
行政院國家科學委員會專題研究計畫  期中進度報告 

 

 

亞洲大學與商學院評比系統設計----達爾菲排序分組法

(1/3) 

 

 
計畫類別：個別型計畫 

計畫編號：NSC93-2213-E-009-071- 

執行期間：93年08月01日至94年07月31日 

執行單位：國立交通大學資訊管理研究所 

 

 

 

 

計畫主持人：黎漢林 

 

計畫參與人員：楊秉中，林之怡，柯彤昀 

 

 

 

 

報告類型：精簡報告 

 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 94年5月24日

 



 1

行政院國家科學委員會專題研究計畫期中精簡報告 
 

亞洲大學與商學院評比系統設計--達爾菲排序分組法(1/3) 
 

Ranking Asia’s Universities and Business School by a Delphi Ranking & 
Grouping Method (1/3) 

 
計畫編號：NSC 93-2213-E-009-071 
執行期限：93年 8月 1日至 94年 7月 31日 
主持人：黎漢林   國立交通大學資訊管理研究所 

 
一、中英文摘要 
政府為提昇大學之國際競爭力，正積極推展 “亞洲第一，世界一百” 計畫，希望在

五年內有國內大學院系中心，成為亞洲第一，並有國內的大學名列世界前一百名大學。 
國際大學之排名結果頗為各界所重視，惟目前之排名系統(如:US Business Week, 

Financial Times, Asia Inc.等) 均採簡單加權法，各準則之權重設定缺乏理論。本研究擬
發一達爾菲排序分組法(Delphi Ranking & Grouping Method, 簡稱 DRG method)，以評定
亞洲地區大學與商學院。DRG method首先為整理亞洲前一百大大學之客觀資料，接著
以通訊調查各大學校、院長對各大學之初步分組(分為 Top 10%, Top 20%, Average, Below 
20%, Below 10%)，之後，依調查結果做出排序與分組後，再調查校、院長之意見。DGM
法的優點為依據受測者對各校之粗略分組即可排序，排序完之結果又可再讓受調者再做

分組。最後可得到一致性之排序，並可計算出各準則之加權值。 
本研究將與遠見雜誌合作試行調查部分。若試行成功，則往後交大將與遠見長期合

作，年年發表亞洲地區大學及商學院之評比與排名，建立一有國際公信力之評比系統。 
 
關鍵詞：競爭力, 評比, 達爾菲排序分組法 
 
Abstract 

In order to improve the international competitiveness of our universities, R.O.C. 
Government has initialized the vision of “Asia’s best and World’s Top 100”. It is expected 
that some of Taiwan’s universities may be ranked as top in Asia, and ranked as top 100 
around the world. The rank of universities has attracted much attention; however, all current 
ranking systems (such as US Business Weeks, Asia.com, Asia Inc., Financial Time) use 
Simple Weighting Method to rank universities. It lacks solid theoretical support for the 
weights on decision criteria. This study develops a Delphi Ranking & Grouping (DRG) 
Method to rank the universities and Business Schools in Asia region. 

DRG method first lists all related hard data for top 100 Asia universities. Then send 
questionnaires to the presidents and deans of these universities to ask them to group roughly 
100 universities into Top 10%, Top 20%, Average, below 20% and below 10%. The initial 
ranking and grouping report on these universities is then computed based on the survey. The 
results will then be sent to the presidents and deans for further evaluation. Finally all 
universities are ranked and grouped and weights on criteria are computed. 

This study will coorporate with Vision Magazine to perform the survey. If the outcome 
of this study is promising, we hope can build an internationally credited system for ranking 
Asia’s universities and Business Schools. 

 
Keywords: Competitiveness, Evaluation, Delphi Ranking & Grouping Method 
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二、前言 

Every year, many high school graduates and university graduates purchase University 
Ranking Guides to help them select the right undergraduate program or graduate program that 
is best suited for them. Although among the quarter million freshmen who participated in the 
survey done by the Higher Education Research Institute, only 8.6% responded that the 
rankings were very important to them when selecting colleges or universities (Crissey, 1997). 
The reasons may lie on the question of ranking methodology. How do we know these 
rankings are right for the students and rank universities in the way the students needed? How 
do we know the criteria participated in the ranking system are what the ones students consider 
important? These are some of the key concerns which should be solved. 

Currently, there are many publishers which release various kinds of ranking each year. 
US News and World Report, for example, started releasing university ranking in with the 
October issue in late 1980’s. They have realized that in the subsequent years, the October 
issue had sold many more copies than any other issues. Hence, they decided to start 
publishing an independent issue for university ranking. In the 1990’s, many other publishers 
like Time, Newsweek, Money Magazine, and many more have also realized that the market 
for university ranking is enormous and have started to create their own rankings and publish 
them. Similarly, Canada, Asia, and Europe all have magazines that do rankings for 
universities in different regions. 

 
三、研究目的 

The ranking guides currently in the market are heavily criticized by many people ranging 
from educational field to people in the publishing industry. Some of these criticisms are as 
follow:  

(1) To increase the sales, publishers may introduce new measures or change the 
weightings of measures from year to the next (Gater, 2003). 

(2) Some of the factors are highly manipulable, and, as a result, the ranking outcome is 
meaningless (Leiter, 2003). 

(3) Ranking formula and factors participated in the ranking process are constantly 
changing, so the results are high in variation (Levin, 1997). 

In this study, we propose a new ranking method that can help the Decision Makers (DM) 
rank Decision Making Units (DMUs). The characteristics are listed below: 

(1) The model can automatically generate weightings with minimal human influence. 

(2) Ranking can still be done with minimum information from Decision Makers, i.e. 
preferences. 

