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a b s t r a c t

Reinforcement evolutionary learning using data mining algorithm (R-ELDMA) with a TSK-type fuzzy
controller (TFC) for solving reinforcement control problems is proposed in this study. R-ELDMA aims to
determine suitable rules in a TFC and identify suitable and unsuitable groups for chromosome selection.
To this end, the proposed R-ELDMA entails both structure and parameter learning. In structure learning,
the proposed R-ELDMA adopts our previous research – the self-adaptive method (SAM) – to determine
the suitability of TFC models with different fuzzy rules. In parameter learning, the data-mining based
eywords:
uzzy system
ontrol
ymbiotic evolution
einforcement learning
ssociation rules

selection strategy (DSS), which proposes association rules, is used. More specifically, DSS not only deter-
mines suitable groups for chromosomes selection but also identifies unsuitable groups to be avoided
selecting chromosomes to construct a TFC. Illustrative examples are presented to show the performance
and applicability of the proposed R-ELDMA.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.
-ELDMA

. Introduction

Parallel and global search techniques that can simultaneously
valuate many points in the search space, such as the genetic
lgorithms (GAs) [1], genetic programming [2], evolutionary pro-
ramming [3], and evolution strategies [4], have recently become
opular. These evolutionary algorithms are more inclined to con-
erge toward the global solution. Thus, recently, several approaches
ried to use evolutionary algorithms to find the global solutions,
nd they have been applied in training fuzzy models (evolutionary
uzzy models) [5,6].

The evolutionary fuzzy model can generate a fuzzy system auto-
atically using evolutionary algorithms, such as genetic algorithms

GAs). More recently, several genetic fuzzy models, which utilize
As to generate the fuzzy models, have been proposed [7–9]. For

nstance, Karr applied GAs [7] to design and identify the member-
hip functions of a fuzzy controller. Lin and Jou [8] applied GAs
n reinforcement learning approaches. They proposed a GA-based

uzzy reinforcement learning approach to control magnetic bearing
ystems efficiently. Moreover, Juang et al. [9] applied an extended
A, named symbiotic evolution, which complements the local map-
ing property of a fuzzy rule, to reinforcement learning approaches.

∗ Corresponding author.
E-mail address: sflin@mail.nctu.edu.tw (S.-F. Lin).

568-4946/$ – see front matter. Crown Copyright © 2010 Published by Elsevier B.V. All ri
oi:10.1016/j.asoc.2010.12.027
Their results indicated that the symbiotic evolution performs better
than GAs in reinforcement learning.

Recently, several improved evolutionary algorithms have been
proposed [6,10–15]. Most of them not only modify the structure
of evolutionary algorithms to suit for generating fuzzy models but
also improve the performance of each evolutionary procedure for
generating fuzzy models efficiently. For instance, Bandyopadhyay
et al. [10] used a variable-length genetic algorithm (VGA) that
allows for different lengths of chromosomes in a population. The
VGA is suitable for designing fuzzy models with different fuzzy
rules. Carse et al. [11] used GA to evolve fuzzy rule-based con-
trollers to improve the performance of traditional ones. Tang [12]
proposed a hierarchical GA to enable the optimization of gener-
ated fuzzy models in particular applications. Moreover, Juang [6]
combined online clustering and Q-value based GA in reinforce-
ment fuzzy system design. His model, named CQGAF, is useful in
designing the number of fuzzy rules and free parameters simulta-
neously in a fuzzy system. In addition, Gomez and Schmidhuber
[13,14] proposed lots of work to solve these problems. Their pro-
posed enforced sub-populations (ESP), which used sub-populations
of neurons for fitness evaluation and overall control, to generated

neural networks. As shown in [13,14], subpopulations are useful
in evaluating solutions locally, and their proposed system has bet-
ter performance than systems that use only one population. More
recently, Lin and Hsu proposed a hybrid evolutionary learning algo-
rithm (HELA) [15], which consists of the compact GA (CGA) and the

ghts reserved.
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odified VGA to perform structure/parameter learning in dynamic
onstruction of networks.

Although aforementioned algorithms [6,10–15] can improve
raditional evolutionary algorithms, they may still have one or more
f the following limitations: 1) all the fuzzy rules are encoded into
ne chromosome, 2) the numbers of fuzzy rules have to be assigned
n advance, and 3) the population cannot evaluate each fuzzy rule
ocally.

To this end, this study tends to address the issues that mention
bove. Thus, reinforcement evolutionary learning using data min-
ng algorithm (R-ELDMA) with a TSK-type fuzzy controller (TFC)
s proposed. More specifically, a reinforcement signal is used as a
tness function for the R-ELDMA, that is, the R-ELDMA formulates
he number of time steps before failure occurs and uses it as a fit-
ess function. By the way, the R-ELDMA can evaluate the candidate
olutions for the parameters of the TFC. Similar with [15], R-ELDMA
ntails both structure learning and parameter learning. However,
n [15], all the fuzzy rules are encoded into one chromosome could
ause the problem that a population cannot evaluate each fuzzy rule
ocally. To address this issue, R-ELDMA proposes a novel structure
nd parameter learning algorithms.

In structure learning, the proposed R-ELDMA not only deter-
ines the number of fuzzy rules automatically but also processes

he variable combination of chromosomes. To realize this, a multi
roups’ symbiotic evolution (MGSE) is proposed. The MGSE is
ifferent from traditional GAs because each chromosome in the
GSE represents one rule in a fuzzy system. Moreover, similar
ith [13,14], MGSE is different from traditional symbiotic evolu-

ion because each group in MGSE represents a collection of only
ne fuzzy rule. The MGSE uses a multi groups’ population to eval-
ate fuzzy rules locally. To compare with [13,14], the self-adaptive
ethod (SAM) [16], which was proposed in our recent study, is

sed to determine the suitable number of rules in TFC. More specif-
cally, the SAM uses two steps to determine the suitable number
f rules to prevent these from falling in a local optimal solution.
n other words, SAM is similar to the maturing phenomenon in
ociety, where individuals learn to adapt to society as they acquire
nowledge.

