with hashing. Just a

few MD5 values from sections of PE files are checked in this way.
The aggregate buffer size (usually less than 100 bytes) is much
shorter than an ordinary PE file, so the time of MD5 matching is
relatively tiny, less than 0.1 percent of the scanning time in the
BH algorithm in our experiment. However, computing the MD5
value from the file content takes around 32 percent longer time
than scanning in the BH algorithm—the AC algorithm is still a
bottleneck. With the MD5 matching, the hybrid method improves
the overall throughput from 19.44 Mbps in the original imple-
mentation to 53.81 Mbps, which is 2.77 times faster.

We also implemented Hash-AV in [10] for comparing the
throughput in Table 6. Since the processor running ClamAV, the
number of patterns and the files for scanning are all different in
their implementation, we also include the estimated throughput
interpolated from the results of [10] for reference. The interpolation
assumes the same number of 83,819 generic plus PE-type patterns
(see Table 3 for ‘ ¼ 9) as that in the hybrid method, and derives the
estimation from the throughput for 30,000 and 120,000 patterns in
their outputs. In our experiment, we observed that the first two
hash functions with four and six characters for hashing in Hash-
AV do not filter out the text well (only 43 percent of the text is
filtered out). Moreover, the throughput of Hash-AV is the best
when the Bloom filter size is 512 KB, which is still larger than the
shift table of around 64 KB in the hybrid method. Thus, the cache
locality may not be as good. These factors can account for the
difference in throughput between Hash-AV and the hybrid
method. Furthermore, it is worth noting that HashAV does not
introduce any improvement to the AC algorithm, which represents
a bottleneck.

4.3 Discussion of Worst-Case Performance

It is theoretically possible to dramatically reduce the performance
of a sublinear-time algorithm such as the BH algorithm in some
extreme cases. For example, if there is a pattern aaaaa and the text
consists of all as, then a verification is needed for every shift of
only one character in the text, and the time complexity becomes
superlinear. Although worst performance in linear time for such
algorithms is possible for single string matching [27], it is
nontrivial to guarantee so for multiple string matching.

Things are not so bad in practice. A virus scanner can stop the
scanning after one or a few viruses are found, so the aforemen-
tioned worst case will not happen. The algorithm can also detect an
algorithmic attack by counting the number of blocks that have been
revisited in backward hashing. If the number of revisited blocks in
a piece of text is larger than a threshold (an unusual case), an
algorithmic attack is likely to happen and an alarm is raised. The
piece of text that causes the alarm can be marked suspicious for
further examination.

5 CONCLUSION

This work presents a hybrid algorithm that combines the BH
algorithm for long patterns and automaton tracking in the AC
algorithm for short patterns to scan the large set of virus signatures
in ClamAV. The former can reduce the verification frequency and
exploit long shift distance by backward hashing in the search
window. It also compresses the shift table for good cache locality.
The latter can effectively reduce the number of patterns in an AC
automaton. The hybrid algorithm can efficiently combine the
benefits of the traditional AC algorithm and the WM algorithm.

As many techniques escape detection of antivirus systems, such
as packing, polymorphism, and metamorphism. Handling these
evasion techniques demands more processing than ever. There-
fore, those overheads are likely to eventually become new time-
consuming components in an antivirus system. They will deserve
further study in the future.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Council
in Taiwan, and in parts by grants from Cisco and Intel.

600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 4, APRIL 2011

TABLE 6
Comparing the Throughput (Megabits per Second) between

the Hybrid Method and the Original Implementation in ClamAV

REFERENCES

[1] P.-C. Lin, Y.-D. Lin, Y.-C. Lai, and T.-H. Lee, “Using String Matching for
Deep Packet Inspection,” Computer, vol. 41, no. 4, pp. 23-28, Apr. 2008.

[2] F. Guo, P. Ferrie, and T. cker Chiueh, “A Study of the Packer Problem and
Its Solutions,” Proc. Int’l Symp. Recent Advances in Intrusion Detection (RAID),
pp. 98-115, 2008.

[3] W.A. Wolf and S. McKee, “Hitting the Memory Wall: Implications of the
Obvious,” Computer Architecture News, vol. 23, no. 1, pp. 20-24, Mar. 1995.

[4] A.V. Aho and M.J. Corasick, “Efficient String Matching: An Aid to
Bibliographic Search,” Comm. ACM, vol. 18, no. 6, pp. 333-343, June 1975.

[5] S. Dharmapurikar and J.W. Lockwood, “Fast and Scalable Pattern Matching
for Content Filtering,” Proc. Symp. Architectures for Networking and Comm.
Systems (ANCS), pp. 183-192, Oct. 2005.

[6] Y. Sugawara, M. Inaba, and K. Hiraki, “Over 10 Gbps String Matching
Mechanism for Multi-Stream Packet Scanning Systems,” Proc. 14th Int’l
Conf. Field Programmable Logic and Applications (FPL), pp. 484-493, Sept. 2004.

