NSC93-2213-E-009-073-
93 08 01 94 07

95

(

31
)

28

MW

TR T — (R4 B A S AT I e R
EHEEIR 7 BRNE o JRESIENRBAT A R E ST AN
#E-37 #5577 #2 20 (Navier-Stoke equations) °
Fe A 43 B A A LA R By F A (Grid-based) B %
A KL F(Particle-based) i 77 = 2K 1T 51 & ©
1M &5 58 2 i 88 45 5 B F 45 & B 72 1+ 5%
A[10]E2Harris55 A [6]2 M 22 BR 77 AR BT B OL
TR o fefk o B A DL [i 85 0 2
ZFEHEZ (Volume rendering) /7 =0 DLAEAE 2y 2
Bz e T R > MENR T 2 s
AR DU 72 5 N [10] Fr$e Hi I Metaballff
[Bk A AT AR o i R R R B
G T BRI i 4 1 5 98 2K 1T - (Rt m] DA
AFCPURYET B BE N H AR 45 TE AR X iy
EEFEMA -

BT MESEEE > BT AR5 AHEER

E E

Abstract

We propose a framework for fluid simulation and
rendering using graphics hardware. The dynam-
ics of fluid is governed by the Navier-Stoke equa-
tions, and is solved separately by both grid and
particle methods. A simplified lighting model that
combines the work of Liao et al. [10] and Harris
et al. [6] is used to capture the lighting effects.
Hardware accelerated volume rendering is used
to render the result of grid-based simulation. For
particle-based method, metaball lighting combin-
ing with texture database and textured billboards
proposed by Liao et al. [10] is used to render the
particles. All the computations are performed in
GPU, which releases the power of CPU for other
applications.

Keywords: Fluid simulation, Particle system,
volume rendering, Smoke, Cloud

1 Introduction

Natural phenomena, such as cloud and smoke,
play important rules in the 3D applications such as
flight simulation, virtual reality, and games. Sim-
ulating the natural phenomena requires the knowl-
edge of computational fluid dynamics, thermody-
namic, and other physics backgrounds. Usually,
the computational cost for simulating the fluid ef-

fects is too heavy to be used in real-time applica-
tions. Many researches concentrate on reducing
the computing time by using some heuristic rules
or simplified physics models. Most of these works
are restricted to simulate a certain type of fluid ef-
fects, such as smoke, fire, cloud, or water, and re-
quire lots of trial-and-error processes to tune the
simulation results.

Recently, due to the great improvement in
graphics hardware, lots of researches are devoted
to translate the mathematical problems from CPU
to GPU for speeding up the computation. In this
project, we propose two frameworks for fluid sim-
ulation and rendering using the graphics hard-
ware. For simulation, a grid-based fluid simula-
tion based on the work of Harris et al. [6], and
a two-stage method that maps the particle-based
fluid simulation to GPU are proposed. A two-pass
method that combines the works of Liao et al. [10]
and Harris et al. [6] to render the simulation result
is proposed.

2 Related Work

The simulation of natural phenomena can be sim-
ply divided into two parts: simulation and render-
ing. We briefly review the related work in this two
categories.

Simulation: In general, the simulation of
fluid requires solving the Navier-Stoke equations,
which can be classified into two categories: the
Eularian methods and the Lagrangian methods.
In the Eularian methods, the fluid is described in
terms of what takes place at a fixed point as the
fluid flows by. In the Lagrangian methods, the
fluid is described as particles, and are tracked in
the simulation space.

Foster and Metaxas [4] is the first one to in-
troduce the Navier-Stoke equations into computer
graphics field. Stam enhanced the work of Fos-
ter and Metaxas [4] by introducing the semi-
Lagrangian advection method, and a backward
tracking method for ensuring the stability of fluid
[15]. Fedkiw et al. simulated the smoke using
the semi-Lagrangian method and added the vortic-
ity confinement for turbulent effects [3]. Nguyen
et al. simulated the fire by adding additional fire
rules [13]. Dobashi et al. proposed a cellular au-
tomata method to simulate the cloud by consid-
ering only the boolean states for fast update [2].

