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計畫中文摘要 
 

模 擬 最 佳 化 (Simulation 

optimization)是最佳化方法領域中最新

的發展，模擬最佳化問題主要是指對任一

個 input variable setting 的 objective 

function 的 evaluation 都須利用模擬

(simulation)的方法來求得，所以我們無

法以傳統最佳化方法解決此類型的的問

題。此類問題涵蓋的範圍甚廣，如一些具

有 廣 大 輸 入 變 數 空 間 (huge 

input-variable) 的隨機模擬最佳化問題

(stochastic simulation optimization 

problem)，大型系統中具有決策變數與

discrete variable 的最佳化問題等等。 

本計劃擬針對一些模擬最佳化問題加

以歸類，並針對所歸納出的類型問題提出

模擬最佳化的演算法則，基本上在模擬最

佳化問題中，其結構資訊(structural 

information) 很難用解析的方法萃取

(extract)出來，所以我們所提出的模擬最

佳化方法即以模擬(simulation)做為萃取

系統的結構資訊的手段，然後以所萃取的

結構資訊作為縮小搜尋範圍的依據。如此

迭代進行，將可得到一個不錯的解。 

我們將以序的最佳化理論(ordinal 

optimization theory)來證明我們所得的

解是不錯的解。 

除 此 之 外 我 們 將 以 基 因 演 算 法

(genetic algorithm) ， 模 擬 退 火 法

(simulated annealing)，以及塔布搜尋法

(tabu search)等常被用來解模擬最佳化問

題的方法來解我們所提出的類型的問題並

比較所得的結果，以及所花費的計算時間

及實用性。 

演算法研擬擬完成且經完善的電腦模

擬驗證後，我們將製作成軟體以供應廣大

的用途。 

 
 

Abstract 
 

Simulation optimization is one of the 
most frontier research area in optimization. 
The main characteristics of simulation 
optimization problem is the evaluation of the 
objective function of an input-variable setting 
requires lengthy simulation. Therefore we 
cannot use the conventional optimization 
techniques to solve them. There are various  
types of simulation optimization problems 
such as stochastic optimization problems 
with huge input-variable space and large 
scale optimization problems with decision 
and discrete control variables. 

In this project, we intend to categorize 
some classes of simulation optimization 
problems and propose algorithms to solve 



them. Basically, in the simulation 
optimization problem, it is almost impossible 
to extract structural information of the 
system analytically. Therefore, the proposed 
simulation optimization algorithms will use 
simulations as a tool to extract the structural 
information. The extracted structural 
information will be used in the proposed 
algorithm to reduce the searching space. 
Such an iterative simulation optimization 
technique will use only reasonable 
computation time to obtain a good enough 
solution. 

We will use ordinal optimization 
theory to prove the quality of the solution we 
obtain. In addition, we will compare our 
results with those obtained by the competing 
methods such as the genetic algorithms, 
simulated annealing, and the tabu search 
methods. 
 

We will implement our algorithms in 
the form of commercial software for a more 
general purpose. 
 
 
一、前言 
 
在 1992 年時，Professor Azadivar 在[1]

中 給 模 擬 最 佳 化 問 題 (simulation 

optimization problem)下了一個簡單的定

義 ： 對 任 一 個 input(variable) 的

objective function 的 evaluation 都需

利 用 模 擬 (simulation) 才 能 得 知 其

objective value 的最佳化問題即是模擬

最佳化問題。此類型問題涵蓋範圍甚廣，

如在隨機模擬最佳化問題(stochastic 

simulation optimization)中需要以隨機

模擬(stochastic simulation)來計算一個

input variable 值  的 objective 

value  ，由於每一個隨機模擬都需相當長

的計算時間，所以如果輸入變數空間

(input-variable)很龐大的話，那麼要得

到最佳化解所需要的計算量實在是無比的

冗長。雖然，模擬最佳化問題本身不具備

自然的 structural information，因此有

些計算其 gradient 的複雜方法，如

IPA(Infinitesimal purtaation analysis) 

LR(Likelyhoud ratio)等，對特殊的製造

系統而言有其各別的貢獻，而一般最常用

的這是 heuristic methods 如 genetic 

algorithm，simulated annealing method

及 tabu search method 等，然而我們這個

計畫想嘗試一種新的 search technique。 

 

二、研究目的 

 

在工業界中，尤其是製程複雜的半導

體產業，充斥著不同形式的最佳化問題，

由於其製程中充滿不確定因素，這些最佳

化 問 題 基 本 上 都 是 具 有 stochastic 

simulation 特性的最佳化問題，所以它們

是屬於模擬最佳化問題的類型。又如大規

模電力系統的最佳化問題中如最佳電力潮

流問題(optimal power flow)，最佳電容

裝置問題(optimal capacitor placement)

等，皆具有 discrete control variables 

(如 switchable capacitors，transformer 

taps)，所以這些最佳化問題是 mixed 

integer-discrete continuous nonlinear 

programming 的問題，所以也屬於模擬最佳

化類型的問題。因此，本研究的目的在於

解決產業中的重要問題。 

 

三、文獻探討 

 

在國內外對個別的問題皆有相當多的

人在研究，例如在解含 discrete control 

variables 的最佳電力潮流問題中就有多

組國外研究群分別以 genetic algorithm 

[11]，simulated annealing [3]，tabu 

search [12]等方法求解。而在半導體製程

中的排程問題亦屬於模擬最佳化問題，在

國外有聲舉卓著的伊利偌大學 Kumar 教授

及其領導的研究群在從事這方面的研究。

關於模擬最佳化方法，由於此領域尚屬萌

芽階段，但其重要性已引起學術界及工業

界的重視，在美國已有數個大學展開此方

面 的 研 究 如 Prof. Azadivar[1] ，

Professor Carson[2]，Professor Fu [4]，

Professor Johnson[6] 。 Professor 

Meketon[13] ， Professor Paul [14] ，
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Professor Stuckman[15] ， Professor 

Tompkins[16]等。 

 
四、研究方法 
 
A. 第一類問題： 

我們所考慮的第一類問題是隨機模擬

最佳化(stochastic simulation 

optimization)的問題，其問題的型態可敘

述如下： 

 