In addition, the parameter learning investigates the selection of
uitable groups for TFC construct. This type of learning is useful to
et groups for cooperating to generate better solutions.

To address this issue, the data mining is taken into account
ecause it is useful in discovering hidden relations, patterns, and

nterdependencies. Recently, data mining has become a popular
esearch topic [17,18]. It is the method of mining information from
database called “transactions”. Data mining can be regarded as
new way of performing data analysis. One aim of data mining is

o find association rules among sets of items that occur frequently
n transactions. To achieve this aim, several methods have been
roposed [19–21]. Agrawal and Srikant [19] proposed a mining
ethod that ascertains large sets of items to find the association

ules in transactions. In [20], association rules were used to discover
eaningful associations between features that co-occur frequently

n data sets. Hsu et al. [21] proposed an association-based GA
pproach, such that the GA is able to continue its searching tasks
ore efficiently.
Association rules can identify meaningful relationships between

tems that co-occur frequently in data sets; hence, achieving the
im of parameter learning is useful. Thus, the data-mining based
election strategy (DSS), which applies association rules, is pro-
osed to determine which groups are suitable for TFC construction.

oreover, DSS identifies groups that should be taken into account

o avoid selecting in building TFC models. To this end, the well-
nown association rules approach – explored by a priori algorithm
19] – is adopted. The a priori algorithm, including its variations
nd extensions, is widely accepted in discovery of association rules
uting 11 (2011) 3247–3259

from transactions. By applying this algorithm, we can identify the
suitable or unsuitable groups in transactions. In brief, the DSS con-
tributes in identifying a suitable combination of individuals and
avoiding the selection of unsuitable combinations of individuals.

The aims of R-ELDMA are summarized as follows: 1) SAM is
applied to determine the suitable number of fuzzy rules in TFC mod-
els, 2) MGSE is used to evaluate the fuzzy rule locally; and 3) the
DSS is used not only to select suitable groups but also to identify
unsuitable groups for performing selection steps. With these aims,
R-ELDMA contributes to the identification of near-optimal solu-
tions and the reduction in the number of evolutionary generations.

This paper is organized as follows. In Section 2, a TFC is intro-
duced. The proposed ELDMA is described in Section 3. In Section 4,
reinforcement learning for ELDMA is discussed. In Section 5, sim-
ulation results are presented. The conclusions are given in the last
section.

2. Structure of TSK-type fuzzy controller (TFC)

A TFC [22] uses different implication and aggregation methods
from the standard Mamdani fuzzy model. Instead of using fuzzy
sets, the conclusion part of a rule is a linear combination of the
crisp inputs. The TSK-type fuzzy rule is shown is represented in Eq.
(1), where n is the number of the input dimensions and j is the serial
number of fuzzy rules.

IF x1 is A1j(m1j, �1j) and x2 is A2j(m2j, �2j)· · ·and xn is Anj(mnj, �nj)

THEN y′ = w0j + w1jx1 + · · · + wnjxn

(1)

The structure of a TFC is shown in Fig. 1. It is a five-layer network
structure. In TFC, the firing strength of a fuzzy rule is calculated by
performing the following “AND” operation on the truth values of
each variable to its corresponding fuzzy sets by:

u(3)
ij

=
n∏

i=1

exp

(
− [u(1)

i
− mij]

2

�2
ij

)
(2)

where u(1)
i

= xi and u(3)
ij

are the output of first and third layers
respectively, and mij and �ij are the center and the width of the
Gaussian membership function of the jth term of the ith input
variable xi, respectively. In this paper, we have used the Gaussian
membership function because it can be a universal approximator
of any nonlinear functions on a compact set [23].

The output of a fuzzy system is computed by:

y = u(5) =
∑M

j=1u(4)
j∑M

j=1u(3)
j

=
∑M

j=1u(3)
j

(w0j +
∑n

i=1wijxi)∑M
j=1u(3)

j

(3)

where u(5) is the output of 5th layer; wij is the weighting value with
ith dimension and jth rule node; M is the number of fuzzy rule.

3. Evolutionary learning using data mining algorithm
(ELDMA)

The proposed ELDMA aims to improve the symbiotic evolution
[24] and determine the suitable fuzzy rules of TFC automatically.
Moreover, ELDMA also determine the suitable individuals used to
construct a TFC. Thus, the ELDMA entails both structure learning
and parameter learning.
In structure learning, the ELDMA is used to determine the
number of fuzzy rules automatically. To achieve this aim, ELDMA
processes the variable length of a combination of chromosomes.
The length of a combination of chromosomes denotes the rule sets
that are used to construct a TFC model. To deal with this, this paper
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Fig. 1. The structure of th

roposes MGSE, which is developed from symbiotic evolution. The
dea of symbiotic evolution was first proposed in an implicit fitness-
haring algorithm used in an immune system model [25]. More
pecifically, artificial antibodies were developed to identify artifi-
ial antigens. Each antibody can match only one antigen; hence, a
ifferent population of antibodies is required to effectively defense
gainst a variety of antigens. As shown in [24,25], partial solu-
ions can be characterized as specializations. Specialization ensures
iversity, preventing a population from converging into suboptimal
olutions. This implies that a single partial solution cannot “take
ver” a population because other specializations are present. Unlike
he standard evolutionary approach, which always causes a given
opulation to converge—hopefully at the global optimum, but often
t a local one, the symbiotic evolution finds solutions in different,
nconverted populations [24,25]. Moreover, unlike the traditional
ymbiotic evolutions, each population in the MGSE is divided into
everal groups, and each group represents a set of chromosomes
hat belongs to one fuzzy rule.

In ELDMA, the population is structured, such that each group
epresents a set of chromosomes that belongs to a fuzzy rule. More-
ver, the number of rules in TFC models is variable. The structure of
chromosome in the ELDMA is shown in Fig. 2. As shown in the fig-

re, each rule represents a chromosome selected from a group, Psize
enotes that there are Psize groups in a population, and Mk means
hat there are Mk rules used in TFC construction.