Harris implemented the semi-Lagrangian method
on programmable graphics hardware and used it
to simulate the cloud in real-time [6].

Lagrangian methods have the advantages that
avoid the memory requirement of 3D grid in Eu-
larian methods, and provide smooth motion tra-
jectories. Desbrun and Gascuel simulated the de-
formation of soft bodies using smoothed particle
hydrodynamics [1]. Miiller et al. simulated the
liquids using smoothed particle hydrodynamics,
in which spatial partition is used to reduce the
computation [12]. PremoZe et al. enhanced the
particle-based method for liquid simulation, and
could simulate the fluid flows like multifluids and
multiphase flows [14].

Rendering: The rendering of natural phenom-
ena is equvalent to rendering the participating me-
dia, which is generally a greate challenge. The
works of Fedkiw et al. [3, 13] render the fluid
effects by using photon map [8]. Dobashi et al.
rendered the clouds using a two-pass method [2].
The first pass calculates the shadows and illumi-
nation of the clouds, and the second pass renders
the cloud to form the final image. Harris and
Lastra developed a system for rendering the static
clouds [7]. The illumination of clouds are pre-
computed and the imposter is used to render the
clouds in rum-time. Liao et al. proposed a frame-
work for interactive rendering of cloud by using a
shadow relation table (SRT) for fast illumination
calculation and metaball lighting texture database
(MLTDB) for final image composition [10].

3 Grid-Based Fluid Simulation on
GPU

We propose a GPU based framework for fluid
simulation and rendering based on the semi-
Lagrangian method proposed by Stam [15]. The
grid-based method can be used to simulate the
large scale fluid without having too much detail,
such as water and cloud.

A two-stage rendering method that combines
the works of Liao et al. [10] and Harris et al. [6]
is used to render the simulation result with illumi-
nation from the light source. The first stage com-
putes the illumination of each voxel from the light
source, and in the second stage, a hardware accel-
erated volume rendering is used to compose the

voxel’s image into the final image.

3.1

The dynamics of fluid should satisfy the Navier-
Stoke equations, which is derived from the con-
servation of mass and momentum. The system of
Equations 1 and 2 is the most common form of
Navier-Stoke equations.

au_
or

Fluid Simulation

—(u-V)u—%vp+uV2u+f (1)

Vou=0)

where u, p, and p are the velocity, pressure, and
density of fluid, respectly. 7 is the time step for
advection, f is the external force applied to the
fluid, and v is viscousity coefficient.

We implement the work of Harris et al. [6]
which is a GPU based implementation of the
semi-Lagrangian method proposed by Stam [15].
The semi-Lagrangian method uses Helmholtz-
Hodge Decomposition to ensure the satisfication
of equation 2. And the simulation process is split
into four steps: advection, add force, diffusion,
and proiection.

The advection updates the attributes of fluid
into next step. In order to ensure the stability
of fluid dynamics, it uses a backward tracking
method that tracks which part of fluid will come
to current location after At time. Equation 3 ex-
plains the backward tracking method, and ¢ can
be any attributes of the fluid.

q(¥t+A) =q(X—u(X,0)Anr) (3)

The fluid may be interacted with other phenom-
ena, such as wind, object boundaries, etc... These
effects can be put into the fluid simulation by a ad-
ditional force field, and affect the velocity of fluid
as the following equation

a(x) =u(x)+Ar-(F(x,1),F(x,1),...)

where u is the fluid velocity after advection, and
Fi, F,, ... are all external force fields applied to the
fluid. Also, the vorticity confinement proposed by
Fedkiw et al. [3] is used to add extra turbulence to
the fluid.

The third step adds the viscousity effect into the
fluid, and is also computed by a backward track-
ing method. The equation used to compute the

viscousity diffusion is listed as follow
(I—At-vV?) i (x) = u(x) (4)

where u and # are fluid velocity before and af-
ter applying the diffusion, 7 is an identity matrix.
Harris et al. solves equation 4 using Jacobi Itera-
tion [6].

After the diffusion, a projection is required to
ensure the simulation result satisfies the conserva-
tion of mass. Equation 5 and equation 6 are used
to achieve this goal.