(3) 3D ball representation gives clear view on the correlations. 

(4) This model allows DM to add preferences through out the ranking process. 
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(5) DM can specify groupings for DMUs. 

 
四、文獻探討 
   

Ranking Methodology 

There are several rankings published in the market. Each of them has different 
methodology to rank universities. They vary in criteria selection, assignment of weightings, 
and raw data, just to name a few. Let us look at few of the more popular ranking systems and 
their methodology. 

� U.S. News and World Report (Source: www.usnews.com) 

U.S. News ranks business colleges in United States in 2004 and listed 82 of them. They 
have used three major sections with total of eight criteria for the entire ranking process. These 
criteria are listed below with their weightings and descriptions. 
 

(1) Quality Assessment (total 40%): 
I. Peer Assessment (25%) – Deans and directors from business schools of accredited 

programs were asked to rate programs from marginal (1) to outstanding (5). Notice 
that 56% of them have returned the survey. 

II. Recruiter Assessment (15%) – Corporate recruiters were also asked to rank the 
programs which they have hired employee from in the previous year. However, only 
32% of them replied the survey. 

 
(2) Placement Success (total 35%): 

I. Average Starting Salary and Bonus (14%) – This is the mean of starting salary and 
bonus. 

II. Percentage of Graduates Employed at Graduation (7%) – The percentage of 
emplacement rate is measure before the students actually graduate from full-time 
MBA program. 

III. Percentage of Graduates Employed 3 Months after Grad (14%) – The percentage 
of employed graduates three months after completing the full-time MBA program. 

 
(3) Student Selectivity (total 25%): 

I. Average Undergrad GPA (7.5%) – The average GPA of new students. 
II. Average GMAT (16.25%) – Average GMAT score of new students who are accepted 

to the full-time MBA program. 
III. Acceptance Rate (1.25%) – Percentage of accepted applications. 

 

From their hard data, we have tried to duplicate their ranking formula and have found a 

very similar ranking result with identical overall scores. The formula should be very close to 
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� Financial Times (Source: www.ft.com) 

Unlike U.S. News & World Report, Financial Times (FT) has ranked business schools 
from all over the world and has listed 100 of them. FT has also selected twenty criteria for the 
ranking process. The following are those criteria and their weightings. 

(1) Weighted Salary (20%) – This is the average salary today with adjustment for 
different industries. Also, this figure is the average salary three years after graduation. 
(in US dollars) 

(2) Salary Percentage Increase (20%) – The percentage increase in salary from 
beginning of MBA program to three years after graduation.  

(3) Value for Money (3%) – This is calculated by the salary earned by MBA graduates 
three years after graduation with the course costs and the opportunity cost, while still 
in school and not employed. 

(4) Career Progress (3%) – The degree to which alumni have moved up the career 
ladder three years after graduating. Progression is measured through changes in level 
of seniority and the size of company in which they are employed. 

(5) Aims Achieved (3%) – The extent ot which alumni fulfilled their goals or reasons 
for doing an MBA. This is measured as a percentage of total returns for a school and 
presented as a rank. 

(6) Placement Success (2%) – The percentage of 2000 alumni that gained employment 
with the help of career advice. The data is presented as rank. 

(7) Alumni Recommendation (2%) – Alumni of 2000 were asked to name three 
business schools from which they would recruit MBA graduates. The figure represents 
the number of votes received by each school. The data is presented as a rank. 

(8) International Mobility (6%) – A rating system that measures the degree of 
international mobility based on the employment movements of alumni between 
graduation and today. 

(9) Employed at Three Months (2%) – the percentage of the most recent graduating 
class that had gained employment within three months. 

(10) Women Faculty (2%) – Percentage of female faculty. 

(11) Women Students (2%) – Percentage of female students. 

(12) Women Board (1%) – Percentage of female members in the advisory board. 

(13) International faculty (4%) – The percentage of international students. 

(14) International Students (4%) – Percentage of the board whose nationality differs 
from their country of employment. 

(15) International board (2%) – Percentage of the board whose nationality differs from 
their country of employment. 

(16) International Experience (2%) – Weighted average of three criteria that measure 
international exposure during the course. 

(17) Languages (2%) – Number of additional languages required on completion of the 
MBA. Where a proportion of students required another language due to an additional 
diploma or degree chosen that figure is included in the calculations but not presented 
in the final table. 

(18) Faculty with Doctorates (5%) – Percentage of faculty with a doctoral degree. 
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(19) FT Doctoral Rating (5%) – Number of doctoral graduates from the last three 
academic years with additional weighting for those graduates taking up a faculty 
position at one of the top 50 school in this year’s ranking. 

(20) FT Research Rating (10%) – a rating of faculty publications in 40 international 
academic and practitioner journals. Points are accrued by the business school at which 
the author is presently employed. Adjustment is made for faculty size. 

The results and hard data of both U.S. News and World Report and Financial Times are 
attached in the Appendix section. Both publishers have worked with other companies for data 
collection. However, they did not explain how the weightings for the criteria were decided. 
Moreover, perhaps because U.S. News and World Report is the most recognized publisher in 
university ranking, it receives many criticisms on both the changes on weightings from year 
to year and the correctness of hard data. On the contrary, Financial Times has fixed their 
weightings. However the way hard data is presented has been modified from year to year. For 
example, the criterion “value for money” was a score ranging from 1 to 5 in year 2002 and 
2003 ranking. In 2004, this criterion has been changed into “value for money rank”. When it 
was a score from 1 to 5, there can be only 50 different scores and is unlikely that all the 
variation of the score will be assigned. Hence there are many schools with the same scores. 
When it changed to rank, only few schools are being ranked as the same, so the variation is 
larger. This problem arises on more than one criterion in Financial Times’ ranking. 
 