( )min f x  

subject to  x X∈  

 

我們所考慮的此類型問題具下列兩項

特性： 

(i) Input-variable space X 會

exponentially grows with respect 

to problem size。 

(ii) 若給予一個 input variable x的
值，則 ( )f x 的計算需相當冗長的

stochastic simulation。 

所以若以 global searching 

techniques 來解此類問題將花費非

常龐大的計算時間。 

 

為克服計算 ( )f x 需冗長的計算時間的缺

點，我們的模擬最佳化解法的構想如下： 

 

(a) 首先以模擬為手段，均勻地由 X 中

挑選適當數量的 x值，然後以大約的

stochastic simulation 來求出相對

應的 ( )f x 。 

(b) 以所求出之相當數量的

( )( ),x f x pairs 來建立約化系統 I/O

的類神經網路模式，於是這個可以快

速求取 ( )f x 的類神經網路模式便成

為我們在第一階段的 optimization

的工具。 

(c)在第一階段的 optimization scheme

中，我們將以 global searching 

technique 以及(b)中所建立的類神

經網路 I/O 模式來找出一個數量不多

但具有大約最佳目標函數的

input-variable 的子集解。 

(d)在第二階段的 optimization scheme

中，我們將針對(c)中求出的不錯的子

集解的每一個input variable解作較

短的 stochastic simulation，並選

取具有大約最佳目標函數的更小子

集。 

(e)於是在最後一階段的 optimization 

scheme 中，我們將針對(d)中所選出

之更小的子集中的每一個 x，做一精

準的 stochastic simulation，於是

具有最佳的目標函數的 input 

variable x值即為我們所要求的不

錯的解。 

 
我們在這一年的計畫中已成功地找到第一

類問題的應用例子即如何在晶圓測試程序

中減少晶粒誤宰及重測的問題。 
 

 

B. 第二類問題： 

 

我們所考慮的第二類型問題是 mixed 

integer-discrete continuous nonlinear 

programming problem，此類型問題可

formulate 成如下形式： 

 

( )kdxf ,,min  

( ) 0,, =kdxg  

( ) 0≤xh  

( ) 0, ≤kdq  

Dd ∈ , ,  Kk ∈ Xx∈
其 中 為 等 式 限 制 式 ， 為

continuous variable 

g h
x 的不等式限制

式， 為integer variables k 及discrete 

variables 的不等式限制式。D，
q

d K 及 X
各為 ， k 及d x的定義域。 

 

我們已初步找到第二類問題的一個很

好的應用例子即分散式的具有離散控制變

數的最佳電力潮流問題。此問題的困難處

在於它不僅僅是模擬最佳化所涵蓋的範

圍，同時它也必須要用分散式處理
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(distributed processing)的計算方式來

解才可得到不錯的解。 

 

五、結果與討論 
 

雖然此計畫僅進行到一半，我們卻已

有相當豐碩的成果。首先，我們已將晶圓

測試程序中減少晶粒誤宰及重測的問題

formulate 成一個模擬最佳化問題，並依照

所提出的構想研擬出一個 two-level 

ordinal optimization 的 algorithm 並成

功地解決了此問題。此成果所撰寫成的論

文已被 IEEE Trans. on Systems，Man and 

Cydernetico Part A 期刊 accept，如附件

一所示。同時，我們在第二類問題所擬解

的具離散控制變數的分散式最佳電力潮流

問題上已初步研擬出一個連續變數的分散

式最佳電力潮流演算法。此成果已撰寫成

會議論文(如附件二所示)並將於今年

(2005)6 月 15 日至 17 日在 EuroPES 2005

於西班牙召開的會議中發表。同時，我們

也在這兩篇文章中註明此研究成果係本國

科會計畫所贊助，並將計畫編號明列其上 
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七、計劃成果自評 

 

本計劃已進行將近一年，所獲成果堪

稱豐碩，總計已發表了一篇知名國際期刊

論文，以及一篇國際會議論文，同時，我

們也在這兩篇文章中註明此研究成果係本

國科會計畫所贊助，並將計畫編號明列其

上。我們期望明年此時，能有更豐富的成

果報告。 
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Abstract 
In this paper, we have formulated a stochastic optimization problem to find the optimal threshold 

values to reduce the overkills of dies under a tolerable retest level in wafer testing process. The 

problem is a hard optimization problem with a huge solution space. We propose an ordinal 

optimization (OO) theory based two-level algorithm to solve for a vector of good enough threshold 

values and compare with those obtained by others using a set of 521 real test wafers. The test results 

confirm the feature of controlling retest level in our formulation, and the pairs of overkills and 

retests resulted from our approach are almost pareto optimal. In addition, our approach spends only 

6.05 minutes in total in a Pentium IV PC to obtain the good enough threshold values. 

Index Terms— wafer probing, overkill, retest, ordinal optimization, stochastic optimization, neural 

network, genetic algorithm. 

I. INTRODUCTION 

The wafer fabrication process is a sequence of hundreds of different process steps, which results 

in an unavoidable variability accumulated from the small variations of each process step. Thus, to 

avoid incurring the significant expense of assembling and packaging chips that do not meet 

specifications, the wafer probing in the manufacturing process becomes an essential step to identify 

flaws early. 

Wafer probing establishes a temporary electrical contact between test equipment and each 

individual die (or chip) on a wafer to determine the goodness of a die. In general, an 8-inch wafer 

may consist of 600 to 15000 dies, and each die is a chip of integrated circuits. Although there exist 

techniques such as the Statistical Process Control (SPC) [1,2] for monitoring the operations of the 

wafer probes, the probing errors may still occur in many aspects and cause some good dies being 

over killed; consequently, the profit is diminished. Thus, reducing the number of overkills is always 

one of the main objectives in wafer testing process. The key tool to identify or save overkills is 

retest, which is an additional probing on the problematic die. However, retest is a major factor for 

decreasing the throughput. Thus, the overkill and the retest possess inherent conflicting factors, 
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because reducing the former can gain more profit, however, at the expense of increasing the latter, 

which will degrade the throughput. Consequently, to save more overkills using less retests is a goal 

of the wafer testing process. 

