(2/2)

NSC93-2219-E-009-014-
93 08 01 94

94

07

31

10

26

FRER TS LR MR h 2 52

ARTIMESERBPER T BT L R 2 LREL22)
Wireless OFDMA Channel Utilization Techniques Research and Full-System Integration
3 %% 1 NSC 93-2219-E-009-014
HEHL:93 282 1 pr94e7T? 31p
AL A REAFET I IRE L Rk
VEFEAR WY TR ESELE-FRY oMER SMBT
IS ERE-ME A
RAAEFETIIRE L T4

K

APFFL-FEAVEZFVE 2Pz Eo AR AP AEAE LT

220 FEF AR F S E O mZE2PFTAEZE A PPEY ALK
¢h1 ¥ 5> IEEE 802.16a &2 (3.2 % IEEE 802.16-2004 “7B~ %) » A7 & & A 4F 5
£ i 45(OFDMA) fo. 17 8 4 7 5+ 3 JURFE 2 % PFen@ fedtiirss 8 et f o 9 chiig
FRLIFLE G B AT B(DSP)E B A Rrg kS o g b gt 5 A%
FORE EA SRR WERAP AR o BRRE Y 5 AR 4
THd EPp At THANPANT S G T E A R R g TR A
47 5 1 (OFDM) s 7] @) & $eil if & 3+ $kb > 12 % $¢ TEEE 802.16a 2 A [1
(TDD) % A 47 5 £ 842 @i 2 7 78 1 Flie h Az e gl Bt
wEE -

SHE S EEER DI RAAME S INY B
L p k)

2
oy AR R s LT ek N

£t

’

Abstract

This subproject is a part of an integrated project whose whole term is three years, but
has been approved in two “installments.” Although the designated numeral reference in the
subproject title for the current year is 2/2, this is actually the second year of study in the
second installment, thus the third year in the overall term. For the whole term of the
subproject, the major work is to base on the IEEE 802.16a standard (now superseded by
IEEE 802.16-2004) and research into the transceiving technologies, as well as their software
implementation, for wireless mobile communication employing orthogonal
frequency-division multiple access (OFDMA). Concerning the software implementation of
the transceiving technologies, we primarily employ digital signal processors (DSPs) in
conjunction with personal computers. In addition, the subproject also considers some
fundamental issues concerning multicarrier modulation, blind equalization, and
code-division multiple access (CDMA). In this report, besides introducing the motivation
and purpose of the project, we also give a more in-depth discussion of the research and
achievements in the following subject areas: channel estimation technology for orthogonal
frequency-division multiplexing (OFDM) series of transmission systems, and the DSP
software implementation and integration of downlink and uplink transception systems based
on the time-division duplex (TDD) OFDMA transmission mode of the IEEE 802.16a.

Keywords: IEEE 802.16, IEEE 802.16a, Orthogonal Frequency-Division Multiple Access
(OFDMA), Orthogonal Frequency-Division Multiplexing (OFDM), Time Synchronization,
Frequency Synchronization, Channel Estimation, Digital Signal Processor (DSP) Software

Implementation, Blind Equalization, Direct-Sequence Code-Division Multiple Access
(DS-CDMA)

II

P 4% Table of Contents

o B R B T ettt n ettt ae s se e 1
Z ~OFDM 2. LB i 3 HEITFT T B B s 2
AL TIFOAUCTION ..ttt ettt et st sb et be e 2

B. A Time-Domain Approach to Channel Estimation...........c.ccccceeviviininicnicnenncnicnene 2

C. Estimation of Multipath Delays..........ccceoiriiriiiiniiiiiieeece e 3

D. SImulation RESUILS.cc.eiiiiiiiiiiiiicece et 5

E. CONCIUSION ...ttt sttt et s 6

Z %52 OFDM 7 7 533 2 E H DSP BT T2 T T e 7
A. Techniques for Downlink Channel EStImationc..cccccoveeviriiiniininiicnicnecieeeceene 7

B. DSP IMpPlementation......c..cccueeieriiniiniinieieeieesteete ettt sttt st s 7

2 ~ TDD OFDMA T {782 5 %82 DSP 7 JET BT & i 11
AL TITOAUCTION ..t sttt ettt sbe e 11