V24 (x) = Vu(x) (5)

i(x) =u(x)—Vq(x) (6)

Also, equation 5 can be solved by an iterative pro-
cess using the Jacobi Iteration.

3.2 Rendering

The result of simulation is rendered in a two-pass
method. The illumination of the voxels are com-
puted in the first pass, and a hardware accelerated
volume rendering is performed in second pass to
take the illumination from voxels to eye into ac-
count.

The first pass calculates the illumination of
each voxel in the simulation space. For each light
ray, the illumination of point x;, on the light ray
can be computed by the following equations

L(x,,0) = L(0,®)T(0,Dy,)

P g (i) T (s.Dn)ds "

¢(%) =K, A P(6.6)L(70)dd ()

where D, is the distance between point x,, and
the light source, @ is the incident angle of light
ray, L(Oﬁ)) is the radiance of the light source,
P (®,®") is the phase function, and Kj is the scat-
tering coefficient. To capture the incident radi-
ance of a voxel, it generally requires to integrate
over all incident directions. We use the simplified
model proposed by Harris et al. [6] that considers
only the forward scattering, and assume that the
phase function is a constant. Equation 8 can be
rewritten as

_ YKP (@, @) L(X,0)
41

g (%) (€))

The second pass renders the simulation result
from eye position with the illumination. The out-
going radiance for each voxel in the eye ray direc-
tion can be computed using equation 10

 KP(®,@) Ly
N 4w

We use hardware accelerated volume rendering
method that generates the textured slices in a
back-to-front order to render the volume [5]. For
each slice, the outgoing radiance of voxels on the
slice can be computed using equation 10. And
a simple back-to-front composition with alpha
blending is performed that blends all the slices to
the final image.

Sk (10)

4 Particle-Based Fluid Simulation
on GPU

Although the grid-based method yields resonable
results for fluid simulation, it usually requires
high resolution to capture the detail of fluid ef-
fects. Also, the numerical dissipation may occur
in grid-based method smears out the flow. Parti-
cle method has the advantage of smooth motion
for highly dynamics fluids, and is able to capture
more details than the grid-based method.

4.1 Two-Stage Fluid Simullation

In particle-based method, the Navier-Stoke equa-
tions are solved on the particles. Equation 2
which describes the conservation of mass can be
omitted by requiring constant number of particles
and constant mass of particle. Moreover, the ad-
vection term — (u-V)u in equation 1 can be re-
moved since the particles always move with the
fluid. The density, pressure, viscousity, and exter-
nal forces of a particle in current step are accumu-
lated by the weighting sum of all its neighboring
particles using smoothed particle hydrodynamics
(SPH) [11]. These accumulated values are used to
advect the particle into next step.

We split the traditional particle-based method
into two stages: the first stage accumulates the at-
tributes of all particles into an intermediate grid
using SPH. In the second stage, each particle is
advected into next step using the attributes asso-
ciated with the particle itself and the intermediate
grid that the particle lies.

4.1.1 Force Accumulation

The goal of the first stage is to accumulate all the
fources of fluid for advecting the particles into
next step. For each point g; on the intermediate
grid, the accumulated density from all particles
can be computed using SPH as

P = Y miW (rg, —rj,h) (11)
J

where pg, is the density on the grid point g;, m;
is the mass of particle j, and W (rgl. —rj,h) is a
kernel function to describe the contribution of the
attribute relative to the distance.

The pressure force on the grid point g; can be
accumulated from all particles using SPH as fol-
low

féressure — ijlp;_;vw (rgi o r_j7 h)
J

and VW (ry, —rj,h) is the gradient of kernel func-
tion, p; is the pressure of particle j. From the
Ideal-Gas Equation and assume that the tempera-
ture T is constant, the pressure of particle can be
simplified to be only affected by the density

p=kp
thus the pressure force can be rewritten to

gressure — _ ij'kVW (rgi —7rj, h)
J

(12)

where k is a constant depending on the tempera-
ture.

The viscousity force on the grid point g; can be
achieved by accumulating the laplacian of the par-
ticle velocities using SPH, which is the following
form

;izscouszty — ,Llij—]_VZW (rgi - rj,h) (13)
;P

The is a constant to control the amount of vis-

cousity force, and VZW (”gi — rj,h) is the lapla-

cian of SPH kernel function.