Data Envelopment Analysis 

Data Envelopment Analysis (DEA) is a method for evaluating the activity performance, 
especially for organizations such as business firms, government agencies, hospitals, 
educational institutions, and etc (Cooper etc. 1999). A commonly used measure for efficiency 
is the output-input ratio. Number of items sold in a store will be an example of the output; 
number of sales clerk in the store will be the input. Hence, the efficiency of this store, basing 
on only these two criteria, will simply be NumberOfGoodsSold / NumberOfClerk. These 
comparable entities are often called Decision Making Units (DMUs). 

The purpose of DEA is to empirically estimate the efficient frontier based on the set of 
available DMUs and assumes that each performance measure can be categorized as either an 
input or an output (Schrage, 1997). It provides the user information about both efficient and 
inefficient units along with the efficiency scores and reference sets for inefficient units 
(Halme etc, 1999). An Efficient Frontier is a line that has at least one DMU point touching it. 
The DMUs, who touch the EF line, are the most efficient DMUs. The idea of Production 
Frontier is first discussed by Farrell in 1975 which has three assumptions. The attractive 
feature of DEA is that it produces efficiency score between 0 and 1. 

In 1978, Charnes, Cooper, and Rhodes proposed a DEA model called the CCR model 
basing on Farrell’s single input-output model in 1975. CCR model is designed to measure the 
cases of multi input and multi output. The following is the pseudo-code for the CCR model. 
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Ur represents the weighting for rth output criterion and Vi represents the weighting for ith 
input criterion. They are automatically generated when the score of kth DMU is maximized. 
Yr and Xi are the output and input criteria. 

 
    Where  

Yr is the rth output of DMU 

     Xi is the ith input of DMU 

     Ur is the weighting for rth output 

     Vi is the weighting for ith input  

In this CCR model, it will calculate the score of each DMU based on the weightings that 
can maximize the score of current DMU, which means that the nth DMU can obtain the best 
score with nth set of weightings. Hence, if there are n numbers of DMUs, then there will have 
n set of weightings. kth set of weighting is determined under the condition that they can 
maximize the Scorek. All the scores have to be between 0 and 1. Once score of each DMU is 
determined, it then compares all of them again with their score. The DMU with highest score 
is the most efficient one.  

Analytic Hierarchy Process 

The Analytical Hierarchy Process (AHP) was proposed by Saaty in 1980 and his 
collaborators as a method for establishing priorities in multi-criteria decision making contexts 
based on variables that do not have exact numerical consequences (Genest, 1996). It also 
helps people set priorities and make the best decision when both qualitative and quantitative 
aspects of a decision need to be considered. AHP not only helps decision makers arrive at the 
best decision, but also provides a clear rationale that it is the best.  

AHP can be conducted in three steps: 

Step1 Perform pairwise comparisons between each DMU on every criterion 

In this step, the goal is to obtain the priorities between DMUs for each criterion. To do so, 
a pairwise comparison has to take place between each DMU with respect to each criterion. 

For each DMU k 
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For each criterion, a m by m matrix, where m is the number of DMUs, will be generated and 
the priority vector will be calculated from this matrix. Priority vector displays the preference 
orders for each DMU with respect to criteria. Since there are n numbers of criteria, n number 
of priority vector will be generated at the end. 

Step 2 Perform pairwise comparison between each criterion 

In the decision making process, not every criterion is quantitatively measurable, so a 
pairwise comparison between each criterion has to take place in order to specify the 
importance between each criterion. From the comparison, a set of weightings can be found for 
score calculation at the last step. 

Step 3 Compute final scores for DMUs 

With the priority vectors and the weightings for criteria, DM can now calculate the score 
for each DMU. DMU with the higher score should be the better alternative for the Decision 
Maker. 
 

Intransitivity 

When Decision Makers are making decisions, some do a pairwise comparison with AHP 
before they make the actual decision. However, AHP does not have a means for detecting an 
intransitivity situation. An intransitivity is when A > B, B > C, but C > A. This situation is 
also called logically inconsistent. When there is a cycle exists in the decision process and is 
not very logical. Hence, the intransitivity detection is a very important process before the any 
decision is made. 

In Gass’ study (1998), he presented a way to detect the intransitivity with simple matrix 
operation. 

 
Theorem 

Let P be the preference matrix of a preference diagram D. Then in Pk, the (i,j) entry, 
denoted by Pi,j

(k)
 , is the number of sequences in D of length k from node vi to node vj. 

(Pk is the kth power of P) 
  
 The theorem states that Pi,j

k denotes the number of cycles, with different sequence. Take 

a preference graph shown in Figure 4.1 as an example. We can generate a tournament matrix 

from this preference graph. The preference matrix P, Table 4.1, has values of 0 or 1. Pi,j is set 

to 1 if i is smaller than j.  
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Figure 4.1 Preference Graph of six nodes 

Table 0.1  Preference matrix on six nodes 
 P1 P2 P3 P4 P5 P6 

P1 0 0 0 1 0 1 

P2 1 0 0 0 0 0 

P3 1 1 0 0 1 1 

P4 0 1 1 0 0 1 

P5 1 1 0 1 0 0 

P6 0 1 0 0 1 0 
 

From this preference matrix, we can apply the theorem to this matrix and look for the 

cycles. Since the theorem said that the value of Pij
k means there are the same numbers of 

combinations of sequences in the preference graph of length k from node i to node j. Similarly, 

if we look at Pii
k, then this will mean the sequence start at node i and come back to node i with 

the length of k. Hence, we can simply check the diagonal of each Pk for k = 3 up to k = n, 

where n is the number of nodes. 