In the traditional evolution algorithms, e.g., [6,10–14], the num-
er of fuzzy rules needs to be assigned in advance. To solve this
type neuro-fuzzy system.

problem, our recent research model, the self-adaptive method
(SAM), is applied. The SAM used the building blocks (BBs) not only
to represent the suitability of TFC models with different fuzzy rules
but also to determine the selection number of such models. In Fig. 3,
SAM codes the probability vector VMk

, representing the suitability
of a TFC with Mk rules, into the building blocks (BBs). Furthermore,
in SAM, the minimum and maximum number of rules must be pre-
defined to limit the number of fuzzy rules to a certain bound, i.e.,
[Mmin, Mmax].

In parameter learning, although SAM can determine the suit-
able number of rules, there is a need to identify the suitable groups
used to select individuals to construct TFC models. Moreover, the
unsuitable groups should avoid choosing to build the TFC models.
More specifically, we should consider the well-performing groups
of individuals to cooperate for producing better a generation than
the current one. Conversely, groups of individuals with bad perfor-
mance should avoid cooperating. To face these issues, this study
proposes DSS not only to determine which groups should be used
to select individuals but also to identify which groups should avoid
choosing to construct a TFC.

The DSS involves two major parts, namely, finding frequent pat-
terns and searching association rules. Regarding the former, the

FP-growth algorithm [26] is used to find the frequent patterns that
do not have candidate generation. Regarding latter, the a priori
algorithm is used to identify association rules. In DSS, the FP-growth
is used to find the sets of groups that occur frequently from transac-
tions. In this paper, a “transaction” refers to the collection of groups
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Fig. 2. The structure of the chr
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ig. 3. Coding the probability vector into the building blocks (BBs) in the SAM.

hat have good or bad performance. After the candidate sets of fre-
uently occurring groups are found, DSS identifies the association
ules using the a priori algorithm and uses the found association
ules to determine Mk groups that are used to select Mk chromo-
omes that form TFC models with Mk rules. To this end, two actions
re defined in this study: normal and search actions. In the normal
ction, Mk groups are chosen randomly. In the search action, Mk
roups are chosen according to association rules.

The coding structure of chromosomes in our proposed ELDMA
s shown in Fig. 4. The figure describes a fuzzy rule that has the
orm of Eq. (1), where mij and �ij represent a Gaussian membership
unction with mean and deviation, respectively, and wjMk

is the
eight with ith dimension and jth rule node.

The learning process of the ELDMA in each group involves four
ajor operators: SAM, DSS, crossover strategy, and mutation strat-

gy. The learning process stops as the system sustains successful
tatus for a predefined time steps. The whole learning process is
escribed below:

a. Review of Self-adaptive method (SAM):
The purpose of SAM is to determine the suitable selection times

f each number of rules. The “selection times” indicates how many

FC models should be produce in one generation. In other words,
AM is used to determine the number of TFC models with Mk rules
n every generation. After SAM is performed, the selection times
f the suitable number of rules in a TFC increase; moreover, the
election times of the unsuitable number of rules in a TFC decrease.

Fig. 4. Coding a rule of a TNFS into a chromosome in the ELDMA.
omosome in the ELDMA.

The processing steps of the SAM are briefly reviewed below:
Step 0. Initialize the probability vectors of the BBs:

VMk
= 0.5, for Mk = Mmin, Mmin +1, · · ·, Mmax; (4)

and Accumulator = 0. (5)

Step 1. Update the probability vectors of the BBs according to the
following equations:{

VMk
= VMk

+ (Upt valueMk
∗ �), if Avg ≤ fitMk

VMk
= VMk

− (Upt valueMk
∗ �), otherwise

(6)

Avg =
Mmax∑

Mk=Mmin

fitMk
/(Mmax − Mmin); (7)

Upt valueMk
= fitMk

/

Mmax∑
Mk=Mmin

fitMk
; (8)

if FitnessMk
≥ (Best FitnessMk

− ThreadFitnessvalue)
then fitMk

= fitMk
+ FitnessMk

,
(9)

where VMk
is the probability vector in the BBs, � is a predefined

threshold value, Avg represents the average fitness value in the
whole population, Best FitnessMk

represents the best fitness value
of TFC models with Mk rules, and fitMk

is the sum of the fitness val-
ues of the TFC models with Mk rules. In Eq. (6), the conditions of
“fitMk

≥ or < Avg” that affect the suitability of TFC models with Mk
rules should be increased or decreased.

Step 2. Determine the selection times of TFC models with differ-
ent rules according to the probability vectors of the BBs as follows:

RpMk
= (Selection Times) ∗ (VMk

/Total Velocy), for Mk

= Mmin, Mmin +1, · · ·, Mmax; (10)
Total Velocy =
Mmax∑

Mk=Mmin

VMk
, (11)
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Table 1
Transactions in the DSS.

Transaction index Groups

1 l, 4, 8, g
C.-Y. Hsu et al. / Applied Soft

here Selection Times represents the total selection times in each
eneration and RpMk

represents the selection times of TFC models
ith Mk rules in one generation.

Step 3. To prevent suitable selection times from falling into the
ocal optimal solution, SAM uses two different actions to update
Mk

. These actions are defined according to the following equations:

f Accumulator ≤ SAMTimes, then do Steps 1 to 3 (12)

f Best Fitnessg = Best Fitness, then Accumulator

= Accumulator + 1; (13)

f Accumulator > SAMTimes, then do Step 0 and

Accumulator = 0, (14)

here SAMTimes is a predefined value, Best Fitnessg represents the
est fitness value of the best combination of chromosomes in the
th generation, and Best Fitness represents the best fitness value of
he best combination of chromosomes in the current generations.
qs. (12)–(14) imply that if the best fitness value does not improve
ithin a predetermined number of generations, the suitable selec-

ion times may fall into the local optimal solution. At this time, the
rocessing procedure of SAM should return to Step 0 to initialize
he BBs.

b. The data-mining based selection strategy (DSS):
After operating SAM, the selection times of the TFC models with

ifferent numbers of rules are determined. Thereafter, ELDMA per-
orms the selection step, which involves the selection of groups and
he selection of chromosomes. In selection of groups, this paper
roposes DSS to determine the suitable groups for chromosomes
election to form a TFC.