4.1.2 Particle Advection

The second stage updates the velocity and posi-
tion of particles using the forces in the intermedi-
ate grid. For each particle, tri-linear interpolation

is performed to get the total force on the interme-
diate grid at the particle’s current position. The
velocity of the particle is updated using the inter-
polated force on the intermediate grid

Vi = JsAl (14)

m;

where v;, m; are velocity and mass of the particle
i, and f, is the force value achieved by tri-linear
interpolation of the intermediate grid, and Az is the
step time. Finally, the position of particle 7 in the
next step can be computed by

Xi=xi+vixAt (15)

4.1.3 Vorticity Confinement

We use the vorticity confinement method pro-
posed by Fedkiw et al. [3]. The vorcitiy can be
computed by the curl of fluid velocity

0wo=Vxu

and the force due to the vorticity confinement can
be computed by the following equation

fvorticity =£ (N X CO) (16)

where € is a constant used to control the amount
of vorticity force introduced to the fluid, and N =
Ve[18 @ vector pointing from low vorticity to
high vorticity.

We compute the vorticity of fluid in the inter-
mediate grid, and the value will be carried by the
particles. In the first stage, the vorticity and the
partial gradient of velocity are accumulated using
SPH. The vorticity on the intermediate grid in next
step can be computed by the accumulated values.

@y = g+ V X g (17)

Furthermore, the curl operator can be replaced by
the following form

dug, Jugy\ 4 duyg dug, \ A Jug dug, \ »
Vocug = (G G e (T - G)5 (G-)e (18)

and all the partial differentiation terms on inter-
mediate grid can be accumulated in the first stage.
The force due to vorticity confinement can be de-
rived from equation 16.

In second stage, the forces due to the vorticity
confinement are added simply as the other forces
to compute the particle velocities, and the vortic-
ity o is interpolated and carried by the particles.

4.2 Particle Rendering

Since the density of fluid is accumulated into the
intermediate grid, the illumination of fluid from
the light source can be easily computed using the
first-pass rendering method described in Sec. 3.2.
After we get the illumination of all grid points,
the illumination of each particle is achieved using
tri-linear interpolation of illumination of the grid
points.

In the second pass, the particles are ren-
dered using the metaball lighting texture database
(MLTDB) proposed by Liao et al. [10]. The par-
ticle density D ,qsicie and the angle between light
and eye rays o g are used to fetch a texture from
the MLTDB, and the texture is multiplied by the
illumination of particle before rendering. A back-
to-front order for rendering particles is required to
ensure that it yields correct result.

5 Implementation

In this section, some implementation details about
how to simulate and render on the programmable
graphics hardware are addressed.

5.1 Grid-Based Fluid Simulation

The most intuitive way to describe the 3D vol-
ume in graphics hardware is the 3D texture. But
the run-time update of the 3D texture is a greate
challenge which usually requires multiple passes.
To speed up the run-time update process, 2D tiled
texture that flattens all slices of the 3D texture into
a 2D texture is used, and only one single render-
ing pass is needed to update all the voxels. Since
the computation is performed in 3D space, an ad-
ditional texture which maps the texture coordinate
in 3D volume space into the 2D tiled texture is re-
quired.

All the grid-based simulations are performed in
the pixel shaders. Four pixel shaders which corre-
spond to the four steps of the simulation are im-
plemented. Another pixel shader is used to per-
form the Jacobi Iteration. For each step, one sin-
gle quad that covers the entire space of the 2D
tiled texture is rendered, and the pixel shaders
compute and output the results of this step. Jacobi
Iteration is performed in the same way.

5.2 Particle-Based Fluid Simula-
tion

To implement particle system on the graphics
hardware, we store the attributes of all particles in
the textures. Each texel on the texture represents
a particle in the particle system. The intermedi-
ate grid is represented as the 2D tiled textures in
the grid-based method. The kernel, gradient, and
laplacian of the kernel are precomputed and stored
as 1D textures for run-time lookup.

To implement the first stage of our simulation
method on programmable graphics hardware with
the vorticity confinement, the first stage is split
into two steps. The first step accumulates all at-
tributes of particles into the intermediate grid, and
the second step compute the vorticity on the grid.