Table 4.1a to Table 4.1d are the power of preference matrix from P3 to P6. In Table 4.1a, 

we can see that the diagonal has nonzero values. P11
3 is 4, so there are four cycles with the 

length of 3 and the starting and ending node is P1. The cycles are (P1, P2, P4, P1), (P1, P3, P4, 

P1), (P1, P2, P6, P1), and (P1, P5, P6, P1). With the same technique, it is very easy to find the 

existence of cycles for any given preference graph. From Table 4.1b to Table 4.1d, it is clear 

that there are cycles with the length of 4, 5, and 6. 
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Table 4.1  Preference Matrixes 
(a)   P3 of Preference Matrix 

 P1 P2 P3 P4 P5 P6

P1 4 3 0 1 2 1 

P2 0 2 1 0 1 1 

P3 3 4 2 3 1 4 

P4 4 3 0 4 1 2 

P5 2 4 1 1 3 3 

P6 1 1 1 2 0 3 

 

 
(b)  P4 of Preference Matrix 

 P1 P2 P3 P4 P5 P6 

P1 5 4 1 6 1 5 

P2 4 3 0 1 2 1 

P3 7 10 3 4 6 8 

P4 4 7 4 5 2 8 

P5 8 8 1 5 4 4 

P6 2 6 2 1 4 4 
 

 (c)   P5 of Preference Matrix 
 P1 P2 P3 P4 P5 P6

P1 6 13 6 6 6 12

P2 5 4 1 6 1 5 

P3 19 21 4 13 11 14

P4 13 19 5 6 12 13

P5 13 14 5 12 5 14

P6 12 11 1 6 6 5 
 

 (d)   P6 of Preference Matrix 
 P1 P2 P3 P4 P5 P6 

P1 25 30 6 12 18 18 

P2 6 13 6 6 6 12 

P3 36 42 13 30 18 36 

P4 36 36 6 25 18 24 

P5 24 36 12 18 19 30 

P6 18 18 6 18 6 19 
 

Clustering 

Clustering involves dividing a set of data points into non-overlapping into groups, where 
points in each group are more similar to each other than to points in other groups (Faber, 
1994). When a set of data is clustered, every point is assigned to a group and every group can 
be characterized by a single reference point, normally the average of points in the same group. 

There are several techniques in the field of clustering. General clustering techniques are 
Hierarchical clustering, K-Mean clustering, Incremental clustering, and Probability-based 
clustering. K-mean clustering is also called Iterative Distance-based clustering. The character 
“k” in the name of K-mean is the number of groups, or clusters, DM wants to make. The basic 
idea for K-mean is randomly start with k number of points and assign each data point to one 
of the reference point in k by calculating the minimal total distance. Once the groups are 
determined, it then tries to adjust the position of the reference points so that it will locate in 
the center of corresponding group. The algorithm for the k-mean clustering is shown below. 
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五、研究方法 

The proposed model will be able to generate a set of weightings for criteria based on the 
preferences given by the decision makers. The model has applied similar idea from Data 
Envelopment Analysis. In DEA, it is trying to measure the efficiency based on maximizing 
the score of DMU. However, in the proposed model, it will try to maximize the rank for each 
DMU instead of score. The concept from Analytic Hierarchy Process is also used to create 
tournament matrix for ranking by doing pairwise comparison. Gass’ technique is also used to 
ensure the non-existence of intransitivity. Last but not least, the concept from K-mean 
clustering will be modified to help this ranking method to present the data points on a 3D ball 
to help DM make decisions. 

Ranking and Grouping Models 

In this chapter, the ranking and grouping process can be break down into two major parts. 
First part will deal with the actual ranking and score calculation. The second part is mapping 
each school onto a 3D ball and clustering these data points. Figure 5.1 shows the entire 
process of proposed ranking and grouping model. 

Algorithm for K-mean Clustering: 
 
(1) Choose k centroid points. 
(2) Calculate the distance of each point to all centroids. 
(3) Get the minimum distance. This data is said belong to the 

cluster that has minimum distance from this data 
(4) Adjust the centroid location based on the current data 

updated data. 
(5) Assign all the data to this new centroid. 
(6) Repeat until no data is moving to another cluster anymore. 
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Figure 5.1 Flowchart 

� Common Weight Model 

DEA is mainly used for efficiency measurement. The concept of DEA is to calculate the 
ratio between inputs and outputs, and rank each DMU (Data Making Unit) by their 
maximized scores. In this ranking objective, however, DEA is not the perfect tool for the 
ranking process because the most efficient DMU might not be the best choice for DM 
(Decision Maker). Moreover, , sometimes criteria are hard to distinguish from input or output, 
the proposed method has modified the traditional DEA method to meet the DMs’ requirement 
without the need to identify inputs and outputs for criteria. This model will automatically 
ranks and groups the DMUs based on the absolute dominance relationships found in the hard 
data, so the DMs do not need to worry about assigning weightings for each criterion. This is a 
big improvement from the traditional ranking systems, which often have controversy on 
weighting settings. 

In the experiments, Lingo8.0 is used as the optimization tool. Given the correct model 
and inputs, the system will calculate the ideal weights for each criterion, which will allow us 
to rank the DMUs and map each DMU to a coordinate on 3D ball to help DM visualize the 
relationships between DMUs, as well as the correlation between DMUs. In this section, the 
mathematical model and the concept behind it will be discussed in detail and the model will 
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be applied on an example of 20 universities. Before the mathematical model is being 
discussed, Table 5.1 lists and describes the variables, following is the model. 