Deciding whether to go for a retest is a decision problem. In current wafer testing process, this 

decision is made based on whether the number of good dies and the number of bins2 in a wafer 

exceed the corresponding threshold values. Manually adaptive adjustments of the threshold values 

based on engineering judgment, three-sigma limit [3] or a looser six-sigma limit are currently used 

in some semiconductor manufacturing companies. The purpose of this paper is using a systematic 

approach to determine these threshold values. We first formulate a stochastic optimization problem 

on the threshold values. Since the formulated stochastic optimization problem consists of a huge 

decision-variable space as will be seen in Section 3, this makes the problem becomes a hard 

optimization problem. Thus, to cope with the enormous computational complexity, we propose an 

ordinal optimization theory based two-level algorithm to solve the formulated problem for a good 

enough solution. 

II. Problem Statements and Mathematical Formulation 

A. Testing Procedures 

In this section, we employ typical testing procedures used in a local world-renowned wafer 

foundry. Fig.1 shows the flow chart of the real and simulated testing procedures. All the solid 

blocks represent the real testing procedures, while the dashed blocks are added for the purpose of 

computer simulation. The operation of the real testing procedures is briefly described in the 

following. 

For every wafer, the wafer probing is performed twice as shown in the solid square marked by I in 

Fig.1. The second probing applies only to those dies failed in the first one. A die is considered to be  

 

 2 A bin denotes a type of circuitry-defect in a die. There are various types of bins, and a die of any type of 

bin is considered to be a bad die. 
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 Fig. 1: Flow chart of the real and simulated wafer testing procedures. 
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good if it is good in either probing. If a die is detected to have bins in both tests, the bin detected in 

the second probing is taken as the bin of that die. We let  (jg jg ) denote the number of good (bad) 

dies in wafer j , and let  denote the number of dies of bin  in wafer jkb k j . Assume there are 

K  types of bins in a wafer, then ∑
=

=
K

k
jkj bg

1
 and jjj gTDg −=  as shown in the square marked 

by II in Fig.1, where  denotes the total number of dies in wafer jTD j . Following the two times of 

wafer probing and the calculation of  and jg jg , a two-stage checking on the number of good dies 

is performed to determine the necessity of carrying out a retest, i.e. an additional wafer probing. The 

mechanism of the two-stage checking described in the part of the testing procedures enclosed in the 

dotted contour can be summarized below. We let  denote the threshold value for the lower 

bound of the number of good dies in a wafer to determine whether to pass or hold the wafer; we let 

, , denote the threshold value for the upper bound of the number of dies of bin  in 

the hold wafer to determine whether to perform a retest. If , we pass wafer 

minWg

maxkn Kk ,...,1= k

minWj gg ≥ j  as shown 

in the diamond-shape block marked by III.a and the square marked by III.c; otherwise, we will hold 

this wafer and check its bins. For the hold wafer j , if maxkjk nb ≤  for all k , then wafer j  will 

be passed, as shown in the diamond-shape block marked by III.b and the square marked by III.c. 

However, if the hold wafer j  consists of any bin  with , retests will be performed 

for all dies of bin  in wafer 

k maxkjk nb >

k j  to check for possible probing errors as shown in the 

diamond-shape block and square marked by IV.b and IV.d. Then, the overkills will be saved when 

there are probing errors as shown in the square marked by V. For bin  in the hold wafer k j  with 

, we pass it as shown in the diamond-shape block and square marked by IV.b and IV.c. 

This threshold value checking process will continue until all bins are checked as indicated in the 

diamond-shape blocks and squares marked by IV.e, IV.f, IV.g, and IV.h. 

maxkjk nb ≤

 4



B.   Computer Simulation of the Testing Procedures 

Simulation model for the two-times wafer probing 

Since we cannot perform the real wafer probing in computer, for the purpose of simulation, we 

need to build up a simulation model for the two times wafer probing. We let  denote the 

discrete random variable for the number of dies of bin  in a wafer. Since  can be 

provided by the real data, we can randomly generate the value of  for a wafer based on the 

discrete probability mass function 

kB

k )( nBP k =

kB

)( nBP k = . 

Each die of bin  can be either an actual bin caused by manufacturing errors or an overkill 

caused by testing errors. Thus we can treat the overkills in  as a binomial random variable with 

probability , which represents the probability of overkills in dies of bin  and can be provided 

by real data. We let  denote the random variable for the number of overkills in . Then, once 

the value of  is randomly generated, we can randomly generate the value of  based on a 

binomial probability distribution with probability . 

k

kB

kp k

o
kV kB

kB o
kV

kp

2)  Simulation of the testing procedures 

We let  and  denote the values generated from the random variables  and  for 

wafer 

jkb o
jkv kB o

kV

j , respectively. The two times wafer probing in Fig. 1 will be replaced by the random 

generator of  and  shown in the dashed square marked also by I in Fig. 1. The dashed 

squares in Fig. 1 except for the one mentioned above are for calculating the number of overkills and 

retests resulted from the simulated testing procedures. In contrast to , we let  denote the 

number of overkills for bin  of wafer 

kB o
kV

o
jkv jkv

k j  after completing the testing procedures and let  

denote the corresponding number of retests. In the testing procedures, although we may pass the 

wafer when the threshold value test is a success, there may be overkills. We let  and  denote 

the total number of overkills and retests in wafer 

jkr

jV jR

j , respectively. Thus for the passed wafer j , 
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∑
=

=
K

k

o
jkj vV

1

 and =0 as shown in the dashed square marked by VIII in Fig. 1. The same logic 

applies to the passed bin  of the hold wafer 

jR

k j  that =  and =0 as shown in the dashed 

square marked by VI in Fig. 1. However, for any retested bin, the probability of any unidentified 

overkill is extremely small, because the dies had been probed three times, which include two times 

wafer probing before any retest. Thus, for any retested bin , =  and we assume =0, 

because the overkills are saved, as shown in the dashed square marked also by V in Fig. 1; the solid 

square marked by V will be replaced by this dashed square in the simulated testing procedures. 

