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Abstract

Simulation optimization is one of the
most frontier research area in optimization.
The main characteristics of simulation
optimization problem is the evaluation of the
objective function of an input-variable setting
requires lengthy simulation. Therefore we
cannot use the conventional optimization
techniques to solve them. There are various
types of simulation optimization problems
such as stochastic optimization problems
with huge input-variable space and large
scale optimization problems with decision
and discrete control variables.

In this project, we intend to categorize
some classes of simulation optimization
problems and propose algorithms to solve



them. Basically, in the simulation
optimization problem, it is almost impossible
to extract structural information of the
system analytically. Therefore, the proposed
simulation optimization algorithms will use
simulations as a tool to extract the structural
information. The extracted structural
information will be used in the proposed
algorithm to reduce the searching space.
Such an iterative simulation optimization
technique will use only reasonable
computation time to obtain a good enough
solution.

We will use ordinal optimization
theory to prove the quality of the solution we
obtain. In addition, we will compare our
results with those obtained by the competing
methods such as the genetic algorithms,
simulated annealing, and the tabu search
methods.

We will implement our algorithms in
the form of commercial software for a more
general purpose.
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Abstract
In this paper, we have formulated a stochastic optimization problem to find the optimal threshold

values to reduce the overkills of dies under a tolerable retest level in wafer testing process. The
problem is a hard optimization problem with a huge solution space. We propose an ordinal
optimization (OO) theory based two-level algorithm to solve for a vector of good enough threshold
values and compare with those obtained by others using a set of 521 real test wafers. The test results
confirm the feature of controlling retest level in our formulation, and the pairs of overkills and
retests resulted from our approach are almost pareto optimal. In addition, our approach spends only
6.05 minutes in total in a Pentium I'V PC to obtain the good enough threshold values.
Index Terms— wafer probing, overkill, retest, ordinal optimization, stochastic optimization, neural
network, genetic algorithm.

I. INTRODUCTION

The wafer fabrication process is a sequence of hundreds of different process steps, which results
in an unavoidable variability accumulated from the small variations of each process step. Thus, to
avoid incurring the significant expense of assembling and packaging chips that do not meet
specifications, the wafer probing in the manufacturing process becomes an essential step to identify
flaws early.

Wafer probing establishes a temporary electrical contact between test equipment and each
individual die (or chip) on a wafer to determine the goodness of a die. In general, an 8-inch wafer
may consist of 600 to 15000 dies, and each die is a chip of integrated circuits. Although there exist
techniques such as the Statistical Process Control (SPC) [1,2] for monitoring the operations of the
wafer probes, the probing errors may still occur in many aspects and cause some good dies being
over killed; consequently, the profit is diminished. Thus, reducing the number of overkills is always
one of the main objectives in wafer testing process. The key tool to identify or save overkills is
retest, which is an additional probing on the problematic die. However, retest is a major factor for

decreasing the throughput. Thus, the overkill and the retest possess inherent conflicting factors,



because reducing the former can gain more profit, however, at the expense of increasing the latter,
which will degrade the throughput. Consequently, to save more overkills using less retests is a goal
of the wafer testing process.

Deciding whether to go for a retest is a decision problem. In current wafer testing process, this
decision is made based on whether the number of good dies and the number of 6ins® in a wafer
exceed the corresponding threshold values. Manually adaptive adjustments of the threshold values
based on engineering judgment, three-sigma limit [3] or a looser six-sigma limit are currently used
in some semiconductor manufacturing companies. The purpose of this paper is using a systematic
approach to determine these threshold values. We first formulate a stochastic optimization problem
on the threshold values. Since the formulated stochastic optimization problem consists of a huge
decision-variable space as will be seen in Section 3, this makes the problem becomes a hard
optimization problem. Thus, to cope with the enormous computational complexity, we propose an
ordinal optimization theory based two-level algorithm to solve the formulated problem for a good
enough solution.

II. Problem Statements and Mathematical Formulation

A. Testing Procedures

In this section, we employ typical testing procedures used in a local world-renowned wafer
foundry. Fig.1 shows the flow chart of the real and simulated testing procedures. All the solid
blocks represent the real testing procedures, while the dashed blocks are added for the purpose of
computer simulation. The operation of the real testing procedures is briefly described in the
following.

For every wafer, the wafer probing is performed twice as shown in the solid square marked by I in

Fig.1. The second probing applies only to those dies failed in the first one. A die is considered to be

A 6in denotes a type of circuitry-defect in a die. There are various types of bins, and a die of any type of

bin is considered to be a bad die.
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Fig. 1: Flow chart of the real and simulated wafer testing procedures.




good if it is good in either probing. If a die is detected to have bins in both tests, the bin detected in

the second probing is taken as the bin of that die. We let g; (T;) denote the number of good (bad)

dies in wafer j, and let b, denote the number of dies of bin k in wafer j. Assume there are
K