In DSS, suitable groups are selected according to the groups,
hich conduct from association rules that indicate good per-

ormance. In contrast, unsuitable groups are avoided selecting
ccording to the groups, which conduct from association rules that
emonstrate bad performance. To achieve these aims, DSS utilizes
he FP-growth [26] and the a priori algorithm. Regarding former,
he FP-growth is used to identify frequently pattern. It was pro-
osed by Han et al. [26], and it aims to find the frequently occurring
atterns that do not have candidate generation. In the proposed
SS, the FP-growth is used to find the frequently occurring groups

rom transactions. To reiterate, a transaction refers to a set of the
roups that have good or bad performance. Regarding latter, after
he frequently occurring groups are found, DSS adopts the a pri-
ri algorithm to construct association rules. The a priori algorithm
s the most well-known association rules algorithm and is useful
n several fields [19]. After performing these two steps, the found
ssociation rules are utilized to selects Mk groups that are used to
hoose chromosomes to form TFC models with Mk rules. To prevent
he selected groups from falling into the local optimal solution, DSS
ses normal and search actions to select well-performed groups.
he details of the DSS are discussed below:

Step 0. The transactions are built, as in the following equations:

if FitnessMk
≥ (Best FitnessMk

− ThreadFitnessvalue)

Transactionj[i] = TFCRuleSetMk
[i]

then

Transaction [M + 1] = g (15)
j k

where i = 1, 2, · · ·, Mk;

Mk = Mmin, Mmin +1, · · ·, Mmax;

j = 1, 2, · · ·, TransactionNum,
2 2, 4, 7, 10, b
. . . . . .
TransactionNum l, 3, 4, 6, 8, 9, g

if FitnessMk
< (Best FitnessMk

− ThreadFitnessvalue)

Transactionj[i] = TFCRuleSetMk
[i]

then

Transactionj[Mk + 1] = b

where i = 1, 2, · · ·, Mk;

Mk = Mmin, Mmin +1, · · ·, Mmax;

j = 1, 2, · · ·, TransactionNum,

(16)

where the FitnessMk
represents the fitness value of TFC with Mk

rules, ThreadFitnessvalue is the predefined value, TransactionNum
is the total number of transactions, Transactionj[i] represents the
ith item in the jth transaction, TFCRuleSetMk

[i] represents the ith
group in the Mk groups used for chromosomes selection, and
Transactionj[Mk + 1] = g and Transactionj[Mk + 1] = b represent the
last terms (“g” or “b”) that are inserted into the jth transaction.
Such two terms represent good (“g”) and bad (“b”) performance,
respectively. The transactions have the form shown in Table 1. From
this table, to skip the last item of all transactions, every transaction
represents the Mk groups that form a TFC with Mk rules. For exam-
ple, as shown in Table 1, the first transaction of the transaction set
means that the three-rule TFC formed by the first, fourth, and eighth
groups have “good” performance. In contrast, the second transac-
tion indicates that the four-rule TFC formed by the second, fourth,
seventh, and the tenth groups have “bad” performance. The steps in
building transactions continue with the normal and search actions.

Step 1. Normal action:
After the transactions are built, the DSS selects groups according

to different action types. If the action type is normal, DSS selects the
groups using the following equation:

if Accumulator ≤ NormalTimes

then GroupIndex[i] = Random[1, PSize];

where i = 1, 2, · · ·, Mk; Mk = Mmin, Mmin +1, · · ·, Mmax,

(17)

where Accumulator defined in Eq. (12) is used to determine which
action should be adopted, GroupIndex[i] represents the selected ith
group of the Mk groups, and PSize indicates that there are PSize groups
in a population in ELDMA. In this action, the algorithm is used to
accumulate the transaction set. Therefore, the groups are stored
in a transaction if the groups fit Eqs. (15) and (16). If the best fit-
ness value does not improve for a sufficient number of generations
(NormalTimes), then DSS selects the groups by switching to another
action type (which go to the next steps).

Step 2. Finding association rules:
If the current action is the search action (the Accumulator

exceeds the NormalTimes), DSS, which consists of FP-growth and
a priori algorithm, is used to find the suitable or unsuitable groups
in transactions. The details of the two major parts are presented
below.

i. FP-growth

Frequently occurring groups are found according to the prede-

fined Minimum Support, which represents the minimum fraction
of transactions that contain an item set. After Minimum Support is
defined, data mining using FP-growth is performed. The FP-growth
algorithm can be viewed with two parts: construction of the FP-
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Table 2
Sample transactions.

Transaction index Groups

1 {b, c, e, f, g, h, p}
2 {a, b, c, f, i, m, o}
3 {c, f, i, m, o}
4 {b, c, e, s, p}
5 {a, b, c, d, f, m, o}

Table 3
Frequent 1-groupset of sample transactions.

Group name Count Group name Count

B 4 M 3
C 5 O 3
F 4

Table 4
F-list of sample transactions.

Group name Count Group name Count

C 5 M 3
B 4 O 3
F 4

Table 5
Transactions after discarding the infrequent groups and sorting the remaining
groups in the same order as the F-list.

Transaction index Groups Ordered groups

1 {b, c. e, f, g, h, p} {c, b, f}
2 {a. b. c, f. i, m, o} {c, b, f, m, o}

t
g

a
1
i
t
i
l
s
b
l
t
F

Table 6
Frequently occurring groups generated by FP-growth data mining with Mini-
mum Support = 3.

Suffix group Cond. group base Cond. FP-tree Frequent groups

B c:4 c:4 cb:4
F cb:3, c:1 c:4, cb:3 cf:4, bf:3, cbf:3
M cbf:2.cf:1 cf:3 cm:3, fm: 3, cfm:3
3 {c, f, i, m, o} {c, f, m, o}
4 {b, c, e, s, p} (c. b)
5 {a, b, c, d. f, m, o} {c, b, f, m, o}

ree and FP-growth. The sample transactions shown in Table 2 are
iven as examples. In this example, Minimum Support = 3.