Once all the threshold value tests for all bins of the hold wafer 

jkv o
jkv jkr

k jkr jkb jkv

j  are completed, we can compute 

 and  as shown in the dashed square marked by VII in Fig. 1. The resulting values of  

and  of wafer 

jV jR jV

jR j  will be used to calculate ∑
=

=
L

j
jV

L
VE

1

1][  and ∑
=

=
L

j
jR

L
RE

1

1][ , which 

represent the average overkills and retests per wafer, respectively, and  denotes the total number 

of tested wafers. 

L

C.  Problem Formulation 

From Fig. 1, we see that if we increase  while decreasing , that is setting more 

stringent threshold values, there will be more retests and less overkills. This shows a conflicting 

nature between the overkills and retests. Thus, to reduce overkills under a tolerable level of retests, 

we will set minimizing the average number of overkills per wafer, , as our objective function 

while keeping the average number of retests per wafer, , under a satisfactory level. Thus, our 

problem for determining the threshold values can be formulated as the following constrained 

stochastic optimization problem: 

minWg maxkn

][VE

][RE

][min VE
Xx∈

 

subject to                      {simulated wafer testing procedures in Fig. 1}, 

TrRE ≤][ ,                               (2) 
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where  denotes the vector of threshold values, that is the vector of 

decision variables; 

],...,1,,[ maxmin Kkngx kW =≡

X  denotes the decision variable space;  denotes the tolerable 

average-number of retests per wafer. 

Tr

Remark 1: a) The value of  can be determined by the decision maker based on the economic 

situation. When the chip demand is weak, the throughput, in general, is not critical in the 

manufacturing process; therefore, we can allow a larger  so as to save more overkills to gain 

more profit. On the other hand, if the chip demand is strong, then the throughput is more important, 

and we should set the value of  smaller. Taking the chip demand into account is a distinguished 

feature of the proposed formulation. b) It is possible to pursue the relationships between the number 

of retests and the throughput. Then if we can derive the profit in terms of the throughput and the 

overkill, we can formulate an unconstrained optimization problem to maximize the profit. However, 

the relationships between the profit and throughput are very complicated due to the status of chip 

demand. For instances, when the chip demand is strong, larger throughput implies higher profit; on 

the other hand, if the chip demand is weak, larger throughput will cause inventory problem, which 

will hurt the profit. Therefore, the current formulation is simple and direct for a decision maker.  

Tr

Tr

Tr

Since the constraint on  shown in (2) is a soft-constraint in a sense, we can use a penalty 

function to relax that constraint and transform (2) into the following unconstrained stochastic 

optimization problem: 

][RE

)][(][min TXx
rREPVE −×+

∈
 

subject to                   {simulated wafer testing procedures in Fig. 1},           (3) 

where P  denotes a continuous penalty function for the constraint TrRE ≤][ . 

III   The Two-Level Ordinal Optimization Algorithm 

The size of the decision variable space X  in (3) is huge; for example, for an 8-inch wafer, which 

consists of, say 2500 dies, the possible ranges of the integer values  and  are [1, 2500] minWg maxkn
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and [1, 2500], respectively. Consequently for the number of bin types 12=K , the size of X  will 

be more than . The evaluation of the performance of each vector of decision variables requires 

a lengthy stochastic simulation of the testing procedures. Therefore, any global searching 

techniques for solving the simulation optimization type problem (3) will be very computationally 

expensive. To cope with the computational complexity of this problem, we propose an Ordinal 

Optimization (OO) theory based two-level algorithm to solve for a good enough solution with high 

probability instead of searching the best for sure. 

3010

The existing searching procedures of OO can be summarized in the following [4]: (i) Uniformly 

or randomly select N , say 1000, vectors of decision variables from X . (ii) Evaluate and order the 

N  vectors using an approximate model, then pick the top s , say 35, vectors to form the estimated 

good enough subset. (iii) Evaluate and order all the s  vectors obtained from (ii) using the exact 

model, then pick the top ( 1) vectors. The basic idea of the OO theory is based on the following 

observation: the performance order of the decision variables is likely preserved even evaluated 

using a crude model. Thus, the OO approach can reduce the searching space using cheaper 

evaluation to save computational time as indicated in (ii), and the best vector of decision variables 

obtained in (iii) is proved in [4] to be a good enough, top 5%, solution among 

k ≥

N (=1000) with 

probability 0.95. 

From the above description, we see that the quality of the good enough solution heavily depends 

on the quality of the randomly selected N  vectors of decision variables. Thus to improve the 

existing OO searching procedures, we can apply the OO theory to select N  roughly good vectors 

of decision variables from X , to ensure the top 5% solutions among N  to be the good enough 

solutions of X . This is what we called the first-level OO approach for replacing the existing 

searching procedure (i). Combining first level approach with the existing searching procedures (ii) 

and (iii) forms a two-level OO algorithm.  

A. Constructing a Metamodel for (3) 

The very first step for choosing N  roughly good vectors from X  should be constructing a 
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metamodel or surrogate model for the considered stochastic simulation optimization type problem. 

There are various techniques to approximate the relationships between the inputs and outputs of a 

system such as the linear regression, response transformation regression, projection-pursuit 

regression and artificial neural network (ANN) [5], etc…. Among them, ANN is considered to be a 

universal function approximator [6] due to its genetic, accurate and convenient property to model 

complicated nonlinear input-output relationships. ANN not only approximate the continuous 

functions well [7,8], but also being used to construct metamodels for discrete event simulated 

systems in [9] and [10]. Since what we care here is the performance order of the solution rather than 

the performance value as considered in [9] and [10], we can trade off the accuracy of the ANN based 

metamodel with the training time by using simple ANN with reasonable size of training data set. 

Two simple feed forward two-layer ANNs are employed here. One is to approximate the 

relationships between Xx∈  and the corresponding , and the other is for ][VE Xx∈  and . 