K types of bins in a wafer, then @, = Zb x and g, =TD, —@; as shown in the square marked
k=1

by Ilin Fig.1, where TD; denotes the total number of dies in wafer j. Following the two times of
wafer probing and the calculation of g; and G, a two-stage checking on the number of good dies

is performed to determine the necessity of carrying out a retest, i.e. an additional wafer probing. The
mechanism of the two-stage checking described in the part of the testing procedures enclosed in the
dotted contour can be summarized below. We let @, ... denote the threshold value for the lower
bound of the number of good dies in a wafer to determine whether to pass or hold the wafer; we let
N » K =1,..., K, denote the threshold value for the upper bound of the number of dies of bin Kk in
the hold wafer to determine whether to perform a retest. If g; > g,,,,;,, We pass wafer j as shown

in the diamond-shape block marked by Ill.a and the square marked by IIl.c; otherwise, we will hold

this wafer and check its bins. For the hold wafer j,if b, <n, . forall k, then wafer j will
be passed, as shown in the diamond-shape block marked by IIl.b and the square marked by IIl.c.
However, if the hold wafer j consists of any bin k with b, >n, ., retests will be performed
for all dies of bin k in wafer j to check for possible probing errors as shown in the

diamond-shape block and square marked by IV.b and IV.d. Then, the overkills will be saved when

there are probing errors as shown in the square marked by V. For bin K in the hold wafer j with

Dy <Ny pax» We pass it as shown in the diamond-shape block and square marked by IV.b and IV.c.

This threshold value checking process will continue until all bins are checked as indicated in the

diamond-shape blocks and squares marked by IV.e, IV.f, IV.g, and IV.h.



B.  Computer Simulation of the Testing Procedures
Simulation model for the two-times wafer probing
Since we cannot perform the real wafer probing in computer, for the purpose of simulation, we

need to build up a simulation model for the two times wafer probing. We let B, denote the
discrete random variable for the number of dies of bin k in a wafer. Since P(B, =n) can be
provided by the real data, we can randomly generate the value of B, for a wafer based on the
discrete probability mass function P(B, =n).

Each die of bin k can be either an actual bin caused by manufacturing errors or an overkill

caused by testing errors. Thus we can treat the overkills in B, as a binomial random variable with
probability p, , which represents the probability of overkills in dies of bin k and can be provided

by real data. We let V,” denote the random variable for the number of overkills in B, . Then, once

the value of B, is randomly generated, we can randomly generate the value of V,° based on a
binomial probability distribution with probability p, .

2) Simulation of the testing procedures

We let by and Vv{ denote the values generated from the random variables B, and V, for
wafer |, respectively. The two times wafer probing in Fig. 1 will be replaced by the random
generator of B, and V, shown in the dashed square marked also by I in Fig. 1. The dashed

squares in Fig. 1 except for the one mentioned above are for calculating the number of overkills and

retests resulted from the simulated testing procedures. In contrast to v}, we let v, denote the

number of overkills for bin k of wafer j after completing the testing procedures and let r,

denote the corresponding number of retests. In the testing procedures, although we may pass the

wafer when the threshold value test is a success, there may be overkills. We let V; and R; denote

the total number of overkills and retests in wafer |j, respectively. Thus for the passed wafer |,



K
V. = Zv‘j’k and R;=0 as shown in the dashed square marked by VIII in Fig. 1. The same logic

J
k=1

0

applies to the passed bin k of the hold wafer j that v, =Vj and r, =0 as shown in the dashed

square marked by VI in Fig. 1. However, for any retested bin, the probability of any unidentified

overkill is extremely small, because the dies had been probed three times, which include two times

wafer probing before any retest. Thus, for any retested bin k, r,=b, and we assume v =0,

because the overkills are saved, as shown in the dashed square marked also by V in Fig. 1; the solid
square marked by V will be replaced by this dashed square in the simulated testing procedures.

Once all the threshold value tests for all bins of the hold wafer j are completed, we can compute

V; and R; as shown in the dashed square marked by VII in Fig. 1. The resulting values of V,

L
and R; of wafer j will be used to calculate E[V]=— ZV and E[R] —%ZRJ- , which
j=1

J 1
represent the average overkills and retests per wafer, respectively, and L denotes the total number
of tested wafers.

C. Problem Formulation

From Fig. 1, we see that if we increase ¢,,,,, While decreasing n, ., that is setting more

stringent threshold values, there will be more retests and less overkills. This shows a conflicting
nature between the overkills and retests. Thus, to reduce overkills under a tolerable level of retests,
we will set minimizing the average number of overkills per wafer, E[V ], as our objective function
while keeping the average number of retests per wafer, E[R], under a satisfactory level. Thus, our
problem for determining the threshold values can be formulated as the following constrained
stochastic optimization problem:

min E[V]

xeX
subject to {simulated wafer testing procedures in Fig. 1},

E[R]<T,, )



where X =[0y > Nimax s K = L., K] denotes the vector of threshold values, that is the vector of

decision variables; X denotes the decision variable space; I, denotes the tolerable
average-number of retests per wafer.

Remark 1: a) The value of I; can be determined by the decision maker based on the economic
situation. When the chip demand is weak, the throughput, in general, is not critical in the
manufacturing process; therefore, we can allow a larger I; so as to save more overkills to gain
more profit. On the other hand, if the chip demand is strong, then the throughput is more important,
and we should set the value of I smaller. Taking the chip demand into account is a distinguished
feature of the proposed formulation. b) It is possible to pursue the relationships between the number
of retests and the throughput. Then if we can derive the profit in terms of the throughput and the
overkill, we can formulate an unconstrained optimization problem to maximize the profit. However,
the relationships between the profit and throughput are very complicated due to the status of chip
demand. For instances, when the chip demand is strong, larger throughput implies higher profit; on
the other hand, if the chip demand is weak, larger throughput will cause inventory problem, which
will hurt the profit. Therefore, the current formulation is simple and direct for a decision maker.