(1) FP-tree Construction:
The first step to construct a FP-tree is to scan the transactions

nd retrieve the frequent 1-groupset in transactions. The frequent
-groupset represents the set with bigger support counts than Min-

mum Support in transactions. The result is shown in Table 3. Then
he retrieved frequently occurring groups are arranged in descend-
ng order based on their supports, as shown in Table 4. The ordered
ist in Table 4 is called the F-list. After the F-list is obtained, the next
tep is used not only to discard the infrequently occurring groups

ut also to sort the remaining groups in the same order as in the F-

ist in each transaction. The result is shown in Table 5. The ordered
ransactions are then used to construct the FP-tree. The steps in
P-tree construction are illustrated in Fig. 5(a). In the same figure,

Fig. 5. Construct FP-tree. (a) Steps for constructing the FP
O cbfm:2, cfm:1 cfm:3 co:3, fo:3. mo:3. cfo:3.
cmo:3, fmo:3, cfmo:3

formed by scanning the last transaction, the right-most chart is
called the prefix-tree of the frequent 1-groupset. Each node of the
prefix-tree is composed of one group, a count of the frequent 1-
groupset, and a node frequently occurring group link. Thereafter,
the completed FP-tree is created by combining the prefix-tree of
the 1-groupset and the header-table. An example of an FP-tree is
shown in Fig. 5(b). This FP-tree is constructed from the transactions
shown in Table 2.

(2) FP-growth:
The FP-growth algorithm is done by following steps: construc-

tion of a conditional group base, construction of a corresponding
conditional FP-tree, mining the frequently-occurring groups on the
conditional FP-tree, and concatenation of the suffix group and the
frequently-occurring groups on the conditional FP-tree.

First, we select each frequent 1-groupset as a suffix group, and
find the corresponding set of paths connecting to the root of the
FP-tree. The set of prefix paths is called the conditional group
base. Second, we accumulate the count for each group in the base
to construct the conditional FP-tree of the corresponding suffix
group. Third, after mining the frequently occurring groups in the
conditional FP-tree, FP-growth data mining is completed by the
concatenation of the suffix group with the generated frequently
occurring groups. Finally, the groups generated by the FP-growth,
shown in Table 6, are then thrown into the pool called FrequentPool.
The FrequentPool represents the candidate sets of the frequently
occurring groups.

ii. Aproior algorithm
Once the frequently occurring groups are found, we further use

these groups to generate association rules. Each association rule
has a confidence and a support associated. The support of a rule
refers to the fraction of transactions that contain the rule. The con-
fidence of a rule is defined as the fraction of times in which if the
antecedent is satisfied, the consequent is also true. The values of
support and confidence are used to filter the set of association rules
obtained from transactions. The task of the a priori algorithm can be

formulated as finding all association rules with at least minimum
support and minimum confidence, i.e., the thresholds of support
and confidence. The association rules can be found using in three
steps: 1) obtain the frequently occurring groups from FP-growth;

-tree of sample transactions. (b) FP-tree of Table 5.
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Fig. 6. Two

) for each obtained group, find all nonempty subsets where each
f them must contain “g” or “b” (in this study, “g” and “b” indi-
ate target patterns); and 3) for each such subset of a group, if the
onfidence is bigger than the minimum confidence, producing the
ule. For instance, if the confidence of {1,3,6}→ {g} is bigger than
he minimum confidence, then we construct this association rule.
his rule indicates that the combination of the first, third, and sixth
roups results in “good” performance. After doing so, the frequent
atterns are conduct to the association rules.

Step 3. Select the groups according to association rules:
After the association rules are identified, DSS selects groups

ccording to the association rules. More specifically, the selected
roups, which are used to choose chromosomes, should mainly
elong to the association rules with an inferred item with good per-
ormance (i.e., “g”). In contrast, the selected groups, which mainly
elong to the association rules with an inferred item with bad per-
ormance (i.e., “b”), should be ignored. After doing so, DSS can not
nly determine which groups are suitable to construct TFC models
ut also identify groups that should be taken into account to avoid
electing to build the TFC.

If the best fitness value does not improve for a sufficient number
f generations (SearchingTimes), DSS selects groups based on the
ormal action.

Step 4. After the Mk groups are selected, Mk chromosomes are
elected from Mk groups as follows:

ChromosomeIndex[i] = q,

where

q = Random[1, Nc];

i = 1, 2, · · ·, k,

(18)

here Nc represents the number of chromosomes in each group and
hromosomeIndex[i] represents the index of a chromosome that is
elected from the ith group.

Fitness assignment notes:
As previously stated, for ELDMA, the fitness value of a rule (an

ndividual) is calculated by summing up the fitness values of all
ossible combinations in the chromosomes that are selected from
k groups that are decided by DSS. The steps in the fitness value

ssignment are described below:
Step 1. Choose Mk fuzzy rules to construct a TFC RpMk

times from
k groups with size NC. The Mk groups are obtained from the DSS.

Step 2. Evaluate every TFC that is generated from Step1 to obtain
fitness value.

Step 3. Divide the fitness value by Mk and accumulate the divided
tness value to the selected rules with their fitness value records
hat were set to zero initially.
Step 4. Divide the accumulated fitness value of each chromo-
ome from Mk groups by the number of times that it has been
elected. The average fitness value represents the performance of
rule.

c. Crossover strategy:
crossover.

Although DSS can be used to select suitable individuals for TFC
construction, it does not create any new individual. In nature, an
offspring has two parents and inherits genes from both. The main
operator working on the parents is the crossover operator, the oper-
ation of which occurs for a selected pair with a crossover rate. In this
paper, a two-point crossover strategy [27] is adopted and shown
in Fig. 6. In the figure, exchanging the site’s values between the
selected sites of individual parents creates new individuals. The
advantage of the two-point crossover is its ability of introducing
a higher degree of randomness into the selection of genetic mate-
rial [28]. Moreover, such crossover strategy generally yields better
performance than one-point crossover due to its larger search step
size [29].

d. Mutation strategy:
Although the crossover strategy produces many new strings,

these strings do not provide any new information to every group
at the site of an individual. Mutation can randomly alter the allele
of a gene. In this paper, to emphasize the capability of the SAM
and the DSS, the ELDMA attempts to simplify the mutation opera-
tion. Uniform mutation [27] is therefore adopted, and the mutated
gene is drawn randomly from the domain of the corresponding vari-
able. The benefits of uniform mutation are not only to generate new
information into a population but also to keep a highly diverse array
of information, which is useful to the fitness of individuals [30].