 
Table 5.2 Variables for Common Weight Model 

 

 

 

 

 

 

 

 

 

In this model, Lingo will generate a set of weightings for the ranking process. This 

model ranks the DMUs without DMs worrying about the numbers (weightings). Moreover, 

these weightings could be more convincing for some DM because these numbers are 

generated by the system automatically based only on the absolute dominance relationships.  

 

After this model is run by Lingo, Lingo will return a matrix with the size of m by m. This 

matrix will consist values of only 0 and 1. For tij, if tj > ti, then tij will be set to 1. The sum of 

each row will represent their rank correspondingly. The objective function (5.1) is trying to 

maximize the rank of each DMU by minimizing the sum of t for each row. Note that the DMU 

with lower the sum of t, the higher rank it will get. Constraint 5.2 is for determining the 

Variables Descriptions 
m Total number of DMUs 
n Total number of criteria 
ti,j ti,j = 1 if DMU j is better than DMU i, else ti,j = 0 

kC , kC  Maximum and minimum values of kth criterion 

kiC ,  The kth criterion of ith DMU 
wk Weight for kth criterion 
M A large constant number 

Common Weight Model (Model 1) 
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values of ti,j. If ∑
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, , in order to satisfy constraint 5.2, the value of jitM ,∗  

must not be 0, so ti,j will be set to 1.  

Constraint 5.3 is to make sure that the sum of weights of all the criteria will be equal to 1. 

Also, constraint 5.4 ensures that the weights are all non-zero, so every criterion will be taken 

into account in this ranking process. Constraint 5.5 specifies that ti,j is a binary variable, which 

can only be 0 or 1. The last constraint is to insure that if i is better than j, then j can not be 

better than i at the same time. 

Once the weights for each criterion are automatically generated by the model, score of 

each DMU will be calculated by equation 5.7 for future ranking purposes. This score function 

ensures that the scores are all between 0 and 1 by normalizing the hard data. This will help 

DM to see the differences in the scores. 

 
Table 5.2 shows the original hard data of the first twenty universities listed on the 

Financial Times’ 2004 Global MBA Ranking. The data has been normalized so that 1 is the 

maximum score and 0 is the minimum score. Notice that we have only chosen six criteria that 

have the heaviest weightings. 
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Table 5.3  Normalized hard data from Financial Times’ 2004 Ranking 
Rank 
in 
2004 
School name 

Weighted 
salary (US$)

Salary 
increase (%)

International 
mobility rank

Faculty with 
doctorates 
(%) 

FT 
doctoral 
rank 

FT research 
rank 

1 University of Pennsylvania: Wharton 0.836865335 0.855670103 0.74157303 1 1 0.987805

2 Harvard Business School 1 0.525773196 0 0.888889 0.92 1

3 Columbia Business School 0.696863457 1 0.39325843 0.888889 0.88 0.939024

4 Insead 0.553465223 0.257731959 1 0.888889 0.373333 0.890244

4 London Business School 0.42117949 0.680412371 0.87640449 0.888889 0.56 0.780488

4 University of Chicago GSB 0.658188819 0.855670103 0.6741573 0.888889 0.773333 0.963415

7 Stanford University GSB 0.814405559 0.402061856 0.35955056 0.944444 0.866667 0.97561

8 New York University: Stern 0.408235773 0.886597938 0.4494382 0.944444 1 0.865854

9 MIT: Sloan 0.645918112 0.463917526 0.17977528 0.777778 0.973333 0.902439

10 Dartmouth College: Tuck 0.725693358 0.773195876 0.30337079 0.777778 0 0.829268

11 Northwestern University: Kellogg 0.640330558 0.494845361 0.78651685 0.833333 0.746667 0.95122

12 IMD 0.694437488 0 0.47191011 0.722222 0 0.097561

13 Iese Business School 0.018985162 0.907216495 0.97752809 0.944444 0.346667 0.146341

13 Yale School of Management 0.485553747 0.979381443 0.04494382 0.888889 0.12 0.560976

15 Instituto de Empresa 0 0.515463918 0.95505618 0 0 0.04878

16 Cornell University: Johnson 0.490624804 0.618556701 0.28089888 0.666667 0.16 0.743902

17 Georgetown Uni: McDonough 0.359716396 0.824742268 0.53932584 0.5 0 0.402439

17 Uni of N Carolina: Kenan-Flagler 0.303355663 0.659793814 0.69662921 0.555556 0.64 0.853659

19 University of Virginia: Darden 0.606570463 0.742268041 0.23595506 0.888889 0.12 0

20 Duke University: Fuqua 0.375430414 0.505154639 0.68539326 0.555556 0.453333 0.878049 

After applying the hard data to the Common-Weight Model, Tables 5.3a and 5.3b 
displays the results. Table 5.3a shows the new score and the new rankings for these twenty 
universities along with the original rankings and Table 5.3b shows the new weightings. Please 
note that due the number of the original criteria, only five were selected from the original 
twenty criteria. Hence the result varied greatly. 
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Table 5.4 Results from Common-Weight Model 
 (a) New scores and rankings 

Schools score Original 
Ranking 

New 
Ranking

Change in 
Rankings 

University of Pennsylvania: Wharton 0.845614 1 1 0 
Harvard Business School 0.594397 2 11 -9 
Columbia Business School 0.726394 3 3 0 
Insead 0.668107 4 6 -2 
London Business School 0.692608 5 4 0 
University of Chicago GSB 0.758528 6 2 2 
Stanford University GSB 0.615344 7 10 -3 
New York University: Stern 0.6338 8 7 1 
MIT: Sloan 0.50519 9 17 -8 
Dartmouth College: Tuck 0.6338 10 8 2 
Northwestern University: Kellogg 0.688126 11 5 6 
IMD 0.435994 12 19 -7 
Iese Business School 0.632058 13 9 4 
Yale School of Management 0.543776 14 16 -3 
Instituto de Empresa 0.390719 15 20 -5 
Cornell University: Johnson 0.501724 16 18 -2 
Georgetown Uni: McDonough 0.543776 17 13 4 
Uni of N Carolina: Kenan-Flagler 0.562208 18 12 5 
University of Virginia: Darden 0.543776 19 13 6 
Duke University: Fuqua 0.543776 20 13 7  