Since the constraint on E[R] shown in (2) is a soft-constraint in a sense, we can use a penalty
function to relax that constraint and transform (2) into the following unconstrained stochastic
optimization problem:

min E[V]+Px(E[R]-r)

subject to {simulated wafer testing procedures in Fig. 1}, 3)
where P denotes a continuous penalty function for the constraint E[R]< ;.
I  The Two-Level Ordinal Optimization Algorithm
The size of the decision variable space X in (3) is huge; for example, for an 8-inch wafer, which

consists of, say 2500 dies, the possible ranges of the integer values ¢, ... and n,__ are[l,2500]



and [1, 2500], respectively. Consequently for the number of bin types K =12, the size of X will
be more than 10*. The evaluation of the performance of each vector of decision variables requires
a lengthy stochastic simulation of the testing procedures. Therefore, any global searching
techniques for solving the simulation optimization type problem (3) will be very computationally
expensive. To cope with the computational complexity of this problem, we propose an Ordinal
Optimization (OO) theory based two-level algorithm to solve for a good enough solution with high
probability instead of searching the best for sure.

The existing searching procedures of OO can be summarized in the following [4]: (i) Uniformly
or randomly select N, say 1000, vectors of decision variables from X . (i1) Evaluate and order the
N vectors using an approximate model, then pick the top S, say 35, vectors to form the estimated
good enough subset. (iii) Evaluate and order all the S vectors obtained from (ii) using the exact
model, then pick the top K (>1) vectors. The basic idea of the OO theory is based on the following
observation: the performance order of the decision variables is likely preserved even evaluated
using a crude model. Thus, the OO approach can reduce the searching space using cheaper
evaluation to save computational time as indicated in (ii), and the best vector of decision variables
obtained in (iii) is proved in [4] to be a good enough, top 5%, solution among N (=1000) with
probability 0.95.

From the above description, we see that the quality of the good enough solution heavily depends
on the quality of the randomly selected N vectors of decision variables. Thus to improve the
existing OO searching procedures, we can apply the OO theory to select N roughly good vectors
of decision variables from X, to ensure the top 5% solutions among N to be the good enough
solutions of X . This is what we called the first-level OO approach for replacing the existing
searching procedure (i). Combining first level approach with the existing searching procedures (ii)
and (ii1) forms a two-level OO algorithm.

A. Constructing a Metamodel for (3)

The very first step for choosing N roughly good vectors from X should be constructing a



metamodel or surrogate model for the considered stochastic simulation optimization type problem.
There are various techniques to approximate the relationships between the inputs and outputs of a
system such as the linear regression, response transformation regression, projection-pursuit
regression and artificial neural network (ANN) [5], etc.... Among them, ANN is considered to be a
universal function approximator [6] due to its genetic, accurate and convenient property to model
complicated nonlinear input-output relationships. ANN not only approximate the continuous
functions well [7,8], but also being used to construct metamodels for discrete event simulated
systems in [9] and [10]. Since what we care here is the performance order of the solution rather than
the performance value as considered in [9] and [10], we can trade off the accuracy of the ANN based
metamodel with the training time by using simple ANN with reasonable size of training data set.
Two simple feed forward two-layer ANNs are employed here. One is to approximate the
relationships between x € X and the corresponding E[V ], and the other is for x € X and E[R].
In these two ANNS, there are 16 neurons with hyperbolic tangent sigmoid function in the first layer,
and 1 neuron with linear function in the second layer. We obtain the set of training data for the two

ANNSs by the following two steps. (a) Narrow down the decision-variable space X by excluding
the irrational threshold values and denote the reduced decision variable space by X °. (b)
Uniformly select M vectors from X and compute the corresponding outputs E[V] and E[R]

using a stochastic simulation of the testing procedures shown in Fig. 1. As indicated above, M
need not be a very large value. The objective value of (3) can be computed based on the values of
E[V] and E[R]. Thus, we can obtain M pairs of decision variables and the corresponding
objective values for (3). To speed up the convergence of the back propagation training, we
employed the Levenberg-Marquardt algorithm [11] and the scaled conjugate gradient algorithm [12]

to train the ANNs for E[V] and E[R], respectively. Stopping criteria of the above two training

> The threshold values, @, and n should lie in a reasonable range determined by the corresponding

k max »



average values of ¢; and b i collected from a wafer foundry.

algorithms are when any of the following two conditions occurs: (i) the sum of the mean squared
errors is smaller than 107, and (ii) the number of epochs exceeds 500. Once these two ANNs are
trained, we can input any vector X to the two ANNs to estimate the corresponding E[V] and
E[R], which will be used to compute the objective value of (3). This forms our metamodel to
estimate the objective value of (3) for a given vector of decision variables X.
B. Using GAto Select N Roughly Good Vectors of Decision Variables from X

By the aid of the above ANN model, we can search N roughly good vectors of decision
variables from X using heuristic global searching techniques.