[7] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic Memory-
Efficient String Matching Algorithms for Intrusion Detection,” Proc. IEEE
INFOCOM, pp. 333-340, Mar. 2004.

[8] M. Norton, “Optimizing Pattern Matching for Intrusion Detection,”
technical report, Sourcefire, Inc., http://www.snort.org/docs, 2004.

[9] J.O. Kaphart and W.C. Arnold, “Automatic Extraction of Computer Virus
Signatures,” Proc. Fourth Virus Bull. Int’l Conf., pp. 178-184, Sept. 1994.

[10] O. Erdogan and P. Cao, “Hash-av: Fast Virus Signature Scanning by Cache-
Resident Filters,” Proc. Global Comm. Conf. (Globecom), pp. 1767-1772, Nov.
2005.

[11] S. Wu and U. Manber, “A Fast Algorithm for Multi-Pattern Searching,”
Technical Report TR94-17, Dept. of Computer Science, Univ. of Arizona,
1994.

[12] B.H. Bloom, “Space/Time Tradeoffs in Hash Coding with Allowable
Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, July 1970.

[13] M. Crochemore and W. Rytter, Jewels on Stringology. World Scientific
Publishing Company, 2002.

[14] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings: Practical
On-Line Search Algorithms for Texts and Biological Sequences. Cambridge
Univ. Press, 2008.

[15] R.S. Boyer and J.S. Moore, “A Fast String Matching Algorithm,” Comm.
ACM, vol. 20, no. 10, pp. 762-772, Oct. 1977.

[16] J. van Lunteren, “High-Performance Pattern-Matching for Intrusion
Detection,” Proc. IEEE INFOCOM, Apr. 2006.

[17] N.S. Artan and H.J. Chao, “Tribica: Trie Bitmap Content Analyzer for High-
Speed Network Intrusion Detection,” Proc. IEEE INFOCOM, May 2007.

[18] L. Tan and T. Sherwood, “Architectures for Bit-Split String Scanning in
Intrusion Detection,” IEEE Micro, vol. 26, no. 1, pp. 110-117, Jan. 2006.

[19] B.C. Brodie, R.K. Cytron, and D.E. Taylor, “A Scalable Architecture for
High-Throughput Regular-Expression Pattern Matching,” Proc. 33rd Int’l
Symp. Computer Architecture (ISCA), pp. 191-202, July 2006.

[20] F. Yu, Z. Chen, Y. Diao, T.V. Lakshman, and R.H. Katz, “Fast and Memory-
Efficient Regular Expression Matching for Deep Packet Inspection,” Proc.
ACM/IEEE Symp. Architecture for Networking and Comm. Systems (ANCS),
pp. 93-102, Dec. 2006.

[21] Z. Zhou, Y. Xue, J. Liu, W. Zhang, and J. Li, “MDH: A High Speed Multi-
Phase Dynamic Hash String Matching Algorithm,” Proc. Ninth Int’l Conf.
Information and Comm. Security (ICICS), pp. 201-215, Dec. 2007.

[22] B. Xu, X. Zhou, and J. Li, “Recursive Shift Indexing: A Fast Multi-Pattern
String Matching Algorithm,” Proc. Fourth Int’l Conf. Applied Cryptography
and Network Security (ACNS), June 2006.

[23] J. Kytöjoki, L. Salmela, and J. Tarhio, “Tuning String Matching for Huge
Pattern Sets,” Proc. Ann. Symp. Combinatorial Pattern Matching (CPM),
pp. 211-224, June 2003.

[24] M. Fisk and G. Varghese, “Applying Fast String Matching to Intrusion
Detection,” Technical Report UCSD TR CS2001-0670, Univ. of California,
San Diego, 2001.

[25] Y. Miretskiy, A. Das, C.P. Wright, and E. Zadok, “Avfs: An On-access Anti-
Virus File System,” Proc. 13th USENIX Security Symp., pp. 73-88, Aug. 2004.

[26] R.-T. Liu, N.-F. Huang, C.-N. Kao, C.-H. Chen, and C.-C. Chou, “A Fast
Pattern-Match Engine for Network Processor-Based Network Intrusion
Detection System,” Proc. Int’l Conf. Information Technology: Coding and
Computing (ITCC), pp. 97-101, Apr. 2004.

[27] Z. Galil, “On Improving the Worst Case Running Time of the Boyer-Moore
String Matching Algorithm,” Comm. ACM, vol. 22, no. 9, pp. 505-508, Sept.
1979.

[28] P.-C. Lin, Y.-D. Lin, Y.-J. Zheng, Y.-C. Lai, and T.-H. Lee, “Realizing a Sub-
linear Time String-Matching Algorithm with a Hardware Accelerator Using
Bloom Filters,” IEEE Trans. VLSI Systems, vol. 17, no. 8, pp. 1008-1020, Aug.
2009.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 4, APRIL 2011 601