 (b) New weightings obtained from Common-Weight Model 

  
Weighted salary 
(US$) 

Salary 
increase (%)

International 
mobility rank 

Faculty with 
doctorates (%) 

FT research 
rank 

Original Weightings 0.2 0.2 0.06 0.05 0.1

Normalized original weightings 0.303030303 0.303030303 0.09090909 0.07575758 0.151515

New weightings 0.291382783 0.243472234 0.27496259 0.13661036 0.053572

Change (%) -1.16% -5.96% 18.41% 6.09% -9.80% 

By studying both tables, it is clear that the criterion “International Mobility Rank” has 
increased its weighting by more than double of its original weightings and criteria other than 
“Weighted Salary” has changed about 6% to 10% each. These changes have effected the new 
extremely. In the new ranking, half of the universities have shifted their rankings for more 
than 4 spots. Harvard and MIT have shifted 9 spots and 8 spots accordingly. Harvard has 
dropped 9 spots in ranking due to the fact that it has the lowest value in “International 
Mobility Rank”, which is accounted for 27.50% of the total score. MIT has dropped 8 spots 
because it has the second lowest score on “International Mobility Rank” and fourth lowest 
score on “Salary Increase %”, which accounted for 24.35%. 

After applying the statistical t-test, the P value was found to be 0.8919, which means the 
differences between the original rankings and the new rankings are considered to be not 
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statistically significant. Hence the result from the Common-Weight Model is acceptable 
statistically. 

� 3D Spherical Model 

In last section, the weights for each criterion were generated by the model, as well as the 
rankings. The model will calculate the coordinates of each DMU based on the weightings and 
project them onto a 3D ball. To insure the correctness of the mapping and the correlations 
between each DMU, the concept of dissimilarity is used in the calculation of the coordinates. 
Dissimilarity is the degree of difference between subjects. The general calculation method for 
dissimilarity will be discussed later in this section. 

Table 5.4 lists the variables used in 3D Spherical Model and their meanings. Note that all 
the radius of the 3D balls is set to 1, and an ideal solution will be projected onto the North 
Pole. Ideal solution is an imaginary DMU that has the maximum value for each of its criterion. 
The purpose of this ideal DMU, as the standard, is to help the comparison process. 

 
Table 5.5 Variables and descriptions  

Variables Descriptions 

m Total number of DMUs 

n Total number of criteria 

Si Score of ith DMU 

jiD ,  The dissimilarity between DMU i and DMU j 

kC , kC  Maximum and minimum values of kth criterion 

kiC ,  The kth criterion of ith DMU 

wk Weight for kth criterion 

Xi, Yi, Zi The X,Y, and Z coordinates of DMU i 

The Xi, Yi, and Zi are the actual coordinates of the DMUs on the 3D ball. Also, because 

the distances between DMUs on the 3D ball are not exactly the same as the values of 

dissimilarities, we minimize the error between these two values to obtain the closest solution 

(Equation 5.8). With this solution, the projection of the points on the ball will be able to 

represent the relationships of the DMUs. 
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The objective of this model is to let the dissimilarity between two DMUs represents the 
distance between two DMUs. This is accomplished by minimizing the difference between the 
straight line distance of two DMUs and their dissimilarity value.  

Equation 5.9 is the function to calculate score, which is the same as equation 5.7. 
Equation 5.10 calculates the dissimilarity between DMU i and DMU j. The largest possible 
value for jiD ,  is 2 , because when one DMU is the ideal solution, which have all the 
maximum value for each criterion, and the other DMU is the worst possible DMU, which 
must have minimum value for each criterion. Since the ideal solution will be at the North Pole 
and the worst possible solution will be on the equator. The straight line distance from the 
North Pole to the Equator on a ball with radius of 1 will be 2 . Similarly, if two DMUs are 
exactly the same, thought it is not likely to happen, the numerator will become 0, and so the 

jiD ,  will be 0. 

Equation 5.11 is to ensure that every point is on the surface of the ball. And equation 
5.12 defines the relationship between the Y coordinates and the score. To explain this equation, 
there is a proposition to discuss, as stated below. 

 

In this proposition, ,*iD  in equation 5.14 represent the dissimilarity between DMU i and 
the ideal solution. The original equation that calculates the distance between two points was 
changed to the current form,

222 )0()1()0( −+−+− iii ZYX , since the ideal solution has the 
coordinate of (0, 1, 0). Equation 5.14 can be verified with (ideal solution, worst possible 
solution) pair and (ideal solution, best possible solution) pair. When these two pairs of DMUs 
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are plugged in 5.15, they both hold. Hence, equation 5.14 is further simplified to 5.15 and 
finally 5.16. The simplification processes are shown as below. 

 

By applying the model to the example from section 5.1, we obtain the result shown in 
Table 5.5. 

