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Abstract

Current studies on the SONOS are in the beginning for
domestic industry. Based on this understanding, we
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proposed a 3-year plan to achieve a goal for establishing
a complete study of the SONOS cell technology. First,
we start from designing new programming and erase
schemes, which will be modified from our developed
schemes for floating cellsin previous year studies. Then,
we will attempt to fabricate a high quality ONO layer of
the SONOS cell for achieving high performance and
highly reliable cells, supported by a study on the
reliability characterization technique as well as
establishing the most important leakage current models
related to the cell reliabilities.

First, we designed the cells based on the process and
device simulation tools and with cell optimizations.
Based on the designed cells with various ONO layer
thickness, first we investigate the leakage current paths
and the related physical mechanism, which results in a
scaling rule for the layer thickness. The two major cell
characteristics, endurance and data retention, can be
analyzed, based on various ONO split samples.

In this work, we proposed a new technique to separate
the three leakage current components, i.e,
direct-tunneling, thermionic, and trap-to-trap tunneling.
Based on the measured endurance and data retention
characteristics, we have been able to design a window for
an optimum cell operation. These results are essential
toward the understanding of the dominant leakages as
well as the scaling of SONOS cell.

Keywords: Nonvolatile memory, Flash memory,
SONOS flash, Data retention, Endurance, Programming,
Erase.
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Fig. 1 (a) The experimental SONOS device structure
with trap rich nitride. (b) The split conditions of
samples with different blocking oxide and tunnel
oxide thicknesses.
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Fig. 2 () The program transients of sample 2 and
sample 5 with different tunnel oxide thickness.
(b) The erase transients of sample 2 and sample 5.
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Fig. 3 The calculated charge loss versus bake time
for different tunnel oxides. Thin tunnel oxide cell
shows much larger charge loss as expected.
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Fig. 9 The relationship between A Q and the oxide
thickness. It can be used as a criterion of the data
retention to find a combination of tunnel and
blocking oxide thicknesses.
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Fig. 10 The measured GIDL currents in sample 4
for fresh and after 10° P/E cycles devices. The
increase of GIDL current is due to the generated
oxide damage.
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Fig. 11 The calculated charge loss for sample no.5
% 0° P/E at an elevated temperature 80°C.
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Fig. 12 The calculated decay rate versus block
oxide thickness in the first 3 hours for sample no. 5
and no. 6 measured at fresh and 10° P/E cycles at an
elevated temperature 80°C.