Since the attributes of the particles are stored in
the textures, we need one pixel shader to fetch the
position of particles. For each particle, the ver-
tex shader fetches the particle position stored in
the texture , and translates the particle to the cor-
rect position before rendering. The pixel shader
fetches the kernel values according to the distance
between the particle and the intermediate grid
point. Particle attributes are then accumulated to
the intermediate grid using the kernel values. Af-
ter the accumulation, one pixel shader which ren-
ders a quad to cover all intermediate grid texture
is used to update the vorticity value on the inter-
mediate grid using Equation 18.

The second stage is used to advect attributes of
particles. One pixel shader is used. A quad that
covers all particle textures is rendered. For each
pixel, the pixel shader fetches data from particle
textures and from intermediate grid textures with
linear interpolation, advects the attributes of par-
ticle using data from the intermediate grid, and
finally write back to the particle textures.

5.3 Rendering

In the two-pass rendering method, the first pass
computes the illumination of voxels in the vol-
ume. To compute the illumination of voxels, the
knowledge of the oeder which light rays traverse
through the voxels is necessary. We modify the
shadow relation table (SRT) proposed by Liao et
al. [10] to record the order of voxels when the
light rays traverse through the volume. The orig-

inal SRT is an array of linked lists to record the
voxels in the light ray direction. To satisfy the
GPU computation, the SRT is converted into the
2D tiled texture we used to represent the 3D vol-
ume, and for each voxel, the traverse order from
the light source and the index of previous voxel
where the light ray is traversed before this one are
stored.

During the first-pass rendering, an iterative ren-
dering process is performed to render the texture
quads of volume N times, where N is the max-
imum depth in SRT. In each iteration, a pixel
shader is used to fetch the illumination on the pre-
vious voxel, and update the illumination of cur-
rent voxel if the iteration number is equal to the
traverse order on the SRT texture.

For fluid simulation using grid-based method,
the volume rendering method using graphics hard-
ware is performed. The 3D texture coordinate
is translated into 2D tiled texture space, and the
linear interpolation is performed by fetching two
texels on the 2D tiled texture with the previ-
ous and next Z-slices, and interpolates these two
values linearly according to the exact Z coordi-
nate. The lighting is calculated according to Equa-
tion 10, and the back-to-front composition with
alpha blending ensures that the result image is cor-
rect.

For fluid simulation using particle method, the
illumination on the intermediate grid is inter-
polated into the particles using the method de-
scribed in the second stage of simulation. A GPU-
based back-to-front sorting of particles proposed
by Kipfer et al.[9] is performed, and followed by
the rendering of the particles using the textured
billboard fetched from MLTDB.

6 Examples

We choose two examples to demostrate our frame-
works: cloud and smoke. The cloud changes
slowly and has complex rules that are strongly
sensitive to the altitude, and is simulated by the
grid-based fluid simulation framework. The dy-
namics of smoke changes quickly and has fast
and smooth motion, which is quite suitable for
particle-based framework.

6.1 Cloud

We use the cloud rules proposed by Harris et
al. [6]. Two cloud quantities are considered,
which are the amount of water g, and vapor g¢,.
A threshould called saturation vapor mixing ratio
qys 1s used to control when the vapor is transitted
to water. ¢, 1s affected by the temperature and
pressure. The temperature and pressure decrease
as the altitude raises, and thus decreases the g,;.
Equation 19 reveals the relation between g, the
temperature 7, and pressure p.

380.16 17.67T
qvs (T, p) = > exp (m) (19)

The rules to update the amount of water g, and
vapor g, are listed as follow:

Vq, = min(q.s—4q,.q.),
¢ = ¢,+Vq,, (20)
g9 = q.—Vq,.

There are no rules to decrease the amount of water
q. in the work of Harris et al. [6], and we add
an extra rule as shown in Equation 21: when the
amount of water g. exceeds a threshould g, the
water is eliminated as it becomes the rain.

qc = min (QC7QCS) (21)

The weight and buoyancy are also taken into ac-
count for raising and lowering the water and vapor
as in the work of Harris et al. [6].