The aforementioned steps are performed repeatedly and
stopped when the whole system sustains successful state for a
predetermined time steps achieved.

4. A reinforcement learning for the ELDMA

Unlike the supervised learning problem, in which the correct
“target” output values are given for each input pattern, the rein-
forcement learning problem has only very simple “evaluative” or
“critical” information, rather than “instructive” information. In the
extreme cases, there is only a single bit of information to indicate
whether the output is right or wrong. The training environment
of reinforcement ELDMA (R-ELDMA), which interacts with a rein-
forcement learning problems, is shown in Fig. 7. In this paper, the
reinforcement signal indicates whether a success or a failure occurs.

As shown in Fig. 7, R-ELDMA consists of a TFC, which determines
the proper action according to the current input vector (environ-
ment state). The structure of R-ELDMA is different from Barto and
his colleagues’ actor-critic architecture [31], which consists of a
control network and a critic network. The input of the TFC is the
state of the plant, and the output is a control action of the state
denoted by f. The only available feedback is a reinforcement sig-
nal that notifies the TFC only when failure occurs. An accumulator
plays the role of a relative performance measure, and it is shown

in Fig. 7. It accumulates the number of time steps before a failure
occurs. In this paper, the feedback is decided by using an accu-
mulator, which determines how long the experiment remains a
“success”. In R-ELDMA, the accumulator is used as a relative mea-
sure of the fitness. In other words, the accumulator indicates the
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Table 7
The initial parameters before training.

Parameters Value Parameters Value

Psize 16 [Mmin , Mmax] [3, 10]
Nc 20 [mmin , mmax] [0, 1]
Selection Times 250 [�min , �max] [0, 1]
NormalTimes 20 [wmin , wmax] [−15, 15]
Fig. 7. Block diagram of the R-ELDMA for the TFC model.

fitness” of the current TFC. The key of the R-ELDMA is formulat-
ng a number of time steps before a failure occurs and using this
ormulation as the fitness function of R-ELDMA. Its advantage is its
bility to meet global optimization.

The flowchart of R-ELDMA is shown in Fig. 8. The R-ELDMA runs
n a feed-forward fashion to control the environment (plant) until
ailure occurs. In this paper, fitness function is defined as the num-
er of time steps before a failure occurs. The goal of R-ELDMA is to
aximize the fitness value. The fitness function is defined by:

itness Value = TIME − STEP (19)

here TIME-STEP represents how long the experiment remains a

success”. Eq. (19) reflects the fact that the long-time steps before a
ailure occurs could implies higher fitness of the R-ELDMA. In other
ords, Eq. (19) is mainly used to evaluate the performance of a

ontroller, which can keep the desired control goal.

Fig. 8. Flowchart of the R-ELDMA.
SearchingTimes 30 Mininmum Support TransactionNum/2
Crossover Rate 0.4 Mininmum Confidence 70%
Mutation Rate 0.3

5. Illustrative examples

Two simulations are discussed in this section. The first is a cart
pole balance system described in [15] and [32]. The second is a sim-
ulation to control a chaotic system [6,33]. For the two simulations,
the initial parameters are given in Table 7. The initial parameters are
determined by practical experimentation or trial-and-error tests.

Example 1: Control of a Cart-Pole Balancing System
In this simulation, R-ELDMA is applied to the classic control

problem of the cart-pole balancing system. This system is often
used as an example of inherently unstable and dynamic systems
to demonstrate both of modern and classical control techniques
[32], or the reinforcement learning schemes [15,31]. Here, it is used
as a control benchmark. As shown in Fig. 9, the cart-pole balanc-
ing problem is the problem of learning how to balance an upright
pole. The bottom of the pole is hinged to a cart that travels along
a finite-length track. Both the cart and the pole can move only on
the vertical plane; that is, each has only one degree of freedom.

There are four state variables in the system: �, the angle of the
pole in an upright position (in degrees); �̇, the angular velocity of
the pole (in degrees per second); x, the horizontal position of the
cart’s center (in meters); and ẋ, the velocity of the cart (in meters
per second). The only control action is f, which is the amount of
force (in Newtons) applied to the cart to move it to the left or right.
The system fails when the pole falls past a certain angle (±12◦ is
used) or when the cart runs into the bounds of its track (the distance
is 2.4 m from the center to each bound of the track). The goal of this
control problem is determining a sequence of forces applied to the
cart to balance the pole upright. The equations of motion used are
as follows:

�(t + 1) = �(t) + ��̇(t), (20)

�̇(t + 1) = �̇(t) + �
(m + mp)g sin �(t)

(4/3)(m + mp)l − mpl cos2 �(t)

−
cos �(t)

[
f (t) + mpl�̇(t)2 sin �(t) − �csgn(ẋ(t))

]
(4/3)(m + mp)l − mpl cos2 �(t)

− (�p(m + mp)�̇(t)/mpl)
(4/3)(m + mp)l − mpl cos2 �(t)

,

(21)

x(t + 1) = x(t) + �ẋ(t), (22)

f (t) + mpl[�̇(t)2 sin �(t) − �̈(t) cos �(t)]

x(t + 1) = ẋ(t) + �

(m + mp)

−�csgn(ẋ(t))
(m + mp)

,

(23)

Fig. 9. The cart-pole balancing system.
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Fig. 10. The results of the probability vectors in the SAM.

here

l = 0.5 m, the length of the pole;

m = 1.1 kg, combined mass of the pole and the cart;

mp = 0.1 kg, mass of the pole;

g = 9.8 m/s, acceleration due to the gravity;

�c = 0.0005, coefficient of friction of the cart on the track;

�p = 0.000002, coefficient of friction of the pole on the cart;

� = 0.02 (s), sampling interval;

(24)