Since the searching techniques of Genetic Algorithm (GA), Evolution Strategies (ES) and
Evolutionary Programming (EP) [13] improve a pool of populations from iteration to iteration, they
should best fit our needs. For the sake of explanation and easier implementation, we employ the GA

[14, Chapter 14] as our searching tool.

The coding scheme of the GA we employed to represent all the vectors in X is rather
straightforward, because each component of the vector X is an integer. We start from |, say 5000,
randomly selected vectors from X as our initial populations. The fitness of each vector is set to be
the reciprocal of the corresponding objective value of (3) computed based on the outputs of the two
ANNSs. The members in the mating pool are selected from the pool of populations using roulette
wheel selection scheme. 70% of the members in the mating pool are randomly selected to serve as
parents for crossover. We use a single point crossover scheme and assume the mutation probability
to be 0.02. We stop the GA when the iteration number exceeds 30. After the applied GA converges,
we rank the final | populations based on their fitness and pick the top N populations, which are
the N roughly good vectors of decision variables.

Remark 2: Although there exists in-depth analysis of the approximation errors for ANN to

approximate continuous functions [7,8], the accuracy of approximating the input and output

10



relationships of a discrete event simulated system is usually addressed using empirical results [9,10].
Thus, it is not surprising that we do not get any analytical result for the quality of the N vectors
selected above. However, similar to the study in [4], we assume various magnitudes of modeling
noise of uniform distribution to represent the approximation errors caused by the proposed ANN
based metamodel and make the following simple experiments to compare the quality of the N

vectors selected by GA based on the ANN model with those selected in random from the solution
space. We let U [-0.1,0.1] denote the uniform distribution of a random noise ranging from -0.1 to
0.1 to be added to the normalized performance, i.e. the normalized objective value, of the exact
model. The normalized performance for all solutions in a solution space is equally-spaced ranging
from 0 to 1 with O as the top performance. In [4], a normalized Ordinal Performance Curve (OPC)

is used to describe the performance structure of all the solutions in a solution space. Assume

|X| =10, N =1000, we carried out a Monte Carlo study for vast number of OPCs similar to that

in [4] for an assumed noise distribution and pick the top N vectors using GA. We found the
following results. For the modeling noise distribution, U [-0.01,0.01], U [-0.1,0.1] and
U [-0.5,0.5], the top 5% solutions in N, which are selected by GA, is at least a top 10™° %, top
107 %, and top 107> % solution in X with probability 0.95, respectively. However, the top 5%
solutions in N, which are selected in random, is at best, i.e. assuming no modeling noise, a top 5%
solution in X only. Therefore, we have greatly improved the quality of the N vectors by
replacing the existing searching procedure (i).
C. Using an Approximate Model for Selecting the Estimated Good Enough Subset

Starting from the N vectors of decision variables obtained in Section 3.2, we will proceed with
(i1) of the OO searching procedure to compute the objective value of (3) for each vector using an
approximate model. As indicated in [15], this approximate model can be a stochastic simulation
with moderate number of test wafers, that is to carry out the testing procedures shown in Fig. 1 for

L, , say 300, wafers. We will then order the N vectors of decision variables based on the obtained
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estimated objective values of (3) and choose the top S vectors which form the estimated good
enough subset.
D. Using the Exact Model to Determine the Good Enough Solution

We will compute the objective value of (3) for each of the S wvectors in the estimated good
enough subset using the exact model that is a stochastic simulation with sufficiently large number of
test wafers that makes the estimated objective value sufficiently stable. This exact model is similar

to the approximate model mentioned above however replacing L, by L, (>>L,) wafers. Then the

vector associated with the smallest objective value of (3) among S is the good enough solution
that we seek.
IV. Test Results and Comparisons
Our simulations are based on the following data collected from a practical product of a local
world-renowned wafer foundry. The product is made in 6-inch wafers. Each wafer consists of 203

dies. There are 12 bins in the wafers of this product. The probability mass function P(B, =n),
k=1,...,12, and the probability of the number of overkills in bin k, p,, k=1,...,12, are given.

The yield rate of this product is 68%. The  decision-variable space

X = {X(= 19w min> Memaxs K = Lees KD | Gy i €[1,203],0, . €[1,203],k =1....,12}. We used the sigmoid-type

function as our penalty function P in (3), ie, P=p where 7(=0.1594) is a

1+ e—(E[R]—TT) ’

) ) max E[V|]
normalized coefficient such that , — istb.M} =~
max E[R;]

iefl, ..M}

We set X = {X(=[Gy min > M s s K = Lo K1) [ G4y oy €[50,203],0, .. €[1,64, 1,k =1,...,12}, where
4, is the mean of the number of dies of bin k. The parameters in the proposed two-level
algorithm are set as follows: L, =300, L, =10,000, M =1000, |=5000, N =1000, and s=35.