6.2 Smoke

The smoke is implemented using the proposed
particle-based fluid simulation framework. An
emitter is used to emit the particles into the simu-
lation space with an initial speed. No extra rules is
used to simulate the particles in the space. Fig. 4
illustrates the smoke simulated and rendered us-
ing the proposed framework.

7 Resulis

We have implemented our works on PC with Pen-
tium 4 3.2GHz CPU and NVidia GeForce 6800
graphics card.

Fig. 1 shows the cloud images in six frames.
The light source is placed at the top of simula-
tion space, and the resolution of simulation space

(a) Frame 43

(b) Frame 44

(c) Frame 45

(d) Frame 46 (e) Frame 47 (f) Frame 48
Figure 1: Screenshot of cloud images.
Resolution Performance (ms)

" Simulation | Lighting | Rendering | All (ms / fps)
32 x32x32 26.65 13.32 39.98 66.64 /15.00
64 x 32 x 32 53.31 26.65 39.98 93.30/10.71
64 x 32 x 64 93.30 39.99 39.98 153.41/6.52
12 x 32 x 64 186.60 66.64 39.98 279.90/3.57

Table 1: Cloud performance results in different resolutions

is 64 x 32 x 32. To test the performance relative
to the simulation resolution, we decompose the
computing time into simulation, lighting, and ren-
dering parts, which are shown in Table 1 lists the
results. As the resolution increases, the time for
simulation and lighting also increase. The time
needed for rendering is constant since we use the
view-aligned slices for volume rendering, and is
independent of the volume resolution. Fig. 2(a)
to Fig. 2(c) are cloud images in three different
simulation resolutions, more detail can be gener-
ated using higher resolution. Table 2 shows the
simulation time needed in different Jacobi itera-
tions. The more Jacobi iterations are performed,
the better numerical results can be achieved, in
the cost of longer computing time. In our ex-
periment, 30 — 35 iterations are enouth to pro-
duce the visually acceptable result. By control-
ling the value of saturation vapor mixing ratio

Resolution Nu.mber qf Siimulation All
Jacobi Iterations | Time (ms) (ms / fps)
64 x 32 % 32 15 26.66 79.97/12.50
30 39.99 93.30/10.71
45 54.38 106.64 /9.37
64 x 32 x 64 15 53.31 119.96/ 8.34
30 79.97 146.61 /6.82
45 106.62 173.27/5.77

Table 2: Cloud performance results in different
Jacobi iterations

qys and the source of vapor, the weather such
as sunny, cloudy, and overcast can be simulated
easily. Fig. 3 demostrates the cloud in different
weather conditions.

The smoke is implemented and rendered using
the particle-based framework. Fig. 4 illustrates
the smoke in different grid resolutions, and table 3
is the performance result. 1024 particles is used
to simulate the smoke. The higher resolution, the
more detail of vorticity can be generated, but af-

(a) 32x32x 16

(b) 64 x 32 x 32

(c) 128 x 32 x 64

Figure 2: Cloud images in different resolutions

(a) Sunny

-

(b) Cloudy

(c) Overcast

Figure 3: Clouds in different weather conditions

fects the simulation and lighting speed. Accord-
ing to our experiments, resolution of 32 x 32 x 16
is enough to produce visually acceptable result
of smoke with smooth vorticity details. Our cur-
rent implementation does not optimize the pixel
shaders, and due to the slow rasterization speed
of the graphis hardware, the performance can
achieve only interactive rate with about 1 to 13
FPS. Fig. 5(a) and Fig. 5(b) show the smoke ren-

Grid Resolution | Number of Particles | Average FPS
16 x 16 x 16 512 13.39
16 x 16 x 16 1024 7.46
16 x32x 16 512 7.46
16 x32x 16 1024 3.75
32x32x32 512 1.97
32x32x32 1024 0.98

Table 3: Smoke performance results in different
configurations

dered with and without lighting, the light source
is placed at the right side of the smoke. With the
lighting, the detail turbulent effects can be seen
clearly due to the contrast of illumination. The
lighting calculation requires additional rendering
iterations for computing light propagation, and
thus affects the performance.