In these two ANNs, there are 16 neurons with hyperbolic tangent sigmoid function in the first layer, 

and 1 neuron with linear function in the second layer. We obtain the set of training data for the two 

ANNs by the following two steps. (a) Narrow down the decision-variable space  by excluding 

the irrational threshold values and denote the reduced decision variable space by 

][RE

X

X̂ 3. (b) 

Uniformly select M  vectors from X̂  and compute the corresponding outputs  and  

using a stochastic simulation of the testing procedures shown in Fig. 1. As indicated above, 

][VE ][RE

M  

need not be a very large value. The objective value of (3) can be computed based on the values of 

 and . Thus, we can obtain ][VE ][RE M  pairs of decision variables and the corresponding 

objective values for (3). To speed up the convergence of the back propagation training, we 

employed the Levenberg-Marquardt algorithm [11] and the scaled conjugate gradient algorithm [12] 

to train the ANNs for  and , respectively. Stopping criteria of the above two training  ][VE ][RE

 

3 The threshold values,  and , should lie in a reasonable range determined by the corresponding minWg maxkn
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average values of  and  collected from a wafer foundry. jg jkb

algorithms are when any of the following two conditions occurs: (i) the sum of the mean squared 

errors is smaller than 10-5, and (ii) the number of epochs exceeds 500. Once these two ANNs are 

trained, we can input any vector x  to the two ANNs to estimate the corresponding  and 

, which will be used to compute the objective value of (3). This forms our metamodel to 

estimate the objective value of (3) for a given vector of decision variables 

][VE

][RE

x . 

B. Using GA to Select N  Roughly Good Vectors of Decision Variables from X̂  

By the aid of the above ANN model, we can search N  roughly good vectors of decision 

variables from X̂  using heuristic global searching techniques. 

Since the searching techniques of Genetic Algorithm (GA), Evolution Strategies (ES) and 

Evolutionary Programming (EP) [13] improve a pool of populations from iteration to iteration, they 

should best fit our needs. For the sake of explanation and easier implementation, we employ the GA 

[14, Chapter 14] as our searching tool. 

The coding scheme of the GA we employed to represent all the vectors in X̂  is rather 

straightforward, because each component of the vector x  is an integer. We start from I , say 5000, 

randomly selected vectors from X̂  as our initial populations. The fitness of each vector is set to be 

the reciprocal of the corresponding objective value of (3) computed based on the outputs of the two 

ANNs. The members in the mating pool are selected from the pool of populations using roulette 

wheel selection scheme. 70% of the members in the mating pool are randomly selected to serve as 

parents for crossover. We use a single point crossover scheme and assume the mutation probability 

to be 0.02. We stop the GA when the iteration number exceeds 30. After the applied GA converges, 

we rank the final I  populations based on their fitness and pick the top N  populations, which are 

the N  roughly good vectors of decision variables. 

Remark 2: Although there exists in-depth analysis of the approximation errors for ANN to 

approximate continuous functions [7,8], the accuracy of approximating the input and output 
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relationships of a discrete event simulated system is usually addressed using empirical results [9,10]. 

Thus, it is not surprising that we do not get any analytical result for the quality of the N  vectors 

selected above. However, similar to the study in [4], we assume various magnitudes of modeling 

noise of uniform distribution to represent the approximation errors caused by the proposed ANN 

based metamodel and make the following simple experiments to compare the quality of the N  

vectors selected by GA based on the ANN model with those selected in random from the solution 

space. We let [-0.1,0.1] denote the uniform distribution of a random noise ranging from -0.1 to 

0.1 to be added to the normalized performance, i.e. the normalized objective value, of the exact 

model. The normalized performance for all solutions in a solution space is equally-spaced ranging 

from 0 to 1 with 0 as the top performance. In [4], a normalized Ordinal Performance Curve (OPC) 

is used to describe the performance structure of all the solutions in a solution space. Assume 

U

3010=X , , we carried out a Monte Carlo study for vast number of OPCs similar to that 

in [4] for an assumed noise distribution and pick the top 

1000=N

N  vectors using GA. We found the 

following results. For the modeling noise distribution, U [-0.01,0.01], U [-0.1,0.1] and 

[-0.5,0.5], the top 5% solutions in U N , which are selected by GA, is at least a top %, top 

%, and top % solution in 

610 −

310 − 210 − X  with probability 0.95, respectively. However, the top 5% 

solutions in N , which are selected in random, is at best, i.e. assuming no modeling noise, a top 5% 

solution in X  only. Therefore, we have greatly improved the quality of the N  vectors by 

replacing the existing searching procedure (i). 

C. Using an Approximate Model for Selecting the Estimated Good Enough Subset 

Starting from the N  vectors of decision variables obtained in Section 3.2, we will proceed with 

(ii) of the OO searching procedure to compute the objective value of (3) for each vector using an 

approximate model. As indicated in [15], this approximate model can be a stochastic simulation 

with moderate number of test wafers, that is to carry out the testing procedures shown in Fig. 1 for 

, say 300, wafers. We will then order the sL N  vectors of decision variables based on the obtained 
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estimated objective values of (3) and choose the top s  vectors which form the estimated good 

enough subset. 

D. Using the Exact Model to Determine the Good Enough Solution 

We will compute the objective value of (3) for each of the s  vectors in the estimated good 

enough subset using the exact model that is a stochastic simulation with sufficiently large number of 

test wafers that makes the estimated objective value sufficiently stable. This exact model is similar 

to the approximate model mentioned above however replacing  by (>> ) wafers. Then the 

vector associated with the smallest objective value of (3) among 

sL eL sL

s  is the good enough solution 

that we seek. 

IV. Test Results and Comparisons 

Our simulations are based on the following data collected from a practical product of a local 

world-renowned wafer foundry. The product is made in 6-inch wafers. Each wafer consists of 203 

dies. There are 12 bins in the wafers of this product. The probability mass function )( nBP k = , 

=1,…,12, and the probability of the number of overkills in bin , , =1,…,12, are given. 