We have simulated 3 cases of different I; ’s, which are 10, 30 and 50. It should be noted that all the

test results shown in this section are simulated in a Pentium IV PC using Borland C++.
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The good enough vector of threshold values and the average overkill percentage for the three
cases of I, we obtained from the two-level algorithm are shown in Table 1. The CPU time
consumed in each case plus the training time is approximately 6.05 minutes. From Table 1, we can

observe that when I, increases, the values of g,, ... increase as shown in row 2, and the values of
leading n,,. , K =5 and 6, which account for most of the retests, decrease as shown in rows 7 and

8, respectively. This indicates that if we allow more retests (that is increasing I; ), we can set more
stringent threshold values (that are increasing 0,,,., and decreasing the leading n, . s), so as to

save more overkills (that is the decreased average overkill percentage), as indicated in the last row
of Table 1.
To demonstrate the real world performance of the vector of threshold values obtained by the

two-level algorithm for the three cases shown in Table 1, we use 521 real test wafers, whose number
of dies of all bins, bjk, j=1..521, k=1,..,12, and overkills before retest, V?k,j=1,...,521,

k=1,...,12, are known. The corresponding results of the pair of the average overkills per wafer,

1 & 1
E[V](=—Y V), and the average retests per wafer, E[R](=— Y R.), for these 521 test wafers
V= 557 2V RI= 557 2 R)

are shown in Fig. 2 as the points marked by “¥¢”, “*”, “o” with the corresponding r, shown on

Table 1: The good enough vector of threshold values and the average overkill percentage
of the considered product for three different I7 ’s.

I
enough 10 30 50
vector Of<threshold
values
Ow 146 163 176
M max 7 3 8
1 max 3 8 5
M 6 6 6
(L 5 6 5
N5 max 51 43 34
N 32 23 16
N 7 7 3
N mae 7 3 6
Ny, 4 3 4
Ny 4 3 2
n, 3 3 2
[ 2 9 5
« Lo 1.86% [1.07% [0.27%




* TD : the total number of dies in a wafer of the considered product.
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Fig. 2: The resulted (E[V ], E[R]) pairs of the 521 test wafers based on the

vector of threshold values determined by two-level algorithm, random
generator, three-sigma limit, six-sigma limit, GA and SA algorithm.

the top right corner of the figure. We also use 2000 randomly selected vectors of threshold values to

test the same 521 wafers; the resulted pairs of E[V] and E[R] are shown as the points marked
by “¢” in Fig. 2. We see that for E[R]<10, the E[V] resulted by the good enough vector of
threshold values obtained by the two-level algorithm is almost the minimum compared with those
resulted by the randomly selected vectors of threshold values. Similar conclusions can be drawn for
the cases of I =30 and 50. Since reducing overkills and retests have conflicting nature, the
considered unconstrained stochastic optimization problem (3) possesses pareto optimal solutions.
From Fig. 2, we can see that the results we obtained for the cases of I =10, 30 and 50 are almost
on the boundary of the region resulted from the randomly generated vectors of threshold values; this
implicit boundary represents the (E[V],E[R]) pairs resulted by the pareto optimal vectors of

threshold values. We also use the three-sigma limit and six-sigma limit to determine the threshold

60
W min

3o
W min

values such that g =u, =30, , NG, =p+30,, k=1..12, and g =u, —60, ,

Neoa =ty 60, , k=112, where 4, and o,, the mean and standard derivation of the
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number of good dies in a wafer, and x4, and o, , the mean and standard derivation of the number

of dies of bin k, are obtained from the data set of 521 test wafers. Using these threshold values to

test the same set of 521 test wafers, the resulted (E[V],E[R]) pairs from three-sigma limit and
six-sigma limit are also shown in Fig. 2 marked by “[1“ and “<{>”, respectively. For E[R]<10, we

can see that our method will save 22% and 24% more overkills than the three-sigma limit and
six-sigma limit, respectively. Considering the vast number of dies manufactured per month, the
increased profit due to saving overkills will be too large to neglect. Furthermore, both three-sigma
limit and six-sigma limit do not generate the pareto optimal solution for (3), and they cannot control
the level of retests like ours. We have also used typical GA and Simulated Annealing (SA) [13]

algorithm to solve (3) for the case of I, =10. As indicated at the beginning of Section 3, the global

searching techniques are computationally expensive in solving (3). We stop the GA and SA when
they consumed 50 times of the CPU time consumed by the two-level algorithm, and the objective
values of (3) they obtained are still 5.4% and 8.1% more than the final objective value obtained by
the two-level algorithm, respectively. Using the threshold values they obtained to test the 521

wafers, the resulted (E[V ], E[R]) pairs are marked by “+“ and “A” in Fig. 2. We found that using

two-level algorithm, we can save 6.2% and 8.6% more overkills than using the GA and SA for

E[R] <10, respectively. In addition, both GA and SA do not generate the pareto optimal solution,

because the best so far solution they obtained for 5 hours of CPU time are still far away from the
optimal solution of (3).
V. Conclusions
The proposed formulation for reducing overkills and retests is not limited to the testing process of
a foundry, it can easily adapt to any general testing procedures. The proposed ordinal optimization
theory based two-level algorithm is not limited to the problem considered in this paper. In fact, it
can be used to solve any hard optimization problem that requires lengthy computational time to

evaluate the performance of a decision variable.
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ABSTRACT

In this paper, we propose a distributed
computational algorithm for solving the distributed
optimal power flow problem under deregulated
environment. Except for the data of the self-subsystem,
the proposed distributed algorithm requires only the data
of the boundary buses of the connecting subsystems.
Therefore, it is easily implemented in a computer
network. We have tested the proposed distributed
algorithm on the IEEE 118-bus system, which is
arbitrarily partitioned into four subsystems. The test
results demonstrate the convergence and the
computational efficiency of the proposed distributed
algorithm.