B. Downlink Synchronization Method............cccooviiiiiiiniiniiiiiieececeee e 12

1. Initial Synchronizationccccceoirieiiiiiniiniiieeee e 12

2. Normal Synchronizationcccceceevierienenienieneeicneeeete et 13

C. DSP Implementation.........cc.cecuereerieiinienieiieniteneete sttt sttt sttt 13

L. MOAUIALION ...ttt 14

2. Framing and Deframingcccccoeviiiiiiiniiiiiiiiieee e 14

3. FFTAnd IFFT ..ot e 14

4. Transmitter and Receiver Filtering...........ccoeoieiiieiiiiiiiiiiiiieeciecee e 14

5. Synchronization and Other Transceiver Functionsccccoceevveveencniicncenens 15

6. System INteGration........ccccevuiiiiriiiiiiiniie ettt 15

D CONCIUSION.....eiiiiiiiiiiiteeeee ettt sttt et e st s sbe e 17

7 ~ TDD OFDMA F 7 @4z 4k 522 DSP F IE B & e 18
AL TITOAUCTION ..ttt sttt et s nbe e 18

B. Uplink Synchronization TEChNIQUEccccecuiriiriiiiiniiicicniceccceee e 18

C. DSP Implementation.........c..cecuereeriieienienieiieeteneeee sttt sttt 19

1. Architecture of the Overall System and Profile of Implemented Software 19

2. Transmitter and Receiver Filtering...........ccoociiiiiiiiiiiiiiiieeie e, 20

3. SyNCRIONIZAtION........oiiiiiiiiiiiiieeeeeeee ettt 21

4. Other FUNCHONS ...c..oiiiiiiiiieiieieeieeetetee e 21

D CONCIUSION.....eiiiiiiiiiiiteeeee ettt sttt et e st s sbe e 21

RN S S [’% .. 23
N 3 B e B B et ettt et e e e 25
FORFER 273 2 5 T AL F e 26

III

- ‘e\;-l—gﬁg/‘

A s - HEArh LR h 2z Ee L - LB p A [EEE
802.16a &% > 7= 7 it % » #f % £ i€ (orthogonal frequency-division multiple access,
OFDMA) 7 {7 & 4R {7 $% 18 3 PRFR 2. * PFepi oo fis » 8- 5 38 4 70 Fpie* #ic 3 5 e
EMDSP)FHMEF R AFFH L FH? FF B BB FL Y 0 XK 4p b 2 DSP
PR RAEEL (e RSP S AR DR RO LR
e G RARRAE F R EGA S IR AEALTE L P AR
FoE T AEZ I3 LR 5 2/20F 5 2833 0% = & - IEEE 802.16a
tiE 3R e B E ~ IEEE 802.16-2004 > & 5 {8 #7P~ ik > & & * 3t e #(2002 #) o
BHERERUp 0 LS NRL AR EE - EREFY 2003 # |

IEEE 802.16a & % 3F & 4 B 1 (frequency-division duplexing, FDD)% 4 pF g1
(time-division duplexing, TDD)& fE 1 * ;8 o FH AR PFEEARTLART R L5 B
v HAL RS o P g TDD > &R e R (ST R)R 2 e
a7 3 o IEEE 802.16a 22 OFDMA 7 %8 4 (PHY layer) @ﬁ%},j‘i S T iEE R
B> e dk A JF f?‘gjfﬁ iren s Pz ho@] 1-1 9957 o m s >y P oo AL BIED
TR g R R W B AR 2 - L Ap B DSP F LT o
AES AP MELE G EAOE L S P LA DT FR) FR
e “v']*@f? DSP $c#8 3R> 2 4 ML - MR - 3 BM L B FMl o
<'”L ﬁ*ﬁ BI3TE o

_II‘F;L\:FU}};FE?%ii OFDMA “ ey &% o ¥ 4% - F @A AP
- Bt RJEER 512 5L B (pilot allocation) # &t A pF %3 i 2. T 3 (¥ OFDM i
FhryrZllebdy=F"° APHA-eRGEPEEFIF3204 LADSPFRY
Arig 2] 3] ¥k e R 2RI R OAPLSRALT TR P T8k e DSP

FREAFLA[T] o> Ap P22 0B EE G APy 25 HEZZE A
Prb ek o A S ALY 0 G 4[8]5 [9] -

Channel Bit- Data Digital
—= e = e =
Scrambler Coder Interleaved Framerr IDFT Tx Filter
Modulator

!