The constraints on the variables are − 12 ◦≤� ≤ 12 ◦,
2.4 m ≤ x ≤ 2.4 m, and −10 N ≤ f ≤ 10 N. A control strategy is
eemed successful if it can balance the pole for 100,000 time
teps. The four input variables (�, �̇, x, ẋ) and the output (ft) are
ormalized between 0 and 1 over the following ranges, �: [−12,
2], �̇: [−60, 60], x: [−2.4, 2.4], ẋ: [−3, 3], ft: [−10, 10]. The four
ormalized state variables are used as inputs to the proposed TFC
odel. The coding of a rule in a chromosome is given in Fig. 4.

he values are floating-point numbers initially assigned using
-ELDMA. The fitness function used in this simulation to train
he TFC model is defined in Eq. (19). This equation indicates how
ong before the cart-pole balancing system fails, after which it
eceives a penalty signal of −1. Failure in this simulation is defined
s when the pole falls past a certain angle (±12◦ is used) and when
he cart runs into the bounds of its track (the distance is 2.4 m
rom the center to each bound of the track). These conditions are
efined based on the basic requirements of the cart-pole balancing
roblem having an angle � in the range [−12, 12] and a position x

n the range [−2.4, 2.4]. The ThreadFitnessvalue in this simulation
s set to 350, and it is determined by practical experimentation or
rial-and-error simulation tests.

A total of 15 runs are performed in this simulation. Each run

tarts at different initial states. Fig. 10 shows the results of one run
f the probability vectors in the SAM. In this figure, the final optimal
umber of the rules is 6. Table 8 shows the mean, best, and worst
f the optimal number of rules from 15 runs.

able 8
he optimal number of runs from fifteen rims of the SAM.

Method Mean Best Worst

R-ELDMA 6 3 10
uting 11 (2011) 3247–3259 3255

The learning curve of the proposed R-ELDMA after 15 runs
is shown in Fig. 11(a). The learning curve represents how long
before the cart-pole balancing system fails, after which it receives
a penalty signal of −1. Therefore, each line in Fig. 11(a) repre-
sents each run in R-ELDMA. Each run indicates that the largest
fitness value in the current generation is selected before the cart-
pole balancing system fails. Thus, there are 15 lines in Fig. 11(a).
As shown in this figure, the TFC model learns, on average, to bal-
ance the pole in the 67th generation. When R-ELDMA is stopped,
the best combination of strings from the best groups in the final
generation is selected and tested on the cart-pole balancing sys-
tem.

The simulation is carried out for 15 runs. The successful results,
including the pole angles, cart positions and controller outputs, are
shown in Fig. 12. Each line in Fig. 12 represents each run with a
different initial state. The results shown in this figure are the first
1000 time steps of 100,000 control time steps. As shown in Fig. 12,
R-ELDMA successfully controls the cart-pole balancing system in
15 runs.

To show the efficiency of the proposed R-ELDMA method,
the reinforcement symbiotic evolution (R-SE) [9] and the rein-
forcement genetic algorithm (R-GA) [7] are applied to the same
problem. To compare these methods, a parameter exploration is
used. The parameter exploration was firstly proposed by De Jong
[34]. As shown in [34], a small population size is good for initial
performance, and a large population size is good for long-term
performance. Moreover, a low mutation rate is good for online per-
formance, and a high mutation rate is good for offline performance.
In [35], the best population size and mutation rate are 30 and 0.01,
respectively. Parameters affecting the methods in this study are as
follows: 1) the population size affects the final performance and the
efficiency of GAs, 2) the crossover rate deals with the frequency at
which the crossover step is applied, and 3) the mutation rate deals
with the second search step, which increases the variability of the
population.

In this experiment, five rules are set for R-SE and R-GA, and
the parameters are found using the method given in [35]. There-
fore, the population size has the range of 10–250 in increments
of 10, the crossover rate has the range of 0.25–1 in increments of
0.05, and the mutation rate has the range of 0–0.3 in exponential
increments. The results using the parameters set for R-SE and R-GA
are as follows: 1) population sizes are 170, and 70, respectively; 2)
the crossover rates are 0.55 and 0.6, respectively; 3) the mutation
rates are 0.08 and 0.02, respectively. Fig. 11(b) and (c) shows that,
on average, R-SE and R-GA methods learned to balance the pole
in the 330th and 489th generations, respectively. The proposed R-
ELDMA only compares the performance of the fitness value with the
R-SE and R-GA. It is due to the fact that the reinforcement learn-
ing signal adopted in this study indicates that a good-performing
controller is defined as a controller that does not exceed the pre-
defined boundaries. As shown in Fig. 11, the control capabilities
of R-ELDMA are better than those of [7] and [9] in the cart-pole
balancing system.

Symbiotic adaptive neuro-evolution (SANE) [24], GENITOR [36],
CQGAF [6], and R-HELA [15] have been applied to the same con-
trol problem. Their simulation results and a comparison on the
number of pole-balance trials, reflecting the number of training
episodes required, are shown in Table 9. The initial parameters
of these methods [6,15,24,36] are determined according to [35].
After trial-and-error tests, in [36], the network consists of 20 hid-
den nodes. In [24], the network consists of 23 hidden nodes. The

final average number of rules of 15 runs with [6] and [15] is 7
and 14, respectively. This paper also compares the CPU times with
those of other existing methods [7,9,6,15,24,36]. The results are
shown in Table 10. Clearly, the proposed R-ELDMA uses a shorter
CPU time than other existing models. This experiment uses a Pen-
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method [9], (c) the R-GA [7] method on the cart-pole balancing system.
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Table 10
Comparison of CPU time for various existing models in Example 1.

Method Mean (s) Best (s) Worst (s)

GENITOR [36] 143.74 83.61 387.03
SANE [24] 91.91 54.58 204.34
R-GA [7] 84.29 47.90 194.65
R-SE [9] 66.53 31.04 127.97
Fig. 11. The performance of (a) the R-ELDMA method, (b) the R-SE

ium 4 chip with a 1.5 GHz CPU, a 512 MB memory, and the visual
++ 6.0 simulation software. In short, the comparisons in Table 9
nd Table 10 show that the proposed R-ELDMA method is feasible
nd effective.