8 Conclusion

We have implemented GPU based frameworks
for grid-based and particle-based fluid simula-
tion and rendering. The grid-based simulation is

(a) Without lighting (b) With lighting

Figure 5: Smoke with and without lighting

based on the semi-Lagrangian method proposed
by Stam [15] and the GPU version of Harris et
al. [6]. A two-stage particle-based simulation
method is proposed to simulate the fluid using
SPH. The first stage accumulates the attributes
of fluid into an intermediate grid, and the second
stage advects the particles using the accumulated
attributes stored on the intermediate grid. A two-
pass rendering method is used to render the re-
sult of simulation. The first pass computes the il-
lumination of all grid voxels using the SRT tex-
ture. For grid-based simulation, a hardware ac-
clerated volume rendering using 2D tiled texture
is used to render the final image. For particle-
based simulation, the illumination on the grid vox-
els are interpolated into particles and a back-to-
front order to render all particles using textured
billboard fetch from the MLTDB. All the compu-
tations are in the GPU which maximizes the paral-
lelism of pixel shaders. The examples have shown
that our framework can achieve the interactive rate
at about 1-70 FPS according to the resolution for

(a) 16 x 16 x 16

(b) 32 x32x16

(c) 64 x 64 x 32

Figure 4: Smoke in different resolution

simulation.

[1]

(2]

(3]

[4]

[5]

[6]

[7]

References

M. Desbrun and M.-P. Gascuel. Smoothed
Particles: A New Paradigm for Animating
Highly Deformable Bodies. In Proceedings
of The 6th Eurographics Workshop on Ani-
mation and Simulation, pages 61-76, 1996.

Y. Dobashi, K. Kaneda, H. Yamashita,
T. Okita, and T. Nishita. A Simple, Efficient
Method for Realistic Animation of Clouds.
In Proceedings of SIGGRAPH, pages 19-28,
2000.

R. Fedkiw, H.W. Jensen, and J. Stam. Vi-
sual Simulation of Smoke. In Proceedings
of ACM SIGGRAPH, pages 15-22, 2001.

N. Foster and D. Metaxas. Modelling the
Motion of a Hot, Turbulent Gas. In Pro-
ceedings of ACM SIGGRAPH, pages 181-
188, 1997.

M. Hadwiger, C.R. Salama, K. Engel, J.M.
Kniss, A. Lefohn, and D. Weiskopf. Real-
Time Volume Graphics. ACM SIGGRAPH
Course Note, 2004.

M.J. Harris, W.V. Baxter, T. Scheuermann,
and A. Lastra. Simulation of Cloud Dynam-
ics on Graphics Hardware. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages
92-101. Eurographics Association, 2003.

M.J. Harris and A. Lastra. Visual Simulation
of Clouds. In Proceedings of Eurographics,
pages 7684, 2001.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

H.W. Jensen and P.H. Christensen. Ef-
ficient Simulation of Light Transport in
Scenes with Participating Media Using Pho-
ton Maps. In Proceedings of ACM SIG-
GRAPH, pages 311-320, 1998.

P. Kipfer, M. Segal, and R. Westermann.
UberFlow: A GPU-Based Particle En-
gine. In Proceedings of Graphics Hardware,
2004.

H.-S. Liao, T.-C. Ho, J.-H. Chuang, and C.-
C. Lin. Fast Rendering of Dynamic Clouds.

J.J. Monaghan. Smoothed Particle Hydro-
dynamics. Annual Review of Astronomy and
Astrophysics, 30:543-574, 1992.

M. Miiller, D. Charypar, and M. Gross.
Particle-Based Fluid Simulation for Interac-
tive Applications. In Proceedings of Euro-
graphics/SIGGRAPH Symposium on Com-
puter Animation, 2003.

D.Q. Nguyen, R. Fedkiw, and H.W. Jensen.
Physically Based Modeling and Animation
of Fire. In Proceedings of ACM SIGGRAPH,
2002.

S. Premodz, T. Tasdizen, A. Lefohn, and R.T.
Whitaker. Particle-Based Simulation of Flu-
ids.

J. Stam. Stable Fluids. In Proceedings of
SIGGRAPH, pages 121-128, 1999.