Channel
(Simulator)
De- Combined Bit-Interleaved Data Channel Digital
= scrambler Demodulator and Decoder Deframer Estimator || DFT Rx Filter
Synchron—
ization

Fig. 1-1. OFDMA & 4z % s B

= ~OFDMz L d i G- Him T o 8%
A. Introduction

Channel estimation is critical to the performance of coherent orthogonal
frequency-division multiplexing (OFDM) demodulation, especially in transmission over
time-varying wireless channels. Usually, known OFDM symbols or strategically placed
pilots in the OFDM symbols are used to help the estimation.

After an initial estimation of the channel frequency response at the pilot locations,
various methods can be used to estimate the channel response at other subcarrier locations.
Two frequency-domain based approaches are minimum mean-square error (MMSE)
estimation which employs Wiener filtering that exploits the channel correlation across
subcarriers [10] and low-order polynomial interpolation between pilots [11]. The latter
approach is simple and straightforward, but it encounters difficulty in systems employing
wide pilot spacings (so that channel response may vary in a complicated manner between
neighboring pilots). Indeed, MMSE estimation may also encounter a similar problem in this
situation, because channel correlation may decrease with increasing subcarrier spacing.
Only by exploiting the temporal correlation of channel response across successive OFDM
symbols can these approaches address the difficulty, but then this requires that the channel
be varying only slowly. Taking a different route, the time-domain approach [12] avoids the
difficulty by estimating the time-domain channel response. Since the number of multipaths
is usually much less than that of subcarriers, the number of unknown parameters is reduced.
However, an essential piece of information is the set of path delays, which is not easy to
acquire. In [13], an effective delay acquisition technique is developed, but with restriction
on how pilots are spaced.

In this work, we also take the time-domain route, in which we try to estimate the
multipath delays. The proposed method finds a set of delays which, together, minimizes the
disparity between a subspace spanned by the estimated delays and that perceived at the pilot
subcarriers. The method can handle the situations of fractional-sample-spaced multipath
delays and arbitrary pilot allocation.

In what follows, Section B describes a time-domain approach to channel estimation
assuming known multipath delays. Section C presents the proposed scheme for estimating
the multipath delays. Section D reports some simulation results which illustrates the

performance of the proposed scheme. And finally, Section E gives the conclusion.

B. A Time-Domain Approach to Channel Estimation

Consider OFDM transmission over a time-varying wireless channel. Let the OFDM

system employ size-N DFT. Let there be P pilot subcarriers. Let X(i) denote the ith datum in

' This chapter is mainly excerpted from C.-J. Wu and D. W. Lin, “Sparse channel estimation for OFDM
transmission based on representative subspace fitting,” in IEEE 61 Veh. Technol. Conf., May 2005.
2

an OFDM symbol, where i = 0,1,...,N-1. Let there be L multipaths. And assume that the
length of the cyclic prefix in the OFDM symbols is greater than the maximum possible
multipath delay Tyax.

If the coherence time of the channel is much larger than the OFDM symbol duration T,
then the channel can be considered static over an OFDM symbol. Let y be the vector of

received signal samples in one OFDM symbol after DFT, then

y=Xg+n=XWh+n

where X = diag(x(0),x(1),....Xx(N-1)), g is the vector of (sampled) channel frequency

response, N is complex additive noise (assumed white Gaussian), W is an N x L matrix with
its kth row given by 1/+/N[e”2*/T e 2*%/T1 with 7, | = 0,1,...L-1, giving the

delay of the Ith path, and h = [ho,hy,...,h;]” with h;, I = 0,1,...,L-1, giving the coefficient of
path |. Note that the columns of W are parametrized by 7, and they span an L-dimensional
subspace of the N-dimensional space. The subspace has thus been called the delay subspace
[14]. The frequency-domain channel response lies in the delay subspace.