The yield rate of this product is 68%. The decision-variable space 

k k kp k

}.12,...,1],203,1[],203,1[|]),...,1,,[({ maxminmaxmin =∈∈=== kngKkngxX kWkW  We used the sigmoid-type 

function as our penalty function P  in (3), i.e., )][(1
1

TrREe
P −−+
=η , where η ( 0.1594) is a 

normalized coefficient such that 

≅

][max

][max

},...,1{

},...,1{

iMi

iMi

RE

VE

∈

∈=η . 

We set , where }12,...,1],6,1[],203,50[|]),...,1,,[({ˆ
maxminmaxmin =∈∈=== kngKkngxX kkWkW μ

kμ  is the mean of the number of dies of bin . The parameters in the proposed two-level 

algorithm are set as follows: , 

k

300=sL 000,10=eL , M =1000, I =5000, N =1000, and =35. 

We have simulated 3 cases of different ’s, which are 10, 30 and 50. It should be noted that all the 

test results shown in this section are simulated in a Pentium IV PC using Borland C++. 

s

Tr
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The good enough vector of threshold values and the average overkill percentage for the three 

cases of  we obtained from the two-level algorithm are shown in Table 1. The CPU time 

consumed in each case plus the training time is approximately 6.05 minutes. From Table 1, we can 

observe that when  increases, the values of  increase as shown in row 2, and the values of 

leading , 5 and 6, which account for most of the retests, decrease as shown in rows 7 and 

8, respectively. This indicates that if we allow more retests (that is increasing ), we can set more 

stringent threshold values (that are increasing  and decreasing the leading s), so as to 

save more overkills (that is the decreased average overkill percentage), as indicated in the last row 

of Table 1.  

Tr

Tr minWg

maxkn =k

Tr

minWg maxkn

To demonstrate the real world performance of the vector of threshold values obtained by the 

two-level algorithm for the three cases shown in Table 1, we use 521 real test wafers, whose number 

of dies of all bins, , , jkb 521,...,1=j 12,...,1=k , and overkills before retest, , , 

, are known. The corresponding results of the pair of the average overkills per wafer, 

o
jkv 521,...,1=j

12,...,1=k

∑
=

=
521

1

)
521
1]([

j
jVVE , and the average retests per wafer, )

521
1]([

521

1
∑
=

=
j

jRRE , for these 521 test wafers 

are shown in Fig. 2 as the points marked by “ ”, “∗”, “ ” with the corresponding  shown on  D Tr

 

 

              r       
T

Good enough   
vector of threshold 
values 

10 30 50 

minWg  146 163 176 
max1n  7 3 8 
max2n  3 8 5 
max3n  6 6 6 
max4n  5 6 5 
max5n  51 43 34 
max6n  32 23 16 
max7n  7 7 3 
max8n  7 3 6 
max9n  4 3 4 
max10n  4 3 2 
max11n  3 3 2 
max12n  2 9 5 

%100
][

* ×
TD

VE
 

1.86% 1.07% 0.27%

Table 1: The good enough vector of threshold values and the average overkill percentage 
of the considered product for three different ’s. Tr
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*  TD : the total number of dies in a wafer of the considered product. 

 

  
 Fig. 2: The resulted ( , ) pairs of the 521 test wafers based on the 

vector of threshold values determined by two-level algorithm, random 
generator, three-sigma limit, six-sigma limit, GA and SA algorithm. 

][VE ][RE

 

 

the top right corner of the figure. We also use 2000 randomly selected vectors of threshold values to 

test the same 521 wafers; the resulted pairs of  and  are shown as the points marked 

by “•” in Fig. 2. We see that for 

][VE ][RE

10][ ≤RE , the  resulted by the good enough vector of 

threshold values obtained by the two-level algorithm is almost the minimum compared with those 

resulted by the randomly selected vectors of threshold values. Similar conclusions can be drawn for 

the cases of =30 and 50. Since reducing overkills and retests have conflicting nature, the 

considered unconstrained stochastic optimization problem (3) possesses pareto optimal solutions. 

From Fig. 2, we can see that the results we obtained for the cases of =10, 30 and 50 are almost 

on the boundary of the region resulted from the randomly generated vectors of threshold values; this 

][VE

Tr

Tr

implicit boundary represents the ( , ) pairs resulted by the pareto optimal vectors of 

threshold values. We also use the three-sigma limit and six-sigma limit to determine the threshold 

values such that , , 

][VE ][RE

ggWg σμσ 33
min −= kkkn σμσ 33

max += 12,...,1=k , and , 

, , where 

ggWg σμσ 66
min −=

kkkn σμσ 66
max += 12,...,1=k gμ  and gσ , the mean and standard derivation of the 
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number of good dies in a wafer, and kμ  and kσ , the mean and standard derivation of the number 

of dies of bin , are obtained from the data set of 521 test wafers. Using these threshold values to 

test the same set of 521 test wafers, the resulted ( , ) pairs from three-sigma limit and 

six-sigma limit are also shown in Fig. 2 marked by “ “ and “ ”, respectively. For 

k

][VE ][RE

10][ ≤RE , we 

can see that our method will save 22% and 24% more overkills than the three-sigma limit and 

six-sigma limit, respectively. Considering the vast number of dies manufactured per month, the 

increased profit due to saving overkills will be too large to neglect. Furthermore, both three-sigma 

limit and six-sigma limit do not generate the pareto optimal solution for (3), and they cannot control 

the level of retests like ours. We have also used typical GA and Simulated Annealing (SA) [13] 

algorithm to solve (3) for the case of =10. As indicated at the beginning of Section 3, the global 

searching techniques are computationally expensive in solving (3). We stop the GA and SA when 

they consumed 50 times of the CPU time consumed by the two-level algorithm, and the objective 

values of (3) they obtained are still 5.4% and 8.1% more than the final objective value obtained by 

the two-level algorithm, respectively. Using the threshold values they obtained to test the 521 

wafers, the resulted ( , ) pairs are marked by “+“ and “Δ” in Fig. 2. We found that using 

two-level algorithm, we can save 6.2% and 8.6% more overkills than using the GA and SA for 

, respectively. In addition, both GA and SA do not generate the pareto optimal solution, 

because the best so far solution they obtained for 5 hours of CPU time are still far away from the 

optimal solution of (3). 