Table 5.6  Coordinates for each universities 
Schools score New Ranking x y z 

Ideal Solution 1  0 1 0 

University of Pennsylvania: Wharton 0.845613979 1 -0.21658096 0.97616496 0.013952 

Harvard Business School 0.594397421 11 -0.41597168 0.83548655 0.359068 

Columbia Business School 0.726394479 3 -0.36376656 0.92514002 0.108581 

Insead 0.66810701 6 -0.32914496 0.88984704 -0.31597 

London Business School 0.692608172 4 -0.32199465 0.90551026 -0.27635 

University of Chicago GSB 0.758528351 2 -0.33056332 0.94169144 -0.06281 

Stanford University GSB 0.615343904 10 -0.49832929 0.85203969 0.160301 

New York University: Stern 0.633799985 7 -0.45945342 0.86589755 -0.1978 

MIT: Sloan 0.505189925 17 -0.65293543 0.75516299 0.058345 

Dartmouth College: Tuck 0.633799985 8 -0.49305753 0.86589755 0.084355 

Northwestern University: Kellogg 0.688125846 5 -0.41447314 0.90273451 -0.11525 

IMD 0.435994334 19 -0.73131613 0.68189761 0.0139 

Iese Business School 0.63205834 9 -0.12768982 0.86461893 -0.48593 

Yale School of Management 0.543776095 16 -0.58187571 0.79185975 0.185415 

Instituto de Empresa 0.390719143 20 -0.36325638 0.62877684 -0.68752 

Cornell University: Johnson 0.501723624 18 -0.65438051 0.75172065 -0.08187 

Georgetown Uni: McDonough 0.543776095 13 -0.53405605 0.79185975 -0.29621 

Uni of N Carolina: Kenan-Flagler 0.562207931 12 -0.49102552 0.8083381 -0.32478 

University of Virginia: Darden 0.543776095 13 -0.60957381 0.79185975 0.037127 

Duke University: Fuqua 0.543776095 13 -0.52498427 0.79185975 -0.31201  

As previously mentioned, the ideal point is a point formed by setting the value of each of 
its criterion to the maximum value found from hard data. This point will lie on the North Pole 
with coordinates of (0, 1, 0) and score of 1. The worst point will be A4, with coordinates of 
(0.99127, 0, 0) and score of 0. With this example, it is coincident that the ideal solution is 
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same as A1 and the worst point A4 is lying on the equator. Despite these facts, the distances 
between each point are shown in Table 5.6. These numbers also represent the dissimilarity 
between each DMU. 

 
Table 5.7 Dissimilarity matrix 
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