In addition, because the proposed R-ELDMA method mainly
nvolves four stages, i.e., SAM, DSS, crossover, and mutation, the
PU running time for each stage is also a concern in this example.

able 11 shows the CPU running time for each stage of the pro-
osed method. From this table, DSS spends the most time compared
ith other stages. Hence, although the proposed DSS can enhance

he learning effects, its processing time is excessively long. Thus,

able 9
omparison of time steps for various existing models.

Method Mean Best Worst

GENITOR [36] 3645 423 6584
SANE [24] 1349 119 4847
R-GA [7] 489 78 863
R-SE [9] 330 56 660
R-HELA [15] 214 32 373
CQGAF [6] 159 26 294
R-ELDMA 67 13 187

R-HELA [15] 52.37 24.19 106.87
CQGAF [6] 38.24 19.33 84.63
R-ELDMA 27.83 8.24 51.08

Table 11
The CPU running time for each stage of the proposed R-ELDMA in Example 1.

Stages Mean (s) Best (s) Worst (s)

SAM 9.26 2.85 17.21
DSS 13.18 4.05 24.25
Crossover 3.41 0.95 5.36
Mutation 2.32 0.62 4.57



C.-Y. Hsu et al. / Applied Soft Computing 11 (2011) 3247–3259 3257

A in

r
w

s
R
M
d

w
s
3
w
i
I
u
T
p
t
x
w

Fig. 12. Control results of the car-pole balancing system using the R-ELDM

educing DSS computational time will be considered in our future
ork.

Example 2: Control of a Chaotic System
To demonstrate R-ELDMA, this example uses a multidimen-

ional continuous state space. In this example, the proposed
-ELDMA is used to control the Mackey–Glass chaotic system. The
ackey–Glass chaotic system x(t) is generated from the following

elay differential equation:

dx(t)
dt

= 0.2x(t − �)
1 + x10(t − �)

− 0.1x(t) + u(t) (25)

here � > 17. In this example, x(0) = 0.7, � = 30 and �t = 1 are cho-
en. This means that the current state is influenced by the state of
0 time steps ahead. In [6], a feed-forward neural fuzzy network
as used to predict the chaotic system when there is no control

nput, and nine succeeding system states are used as input data.
n this example, as in [6], the nine succeeding system states were
sed as input to the TFC, and the reference state is set to xref = 0.9.

he control of the Mackey–Glass chaotic system using the pro-
osed R-ELDMA starts at 400 time steps. The control objective is
o ensure that after 425 time steps, the state of the TFC is within
ref ± 0.04, and after 700 time steps, the state of the TFC model is
ithin xref ± 0.02, otherwise, failure occurs. The ThreadFitnessvalue
Example 1, (a) angle of the pole; (b) position of the cart; (c) control force.

of this example is set to 25. The ThreadFitnessvalue is determined
by practical experimentation or trial-and-error simulation tests.

In this example, the mean, best, and worst of the optimal number
of rules from 15 runs of the R-ELDMA are 7, 3, and 10 respectively.
The learning curve of the proposed R-ELDMA after 15 runs is shown
in Fig. 13(a). As shown in this figure, the TFC learns, on average, to
balance the pole in the 35th generation. The results show the good
control of the trained TFC in the chaotic system.

In this example, as with the first example, R-ELDMA is also com-
pared with other methods, i.e., R-SE [9] and the R-GA [7]. In [7] and
[9], the parameter design follows the method described in the first
example. The number of rules used in the R-SE and R-GA is four. The
results of the parameters used in these methods (R-SE and R-GA)
are as follows: 1) population sizes are 170 and 60, respectively; 2)
the crossover rates are 0.55 and 0.45, respectively; and 3) the muta-
tion rates are 0.09 and 0.04, respectively. Fig. 13(b) and (c) shows
that [7] and [9] learn, on average, to control the chaotic system in
the 345th and 263rd generation, respectively. As shown in Fig. 13,

the control capabilities of the trained TFC using R-ELDMA are also
better than those of [7] and [9] in the chaotic system. Table 12 shows
the performance of R-ELDMA (time steps and CPU time) compared
with those of various existing models [7,9,6,15,24,36]. The initial
parameters for these methods [6,15,24,36] are determined accord-
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Fig. 13. The performance of (a) the R-ELDMA method, (b) the R-SE method [9], (c) the R-GA [7] method on chaotic system.

Table 12
Comparison of time steps and CPU time for various existing models.

Method Mean Mean (s) Best Best (s) Worst Worst (s)

GENITOR [36] 2701 84.77 343 43.38 5122 176.89
SANE [24] 1198 61.83 79 32.54 3821 123.47
R-GA [7] 345 54.34 64 28.72 775 108.31
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R-SE [9] 263 47.63
R-HELA [15] 192 43.57
CQGAF [6] 113 27.36
R-ELDMA 35 13.15

ng to [35]. From Table 12, the proposed R-ELDMA method performs
etter than other existing models.

. Conclusion

In this paper, reinforcement evolutionary learning using data
ining algorithm (R-ELDMA) with a TSK-type fuzzy controller

TFC) is proposed. R-ELDMA entails both structure and parameter
earning. More specifically, it can determine the suitable number of

uzzy rules and tune the parameters of the TFC model efficiently.

oreover, R-ELDMA can also determine the suitable groups for
he selection steps. The advantages of the proposed R-ELDMA are
ummarized as follows: 1) R-ELDMA uses the MGSE so that each
roup represents only one fuzzy rule; 2) our previous research
53 21.31 484 98.39
41 18.93 371 86.23
24 12.22 253 81.59

7 3.84 126 40.34

method (SAM) is applied to determine the suitable number of
rules; 3) the proposed DSS is used not only to select the suit-
able groups but also to identify unsuitable groups for the selection
steps; 4) R-ELDMA performs better and converges more quickly
than some existing genetic methods. Computer simulations have
shown that the R-ELDMA performs better than the other meth-
ods.

Although the proposed model demonstrates high performance,
it still has some limitations. More specifically, the initial parame-

ters are determined heuristically, which is not a systematic method
to determine these parameters. Therefore, future work should
identify a well-defined method to determine initial parameters.
Moreover, to enhance efficiency, there is a need to reduce the pro-
cessing time of the DSS.
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