KEY WORDS
Distributed optimal power flow, distributed computation,
nonlinear programming, power deregulation.

1. Introduction

Power deregulation is a trend in recent years and
pushes the power market to be very active. Various
research issues are then raised under the deregulated
environment; among them, Distributed Optimal Power
Flow (DOPF) is one of the most important subjects.

Although the Optimal Power Flow (OPF) problem
has a long history in power system research [1-5], the
study of DOPF is introduced only recently. Kim and
Baldick proposed a course-grained DOPF algorithm in
[6], and they also compared three decomposition
coordination methods for implementing DOPF algorithm
in [7]. Hur et al. had evaluated the convergence rate of
the auxiliary problem principle for DOPF algorithm in
[8]. In a more recent paper [9], Hur et al. consider the
security constraints for DOPF.

In this paper, we consider the DOPF in deregulated
environment such that each subsystem will buy (sell)
power from (to) the neighboring subsystems if they fall
short of (have surplus) power. Since the power flow from

Ch’i-Hsin Lin
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Kao-Yuan Inst. of Tech.
Kaoshiung, 700

Taiwan, ROC

e-mail:chsinlin@cc.kyit.edu.tw

the neighboring subsystem is set by the contract, each
subsystem would utilize the generated and purchased
power in an optimal way. However, to achieve a
system-wise optimality, all the subsystems have to
cooperate to solve the DOPF in a whole.

From the hardware viewpoint, DOPF is easier to
implement nowadays, because the mature computer
network technology and the prevailed network
infrastructure. Thus, what is most needed is a reliable
distributed computation software. Despite the existence
of the DOPF algorithms mentioned above, the DOPF
problem considered here is different from those in [6-9],
because the tie line flows should be equality constraints
in our formulation. Therefore, we need to propose a
DOPF algorithm that is suitable for the environment of
deregulated power systems.

The paper is organized in the following manner. In
Section II, we will state the considered DOPF
mathematically. In Section III, we will propose a solution
method to solve the considered DOPF. In Section IV, we
will present distributed algorithmic steps to execute the
proposed solution method in the computer network. In
Section V, we will test our distributed algorithm on the
IEEE 118-bus system, which is arbitrarily partitioned
into 4 subsystems. Finally, we make a conclusion in
Section VI.

2. Problem Statement

Since the amount of power delivered from the
selling subsystem is fixed and set by the contract. Thus,
the power flow of the tie lines from the selling subsystem
to the buying subsystem is considered to be the
additional line flow constraints in the DOPF. Thus, our
DOPF can be stated in the following:

mini C; (PGi )

subject to



0
gi (Xi ” Xi,ba I:)(;i 9QGi ’ Xi,e) = 0

0
N(Xi, X s Ps , Qg ) < 0,i =1,...,N
Pij (Xi,b9 Xi,ej) = pij
Qij (Xi,b= Xi,ej) = qij

where C;(P; ) denote the total generation cost

v@i,peM @

0
function of subsystem 1, X; =(Xi,X;;,) denote the

0
vector of complex voltage of subsystem 1, where Xj,

and X;, denote the vector of complex voltage of

interior buses and boundary buses, respectively;

0
9 (Xi,Xip,Ps Qg »X;,) =0 denotes the

0
flow balance equations and h(Xi > Xip» PGi , QGi )<0

denotes the security constraints such as the thermal limit,
voltage magnitude limit, power generate limit of

subsystem 1; X,

denotes the vector of complex
voltage of the boundary buses of other subsystems
connecting with subsystem i; N denotes the total
number of subsystems in the deregulated power network,

and By (X;p, X ) = Py denotes the real power line
flow equation from subsystem i to ], where

Pjj denote the amount of power purchased by subsystem
J from i3 Qy(Xip, X, ) =0, denote the

corresponding reactive power flow of the purchased real

power [j; with reasonal power factor; X: , denotes

ie;
the vector of complex voltage of the boundary bus of
subsystem | suchthat (i,j)e M ; M ={(i, j)'s}
denotes the set of selling and purchasing pairs (i, ) of
power companies 1 and j.

We assume each subsystem has its own control
center, which is equipped with a computer. The
computers of all subsystems are connected through a
computer network. The proposed distributed algorithm

for solving the DOPF (1) will be carried out in this
network.

3. The Solution Method

In order to achieve the system-wise optimal
objective, we have to solve the DOPF problem shown in
(1) in a whole using a method that can be computed
distributedly. In our previous research work, we have

developed the DPPQN method based algorithm to solve
the centralized OPF problems [10-12] for quite a while.
This algorithm gains its computational efficiency and
stability by its decomposition effects and the capability
of handing the binding inequality constraints. As a matter
of fact, the decomposition effects of the DPPQN method
can play the key for distributed computation. Thus, we
will describe how the DPPQN method solves the DOPF
(1) in the following:

First of all, we define the vector functions

0

0; = (9;,P;,Q;) and partition @; into (7;,0;,)
0

such that the sub-vector function gi involves only the

0
variable vector (Xi,X;},,Pg ,Qg ) of subsystem 1,
while @;, involves not only the variable vector of

subsystem | but also the variable vector X; e of the

subsystems connecting with subsystem i . Using this
notation, we can rewrite (1) as

N
min ) ¢,(P;)
i=1
subject to
0 0
g; (Xi, X5, P5,Qg ) =0
0
Tip(Xis X 5 Ps,5Qg, 5 Xi ) =0

0
h; (Xi, X5 Ps, »Qg, ) < 0,i=1,..,N )
For the sake of notational simplicity, we define

the following variable vector Y = (Y,,..., Y ) where

0 0 0
Yi = (y| 9Xi,b) and Y; = (i, F)Gi ’QGi ).