Let S be the PxN selection matrix that selects the pilot locations of an N-vector. For

example, y =3y is the vector of received pilots and §=3Sg is the vector of channel

frequency response at the pilot subcarrier locations. Thus we have

=XWh+a=Xg+n

<

where X =SXS' and W = SW . The least-square (LS) estimations of g and h are then
given by
g _)?—12, ﬁ: (V_IHV_/)—IV_/H gA’

respectively. Note that the number of pilots should be no less than that of paths, i.e., P>L,

for a reasonable estimate via this formulation. From the above, the estimated impulse

response vector h gives a corresponding estimated channel frequency response vector as

G=Wh=WW"W)'W"X"'y. 2-1)

In the right-hand side of (2-1), the only unknowns are the elements of W , which must
be estimated. As W is defined by the path delays, we now turn to their estimation, where

we let the pilot allocation be arbitrary.

C. Estimation of Multipath Delays

The main idea of the proposed method is to construct, in an iterative manner, a subspace

3

that approximates g as closely as possible. We call the procedure representative subspace

fitting because the result is a subspace that represents g in some way.
Assume proper synchronization so that we may let 7, =0. At the ith iteration, one
additional path delay r; is selected from the (Tmax/S)foor pOssible values where s is the

chosen granularity in delay estimation. Thus we obtain L path delays after L-1 iterations.
Actually, to determine L, we may simply iterate until the approximation error is satisfactory.
To begin the procedure, construct an NxX (Tmax/S)foor matrix W, where the Ith column is a

vector of complex exponentials corresponding to the Ith in the set of (Tmax/S)foor delay

values, and let W, =SW, . Denote by W, the resulting estimate after the ith iteration

r+l1

(I <i<L-1). Since 7, =0, we initialize the procedure by letting W, be the first column

of W_. In the ith iteration, we select one column from W, and additto W, as follows:

® Project g onto the column span of W, and obtain the difference p; between g
and the projection image. The difference is orthogonal to the column span of W, .

® Find the column in W, that has the maximum inner product with p}. Add this

columnto W, toform W_,.

projection

difference

Y

.

.l

selected column
from W

1
L]
[
[
[]

Fig. 2-1. The ith iteration: project g onto the column span of W, and select one column
from W, to augment W,.

Fig. 2-1 is a conceptual illustration of the operation in the ith iteration. In each iteration i,

since the column in W, that has maximum inner product with p} is selected to be added

4

to W, to form W

i+1

..» the magnitude of p.™" is reduced and the column span of W, is

made closer to the delay subspace in a greedy fashion. Finally, W, takes the position of

W in solving for g via(2-1).

D. Simulation Results

We simulate transmission over 4-path channels with maximum possible path delay Tpax
= 25 sample times. Each path gain is a complex Gaussian random variable. We let N = 256.
Two different pilot numbers P = 12 and 24 are considered, where the pilot subcarriers are
randomly located but are spread out so that they are not overly clustered together. The
granularity S in delay search is set to 0.3. Two simple interpolation schemes, linear and
spline, are also simulated for comparison.

Let the path delays be uniformly distributed in the range [0, Tmax). The path gains are
random but have the same variance. A Monte Carlo simulation is carried out where the path
delays, the path gains, and the pilot locations vary from one OFDM symbol to another. Let
each subcarrier employ QPSK.

T T T Mean Squared (Channel) Estimation Error,
! = = proposed QPSK, random channel
| linear i i

T T T
" — p=12, proposed
\‘ - - sp_llr_1e —— p=12, spline
5L | R B —— original channel || —— p=12, linear
@ pilot locations 6L ‘111 p=24, proposed ||
“ 1 p=24, spline

-4 p=24, linear
|

o
%0

L oo e 4

000600000006000600000600000

Channel response

| | | |

50 60 70 80 9 100 110 i R IR R LR TR TR E R TR R PR P Y R AR A PR PY YR IRRRR PR O PP T IRRRRRRRRORIOON

Sub-carrier index 0 5 10 15 20 25 30
SNR (dB)

(2) (b)

Fig. 2-2. Comparison of different channel estimation methods. (a) Estimated channel

I I I I
0 10 20 30 40

frequency response (for a subset of subcarriers). (b) Mean-square estimation error at

different pilot numbers, with L = 4.