Tr

][VE ][RE

10][ ≤RE

V. Conclusions 

The proposed formulation for reducing overkills and retests is not limited to the testing process of 

a foundry, it can easily adapt to any general testing procedures. The proposed ordinal optimization 

theory based two-level algorithm is not limited to the problem considered in this paper. In fact, it 

can be used to solve any hard optimization problem that requires lengthy computational time to 

evaluate the performance of a decision variable. 
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ABSTRACT 
In this paper, we propose a distributed 

computational algorithm for solving the distributed 
optimal power flow problem under deregulated 
environment. Except for the data of the self-subsystem, 
the proposed distributed algorithm requires only the data 
of the boundary buses of the connecting subsystems. 
Therefore, it is easily implemented in a computer 
network. We have tested the proposed distributed 
algorithm on the IEEE 118-bus system, which is 
arbitrarily partitioned into four subsystems. The test 
results demonstrate the convergence and the 
computational efficiency of the proposed distributed 
algorithm. 
KEY WORDS 
Distributed optimal power flow, distributed computation, 
nonlinear programming, power deregulation. 
 
1. Introduction 

Power deregulation is a trend in recent years and 
pushes the power market to be very active. Various 
research issues are then raised under the deregulated 
environment; among them, Distributed Optimal Power 
Flow (DOPF) is one of the most important subjects.  

Although the Optimal Power Flow (OPF) problem 
has a long history in power system research [1-5], the 
study of DOPF is introduced only recently. Kim and 
Baldick proposed a course-grained DOPF algorithm in 
[6], and they also compared three decomposition 
coordination methods for implementing DOPF algorithm 
in [7]. Hur et al. had evaluated the convergence rate of 
the auxiliary problem principle for DOPF algorithm in 
[8]. In a more recent paper [9], Hur et al. consider the 
security constraints for DOPF. 

In this paper, we consider the DOPF in deregulated 
environment such that each subsystem will buy (sell) 
power from (to) the neighboring subsystems if they fall 
short of (have surplus) power. Since the power flow from 

the neighboring subsystem is set by the contract, each 
subsystem would utilize the generated and purchased 
power in an optimal way. However, to achieve a 
system-wise optimality, all the subsystems have to 
cooperate to solve the DOPF in a whole.  

From the hardware viewpoint, DOPF is easier to 
implement nowadays, because the mature computer 
network technology and the prevailed network 
infrastructure. Thus, what is most needed is a reliable 
distributed computation software. Despite the existence 
of the DOPF algorithms mentioned above, the DOPF 
problem considered here is different from those in [6-9], 
because the tie line flows should be equality constraints 
in our formulation. Therefore, we need to propose a 
DOPF algorithm that is suitable for the environment of 
deregulated power systems.  

The paper is organized in the following manner. In 
Section II, we will state the considered DOPF 
mathematically. In Section III, we will propose a solution 
method to solve the considered DOPF. In Section IV, we 
will present distributed algorithmic steps to execute the 
proposed solution method in the computer network. In 
Section V, we will test our distributed algorithm on the 
IEEE 118-bus system, which is arbitrarily partitioned 
into 4 subsystems. Finally, we make a conclusion in 
Section VI. 
 
2. Problem Statement 

Since the amount of power delivered from the 
selling subsystem is fixed and set by the contract. Thus, 
the power flow of the tie lines from the selling subsystem 
to the buying subsystem is considered to be the 
additional line flow constraints in the DOPF. Thus, our 
DOPF can be stated in the following: 
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where  denote the total generation cost 

function of subsystem ,  denote the 

vector of complex voltage of subsystem , where , 

and  denote the vector of complex voltage of 

interior buses and boundary buses, respectively; 

 denotes the 

flow balance equations and   

denotes the security constraints such as the thermal limit, 
voltage magnitude limit, power generate limit of 
subsystem ;  denotes the vector of complex 

voltage of the boundary buses of other subsystems 
connecting with subsystem ; 
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i N  denotes the total 
number of subsystems in the deregulated power network, 

and  denotes the real power line 

flow equation from subsystem  to 
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j
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i j , where 

denote the amount of power purchased by subsystem ijp

j  from ; , denote the 

corresponding reactive power flow of the purchased real 

power  with reasonal power factor;  denotes 

the vector of complex voltage of the boundary bus of 
subsystem 
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j  such that Mji ∈),( ;  

denotes the set of selling and purchasing pairs  of 

power companies  and 

})',{( sjiM =

),( ji
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    We assume each subsystem has its own control 
center, which is equipped with a computer. The 
computers of all subsystems are connected through a 
computer network. The proposed distributed algorithm 
for solving the DOPF (1) will be carried out in this 
network.  
 
3. The Solution Method 
     In order to achieve the system-wise optimal 
objective, we have to solve the DOPF problem shown in 
(1) in a whole using a method that can be computed 
distributedly. In our previous research work, we have 

developed the DPPQN method based algorithm to solve 
the centralized OPF problems [10-12] for quite a while. 
This algorithm gains its computational efficiency and 
stability by its decomposition effects and the capability 
of handing the binding inequality constraints. As a matter 
of fact, the decomposition effects of the DPPQN method 
can play the key for distributed computation. Thus, we 
will describe how the DPPQN method solves the DOPF 
(1) in the following:  
First of all, we define the vector functions 

),,( ijijii QPgg =  and partition ig  into ),( ,

0

bii gg  

such that the sub-vector function ig
0

 involves only the 

variable vector  of subsystem i , 

while 

),,,( ,

0

ii GGbii QPxx

big ,  involves not only the variable vector of 

subsystem  but also the variable vector  of the 

subsystems connecting with subsystem . Using this 
notation, we can rewrite (1) as 

i eix ,
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For the sake of notational simplicity, we define 

the following variable vector  where 

 and . 
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0
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The proposed DPPQN method based algorithm is 
a combination of the Successive Quadratic Programming 
(SQP) method with the Dual Projected Pseudo Quasi 
Newton (DPPQN) method such that the Quadratic 
Programming Problem (QPP) induced in the SQP 
method is solved by the DPPQN method. The SQP 
method uses the following iterations to solve (2) 
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where  is the iteration index, k )(kα  is a positive 
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where ig
0