The proposed DPPQN method based algorithm is
a combination of the Successive Quadratic Programming
(SQP) method with the Dual Projected Pseudo Quasi
Newton (DPPQN) method such that the Quadratic
Programming Problem (QPP) induced in the SQP
method is solved by the DPPQN method. The SQP
method uses the following iterations to solve (2)

y(k +1) = y(k) + a(k)Ay(k) 3)

where K is the iteration index, a(K) is a positive

step-size and  AY(K) = (Ay, (K),..., Ay, (K)), in

which Ay, (K) = (A ;li (k),Ax;, (k)) and



AY(K) = (A (K), AP (K),AQq (K). Ay(K) is

the solution of the following.

QPP:
2
min ZAPT o (2k) AP, + oc, (k) AP,
&5 G 8P ' GPGi '
subject to
0 oa.
g.(k) + 89 (k)Ay, gl(k)AXi,b 0
oy, a
_ oG (K) 0 6G;,(K)
Gip () + ’bo Ay+—2 AX;
oY, Mo
+7ag”’(k) AX,, =0
OX; ’
0
h, (k) + o, (k)A Y, on (k) AX, <0
0 yl aXi’b
i=1,..,N 4)

0 0 0
where @, (K) represents §;(Y(K),X;,(K)) and the
same abbreviation applies to J;,(K) and h;(K) . The

QPP in (4) will be solved by the DPPQN method. Thus,
most of the computations of the proposed algorithm lie

on the DPPQN method to solve (4) for Ay(K) , because
the SQP method simply update Y(K) by (3) once
Ay(K) is obtained in each iteration.

Instead of solving (4) directly, the DPPQN solves
the dual problem of (4), which is stated below

max ¢@(A) 5)

where the dual function
P(A) =

o 1 0°c.(k) 0 ¢;(k)
Jmin Z AP! o AP + 2aP, AP,

v o7l o (k) 2.0,k
LY g0+ 290 ay o, C G 5y

i=1 ayl Xi,b

5 - agi, (k) o 07,k
D Ao | T (k) + =AY + g.b()AXLb

= oy, Xib

0,00, (6)

in which the constraint set

Q(k) =< Ay |h (k) + d hio(k)A Y+ d hi(k)AXi,b <0
% e
i=1,..,N} ™

The DPPQN method uses the following iterations to
solve the dual problem (5)

At +1) = A(t) + S(H)AA(T) ®)

where t is the iteration index; S(t) is a positive

step-size; A(t) = (4,(1),..., Ay (1)) in which

0 0
A ) =(4i(1), 4, (1)), where Ai(t) corresponds to
the equality constraints related with subsystem 1 only,

while 4, (t) corresponds the equality constraints

involving X; .5 AA(t) = (A4, (1),...,A2y (1))

denotes the increment of A(t) , where

A2, (D) = (A2 (D), AL (1),

The AA(t) in (8) can be obtained by solving the

following linear equations.
T
DAA) + _a¢(g§t)) ~0 ©)

where the block diagonal matrix
@ =diag (q)1= Dy ), and the 1| th diagonal block

sub-matrix

(OR .
(Di :|: i00 q)lobj| (10)

in which

1
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nl, 0 0

0 2n
Hi=| 0 aL(Zk)
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where the matrices |,,1, and |, are identity

matrices with dimension of
0 0 0

0
[ Xi [x|Xi|, [Qg [*x[Qg | and | Xy [ x| Xy [,
respectively, and | (-)| denotes the member of

09aM) | o
oA

components of the vector (-). The

denotes the derivative of the dual function @(t) with
respectto A at A(t),and

op(AV) _ 9p(A1)  IP(AD)

=( ), in which
oA o, 0y,
op(A1) _ (5415(/1(0) 5¢(/1(t))) .
04 Gjli ’ O
M can be computed by
04
WA g 1,200 5§ 23,00 (17)
0Ai oy, Xy '
ag,,(k) 0 ag,, Kk
a¢(ai(t)) 6,0 () + 9.,b0( )Ayi+ gé,b( )AAi,b
i.b @yi Xi b
ag; . (k
+—ga';’( )Af(i,e (18)

i,e

A

The (AY;,AX,), i=1,...,N requiredin (17) and

(18) for i=1,...,N is the optimal solution, AY,, of
the minimization problem on the RHS of (6), which can
be solved by solving N independent minimization

subproblems as follows. For the given
A(t) = (A, (t),..., A

the RHS of (6) can be decomposed into the following

y (1)), the minimization problem on

N independent minimization subproblems:

r i=1..,N,
2
min  AP] ——— oG (k) AP, 6 96k P
o, (o O ok
+1. o] (k)+ag (k)Ay, ag‘(k)AxLb
ayl axi,b
ag,p(k) o ag;, (k)
0ip(K)+ ’bo Ay+ a’b AX
3% Ko
2 } <19>
where
Q; (k) =< Ay, |h (k) + on (k) -+ ah‘(k)Axib <0
oY, P