A0 0 0.22 0.57 0.39 0.47 0.43 0.34 0.54 0.52 0.7 0.52 0.44 0.8 0.52 0.65 0.86 0.7 0.65 0.62 0.65 0.65

A1 0.22 0 0.49 0.27 0.45 0.32 0.12 0.33 0.32 0.48 0.3 0.26 0.58 0.52 0.51 0.81 0.49 0.43 0.4 0.43 0.43

A2 0.57 0.49 0 0.45 0.67 0.65 0.52 0.27 0.56 0.27 0.35 0.48 0.59 0.99 0.42 1.03 0.41 0.7 0.68 0.4 0.6

A3 0.39 0.27 0.45 0 0.55 0.42 0.18 0.28 0.2 0.31 0.15 0.36 0.47 0.61 0.26 0.91 0.32 0.37 0.47 0.26 0.49

A4 0.47 0.45 0.67 0.55 0 0.26 0.38 0.42 0.5 0.45 0.55 0.22 0.44 0.52 0.67 0.57 0.48 0.57 0.43 0.55 0.35

A5 0.43 0.32 0.65 0.42 0.26 0 0.25 0.48 0.26 0.47 0.41 0.21 0.59 0.34 0.47 0.49 0.33 0.31 0.2 0.41 0.23

A6 0.34 0.12 0.52 0.18 0.38 0.25 0 0.35 0.22 0.36 0.23 0.19 0.49 0.47 0.39 0.74 0.36 0.3 0.3 0.3 0.31

A7 0.54 0.33 0.27 0.28 0.42 0.48 0.35 0 0.38 0.2 0.23 0.29 0.34 0.8 0.5 0.86 0.31 0.53 0.51 0.34 0.43

A8 0.52 0.32 0.56 0.2 0.5 0.26 0.22 0.38 0 0.38 0.26 0.39 0.53 0.43 0.25 0.74 0.25 0.2 0.29 0.29 0.31

A9 0.7 0.48 0.27 0.31 0.45 0.47 0.36 0.2 0.38 0 0.19 0.26 0.37 0.81 0.34 0.8 0.19 0.47 0.46 0.22 0.37

A10 0.52 0.3 0.35 0.15 0.55 0.41 0.23 0.23 0.26 0.19 0 0.34 0.41 0.68 0.31 0.85 0.19 0.35 0.41 0.17 0.43

A11 0.44 0.26 0.48 0.36 0.22 0.21 0.19 0.29 0.39 0.26 0.34 0 0.4 0.55 0.56 0.57 0.35 0.43 0.29 0.4 0.21

A12 0.8 0.58 0.59 0.47 0.44 0.59 0.49 0.34 0.53 0.37 0.41 0.4 0 0.83 0.66 0.79 0.43 0.51 0.57 0.42 0.48

A13 0.52 0.52 0.99 0.61 0.52 0.34 0.47 0.8 0.43 0.81 0.68 0.55 0.83 0 0.62 0.34 0.66 0.44 0.44 0.61 0.53

A14 0.65 0.51 0.42 0.26 0.67 0.47 0.39 0.5 0.25 0.34 0.31 0.56 0.66 0.62 0 0.92 0.27 0.38 0.53 0.25 0.55

A15 0.86 0.81 1.03 0.91 0.57 0.49 0.74 0.86 0.74 0.8 0.85 0.57 0.79 0.34 0.92 0 0.68 0.54 0.44 0.78 0.43

A16 0.7 0.49 0.41 0.32 0.48 0.33 0.36 0.31 0.25 0.19 0.19 0.35 0.43 0.66 0.27 0.68 0 0.28 0.28 0.21 0.28

A17 0.65 0.43 0.7 0.37 0.57 0.31 0.3 0.53 0.2 0.47 0.35 0.43 0.51 0.44 0.38 0.54 0.28 0 0.19 0.35 0.22

A18 0.62 0.4 0.68 0.47 0.43 0.2 0.3 0.51 0.29 0.46 0.41 0.29 0.57 0.44 0.53 0.44 0.28 0.19 0 0.46 0.09

A19 0.65 0.43 0.4 0.26 0.55 0.41 0.3 0.34 0.29 0.22 0.17 0.4 0.42 0.61 0.25 0.78 0.21 0.35 0.46 0 0.48

A20 0.65 0.43 0.6 0.49 0.35 0.23 0.31 0.43 0.31 0.37 0.43 0.21 0.48 0.53 0.55 0.43 0.28 0.22 0.09 0.48 0 
 

The dissimilarity values represent the degree dissimilarity between any two DMUs. If 
the value is 1, then the DMUS are totally different. If the value is 0, then the two DMUs are 
exactly the same, so the coordinates of these two DMUs will be the same as well. The school 
name has been replaced by variables due to the size of the dissimilarity matrix. A0 represents 
the Ideal Solution, A1 represents UPenn, A2 represents Harvard, and so on. Figure 5.2 is the 
projection of these points on a 3D ball by using the coordinates in Table 5.5. 
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Figure 5.2 3D ball with DMUs projected on the surface 

Notice that the North Pole is the ideal point. The points with higher altitudes are points 
with higher rankings. Universities that are closer to the equator are the ones with lower 
ranking and scores. Figure 5.2 clearly shows that Instituto de Empresa has the lowest ranking 
and IMD has the second lowest ranking, where University of Pennsylvania still has the best 
score. 

� Clustering 

In this step, the Clustering Model will assign each data point to a best fitting group. The 
DM can specify the number of groups he/she wants. The model will make sure that every 
group will have at least one data points. 
 

Table 5.8 Variables and descriptions for Clustering Model 
Variables Descriptions 

m Total number of DMUs 

g Total number of groups DM wants. 

Tdisti Total distance between data points to their center point 
in a group

grpij Binary variable. grpij = 1 if DMU i belongs to group j. 

ptij Coordinate of DMU i. j = x, y, or z. 

ctptij Coordinate of Center Point i. j = x, y, z. 
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Equation 5.17 is the objective function, which tries to minimize the sum of distance 

between center points and data points in their group. Also, the distance between each center 

point has to be maximized to ensure that the clusters will be as far from each other as possible. 

Equation 5.18 calculates the distance between data points and center points in each cluster for 

every group. Equation 5.20 limits each DMU to belong to only one cluster. Equation 5.21 is to 

ensure every group has at least one DMU. Equation 5.22 is to force the center point to fall on 

the surface of the 3D ball. Finally, Equation 5.23 is to ensure that the longest distance between 

any two center points will be 2 . 

From the 3D ball, we can group the DMUs by using the Clustering Model. The By 

running the Clustering Model on this example, the grouping result is shown in Table 5.8. 

These twenty universities were grouped into three groups, where Harvard was grouped as the 

only member for group 1. Group 2 has 12 members and group 3 has 7. The number of 

members in a group was determined by the model automatically, but the user can specify the 

number of clustering groups. 
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Table 5.9  Groupings for universities 
  Group 1 Group 2 Group 3 

University of Pennsylvania: Wharton 0 0 1 

Harvard Business School 1 0 0 

Columbia Business School 0 0 1 

Insead 0 1 0 

London Business School 0 1 0 

University of Chicago GSB 0 1 0 

Stanford University GSB 0 0 1 

New York University: Stern 0 1 0 

MIT: Sloan 0 0 1 

Dartmouth College: Tuck 0 0 1 

Northwestern University: Kellogg 0 1 0 

IMD 0 1 0 

Iese Business School 0 1 0 

Yale School of Management 0 0 1 

Instituto de Empresa 0 1 0 

Cornell University: Johnson 0 1 0 

Georgetown Uni: McDonough 0 1 0 

Univ. of N Carolina: Kenan-Flagler 0 1 0 

University of Virginia: Darden 0 0 1 

Duke University: Fuqua 0 1 0 

 

The grouping situation is shown as Figure 5.3. 

 
Figure 5.3  Groupings for twenty universities 
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六、結果與討論 

People have being ranking DMU to show their importance and priorities since long ago. 
There are many ways to rank and each method has their strengths and weaknesses. From this 
study, we have proposed a method to help Decision Makers rank DMUs with out the needs to 
specify weightings for each criteria, which often is the most controversy and difficult in the 
whole ranking process. Using the techniques from Linear Programming, this model can 
produce a set of weightings for DMUs based on the absolute dominances relationships and 
preferences relationships, given by the Decision Makers. The 3D Ball representation not only 
has given Decision Makers the views they can not have by only looking at the table, but also 
allows them to categorize the DMUs and change the groupings for DMUs. 

This model has focused on the mathematical models. There are still many issues can be 
studied in this area. Following are some suggestions for future works: 

¾ Efficiency and validity in data collection and criteria selection. 

¾ Although this model provides the function of changing groupings for DMUs, the 

clustering function can be improved. Certain clustering technique could be 

applied and help the groupings to be more accurate. 

¾ The mathematical model can be modified to produce a more profound model, 

which can reduce the computation time and returns globally optimized solution.  