)(k  represents ))(),(( ,

00
kxkyg bii  and the 

same abbreviation applies to )(, kg bi  and . The 

QPP in (4) will be solved by the DPPQN method. Thus, 
most of the computations of the proposed algorithm lie 
on the DPPQN method to solve (4) for , because 

the SQP method simply update  by (3) once 

 is obtained in each iteration.  
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Instead of solving (4) directly, the DPPQN solves 

the dual problem of (4), which is stated below 
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The DPPQN method uses the following iterations to 
solve the dual problem (5) 
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where  is the iteration index; t )(tβ  is a positive 
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following linear equations. 
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The  required in (17) and 

(18) for  is the optimal solution, , of 

the minimization problem on the RHS of (6), which can 
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denotes the Lagrange multipliers associated with the 
equality constraints of subsystem j  involving the 

complex voltage of the boundary buses of subsystem . 
Once the optimal solution of (19) are obtained, we can 

calculate 
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 by (17) and (18). Then we can 

solve )(tλΔ  from (9) by first decomposing (9) into the 

following  independent set of linear equations, N
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then solving these  independent set of linear 

equations to obtain 

N
))(),...,(()( 1 ttt Nλλλ ΔΔ=Δ . We 

will then update )(tλ  by (8) using an Armijo-type 

step-size )(tβ  [10]. The iterations of the DPPQN 
method will continue until they converge to an optimal 

 for the dual problem (5). The corresponding optimal 

solution on the RHS of (6) when  will be 

 which will be used to 

update 
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Nikxky bii ,...,1)),(),(( ,
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)1( +ky  in (3) using an Armijo-type step-size 

)(kα  [10]. Then we will start the next iteration of the 
SQP method. The iterations of the SQP method will 
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continue until it converges to the optimal solution of the 
DOPF (1). 
 
4. The Distributed Algorithm 
 
From the computational formulae of the SQP method and 
the DPPQN method described above, we see that the 
SQP method does nothing but update  in each 
iteration as shown in (3), which of course can be carried 
out in individual subsystems. The major computations 
required in the DPPQN method are solving the 
optimization problems (19) and the linear equations (20), 
which are already decomposed such that each subsystem 
can execute its part of the computations as long as the 
necessary data from the connecting subsystems are 
passed through the computer network. This indicates that 
the proposed solution method is very suitable for 
implementation in a distributed computer network.  

)(ky

In order to govern the synchronization of the 
convergence of the DPPQN and SQP methods in the 
distributed computing network, we assign a root 
sub-system among the connecting sub-systems to be 
responsible for this task. Following is the distributed 
algorithmic steps for each subsystem : i
 

Step 0: Initially guess ; initially guess iy iλ . 

Step 1: Send bi ,λ  to connecting subsystems. 

Step 2: Once receiving all  from all 

connecting subsystems, compute  from 

solving (19). 

ibj Jj∈,,λ

iŷΔ

Step 3: Send  to connecting subsystems. bix ,ˆΔ

Step 4: Once all  are received, calculate ibj Jjx ∈Δ ,,
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 by (17) and (18). 

Step 5: Compute  and solve iΦ iλΔ  from (20) 

Step 6: If ελ <Δ i , send a signal to the root 

subsystem to inform the convergence of DPPQN 
method in this subsystem. 

Step 7: Update λ  by (8) and return to Step 1. 

Step 8: Once receiving the signal to update  from the 

root subsystem, compute  from (19) and 

update  by (3). If 

iy

iyΔ

iy ε<Δ |||| iy , send a signal 

to the root sub-system to inform the convergence 
of the SQP method in this subsystem and return 

to Step 1. 
 

As indicated above, an extra task for the root 
subsystem in addition to the above distributed 
algorithmic execution steps is checking the system-wise 
convergence of the DPPQN and SQP methods. Thus, in 
Step 6, if the root subsystem receives the signal 
indicating the convergence of the DPPQN method from 
all subsystems, it will send a signal to all subsystems to 
update . Similarly, if the root subsystem receives the 
convergence signal of the SQP method from all 
subsystems, it will send a signal to all subsystems to stop 
the algorithm and output the solution. 

y

 
5. Test Results 

    We have applied our distributed algorithm to 
solve the DOPF on the IEEE 118-bus system, which is 
arbitrarily partitioned into four subsystems. These four 
subsystems are indexed by A1, A2, A3 and A4, 
respectively. The interconnecting relationships of these 
four subsystems is shown in Fig. 1. The power selling 
and purchasing pairs are (A1,A2), (A1, A4), (A1, A3), 
and (A2,A3). The cost function of each generation bus in 
each subsystem is a quadratic function of the real power 
generation. We have arbitrarily assumed the amount of 
power sale in each selling and purchasing pair and 
distribute the power among the tie lines.  

 Since we do not have a distributed computing 
network at hand, we currently simulate our distributed 
algorithm in a Pentium IV PC. The final objective value 
we obtain is 46,414 dollars/hour, and the consumed 
sequential CPU time is 0.62 seconds. However, if we 
take the parallel computation effect into account but not 
including the data communication time, the CPU time for 
the longest subsystem is 0.24 seconds. To verify our 
result, we also solve the DOPF using the centralized 
DPPQN method based algorithm [10] and obtain the 
following results: the final objective value is 46,412 
dollars/hour, and the consumed CPU time is 0.49 
seconds. This demonstrate that our distributed algorithm 
does converge to the true solution, and the consumed 
CPU time is much faster than the centralized method if 
we take the parallel computation effect into account.  

 
6. Conclusion 

Due to the trend of deregulation, DOPF becomes a 
focus in power system research. We have proposed a 
DOPF algorithm under deregulated environment in this 
paper. The communication requirement in the algorithm 
can be easily handled. The test results demonstrate the 
superiority of the proposed distributed algorithm. 
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between the four subsystems. 
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