J; denotes the index set of

and Q(k) = LNJQi(k) ;

subsystems connecting with subsystem i,and A ib

denotes the Lagrange multipliers associated with the
equality constraints of subsystem | involving the

complex voltage of the boundary buses of subsystem 1 .
Once the optimal solution of (19) are obtained, we can

Ip(AD)
oA

calculate by (17) and (18). Then we can

solve AA(t) from (9) by first decomposing (9) into the

following N independent set of linear equations,

A1)+ 2EO g
oA

=1..,N (20

then solving these N independent set of linear
equations to obtain  AA(t) = (A4, (1),...,Ad, (1)) . We
will then update A(t) by (8) using an Armijo-type
step-size F(t) [10]. The iterations of the DPPQN
method will continue until they converge to an optimal
A" for the dual problem (5). The corresponding optimal
solution on the RHS of (6) when A= A" will be

0
(A yi (k)oAXi,b(k))al = 15""
update Y(K +1) in (3) using an Armijo-type step-size

N which will be used to

a(K) [10]. Then we will start the next iteration of the
SQP method. The iterations of the SQP method will



continue until it converges to the optimal solution of the
DOPF (1).

4. The Distributed Algorithm

From the computational formulae of the SQP method and
the DPPQN method described above, we see that the
SQP method does nothing but update Y(K) in each
iteration as shown in (3), which of course can be carried
out in individual subsystems. The major computations
required in the DPPQN method are solving the
optimization problems (19) and the linear equations (20),
which are already decomposed such that each subsystem
can execute its part of the computations as long as the
necessary data from the connecting subsystems are
passed through the computer network. This indicates that
the proposed solution method is very suitable for
implementation in a distributed computer network.

In order to govern the synchronization of the
convergence of the DPPQN and SQP methods in the
distributed computing network, we assign a root
sub-system among the connecting sub-systems to be
responsible for this task. Following is the distributed
algorithmic steps for each subsystem 1 :

Step 0: Initially guess Y; ; initially guess A, .
Step 1: Send /Ii’b to connecting subsystems.
Step 2: Once receiving all A ib> j € Ji from all

connecting subsystems, compute Ayi from
solving (19).
Step 3: Send A)A(i’b to connecting subsystems.

Step 4: Once all AX ibo j € J; arereceived, calculate
0p(A) _ Op(A) 0¢(4)
o5, e
i O0Ai  0Aip
Step 5: Compute @, and solve AA from (20)

) by (17) and (18).

Step 6: If ”A/lI ” < &, send a signal to the root

subsystem to inform the convergence of DPPQN
method in this subsystem.

Step 7: Update A by (8) and return to Step 1.

Step 8: Once receiving the signal to update Y; from the
root subsystem, compute Ay, from (19) and
update Y; by (3).If [|AY, |K &, send a signal

to the root sub-system to inform the convergence
of the SQP method in this subsystem and return

to Step 1.

As indicated above, an extra task for the root
subsystem in addition to the above distributed
algorithmic execution steps is checking the system-wise
convergence of the DPPQN and SQP methods. Thus, in
Step 6, if the root subsystem receives the signal
indicating the convergence of the DPPQN method from
all subsystems, it will send a signal to all subsystems to
update Y . Similarly, if the root subsystem receives the

convergence signal of the SQP method from all
subsystems, it will send a signal to all subsystems to stop
the algorithm and output the solution.

5. Test Results

We have applied our distributed algorithm to
solve the DOPF on the IEEE 118-bus system, which is
arbitrarily partitioned into four subsystems. These four
subsystems are indexed by A1, A2, A3 and A4,
respectively. The interconnecting relationships of these
four subsystems is shown in Fig. 1. The power selling
and purchasing pairs are (A1,A2), (Al, A4), (A1, A3),
and (A2,A3). The cost function of each generation bus in
each subsystem is a quadratic function of the real power
generation. We have arbitrarily assumed the amount of
power sale in each selling and purchasing pair and
distribute the power among the tie lines.

Since we do not have a distributed computing
network at hand, we currently simulate our distributed
algorithm in a Pentium IV PC. The final objective value
we obtain is 46,414 dollars/hour, and the consumed
sequential CPU time is 0.62 seconds. However, if we
take the parallel computation effect into account but not
including the data communication time, the CPU time for
the longest subsystem is 0.24 seconds. To verify our
result, we also solve the DOPF using the centralized
DPPQN method based algorithm [10] and obtain the
following results: the final objective value is 46,412
dollars/hour, and the consumed CPU time is 0.49
seconds. This demonstrate that our distributed algorithm
does converge to the true solution, and the consumed
CPU time is much faster than the centralized method if
we take the parallel computation effect into account.

6. Conclusion

Due to the trend of deregulation, DOPF becomes a
focus in power system research. We have proposed a
DOPF algorithm under deregulated environment in this
paper. The communication requirement in the algorithm
can be easily handled. The test results demonstrate the
superiority of the proposed distributed algorithm.
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