Figure 2-2(a) shows the channel frequency responses estimated using the proposed
method and the interpolation-based methods. For clarity, only a subset of the 256
subcarriers are shown. The black dots indicate the randomly chosen pilot locations in this
OFDM symbol. Note that the proposed method has resulted in an estimate that is close to
the actual channel response. Due to the wide pilot spacing, however, the two

interpolation-based methods cannot capture the dynamics of channel variation between

5

pilots, and have thus failed to obtain good channel response estimates.
Figure 2-2(b) depicts the mean-square channel estimation errors of different channel

estimation methods over all the OFDM symbols in the Monte Carlo simulation.

: ;
2, proposed —e— 2 iterations

—— P=1
. : % P=12, spline —+— 3 iterations
%gii’ 090-0¢600060006¢0694-0 P=12 linear ry —=— 4 iterations
F oMb d bbb 4 e 44| —— P=24, proposed |
+ P=24, spline
-+ P=24, linear

SER

" 2‘0 2‘5 " 0 é 1‘0 1‘5 2‘0 2‘5
SNR (dB) SNR (dB)
(a) (b)

Fig. 2-3. Average symbol error rates (SERs) at data subcarriers. (a) For different channel

I I
0 5 10

estimation methods at different pilot numbers, with L = 4. (b) For the proposed algorithm at

different numbers of iterations, with number of pilots = 24.

Figure 2-3(a) compares the symbol error rate (SER) performance of the different
channel estimation methods. The proposed scheme clearly outperforms simple interpolation
at all SNR levels. And the performance is better with more pilots, because then more data
are available and used in aligning the representative subspace with the delay subspace.

Figure 2-3(b) shows the effect of iteration count in the proposed algorithm. As can be
seen, setting the estimated number of paths to a value greater than L can be beneficial in the
presence of noise. Therefore, the number of iterations may be determined from the
performance requirement as well as computational complexity considerations. In any case,

it is upper-bounded by P, because otherwise we would have an underdetermined set of
equations for ﬁ The error floors in Fig. 2-3 at high SNR values are due to the spacing in

the multipath delays. When the multipaths are spaced apart, the error floors disappear. For

more details, see [1].

E. Conclusion

We considered the time-domain approach to sparse multipath channel estimation for
OFDM transmission and proposed a technique for the necessary multipath delay estimation.
The proposed technique can handle arbitray pilot allocation and is particularly suitable for

time-varying channels.

30

=~ 2O0FDM™ 7 3t 2 2 A DSPHM R RLF 3

A. Techniques for Downlink Channel Estimation

Wideband mobile radio channels are usually frequency selective and time-variant. To
aid channel estimation and signal reception, OFDM/OFDMA systems usually provide pilot
subcarriers. This is the case with the IEEE 802.16a and the subsequent 802.16-2004 and
802.16e. We consider strictly non-blind, pilot-aided channel estimation methods which are
simple and suitable for fixed-point digital signal processor (DSP) software implementation.
Therefore, our estimation scheme basically contains the following components: channel
estimation at pilot subcarriers, frequency-domain interpolation for channel response at
non-pilot (i.e., data) subcarriers, and time-domain filtering to deal with channel variation.

The standard specifies two kinds of pilot: fixed-location ones and variable-location ones.
There are 32 fixed-location pilots, which are unequally spaced in frequency. And there are
nominally 142 variable-location pilots, whose carrier indices are given by 3L+12Py, where
L is a kind of symbol index, cycling through the values 0, 2, 1, and 3 and taking one value
every OFDM symbol, and P, €{0,1,2,...,141} . Eight of these locations coincide with the
fixed ones, hence in actuality there are only 134 variable-location pilots.

We employ simple least-square (LS) channel estimation at the pilot subcarriers [15],
[16], which merely divides the received signal at each subcarrier by the known pilot value at
that subcarrier to obtain the corresponding channel estimate. In our case, the division can
even be avoided, because the pilot subcarriers are BPSK-modulated. After the LS channel
estimation at the pilot subcarrier locations, we perform frequency-domain interpolation and
time-domain filtering to obtain the response at non-pilot subcarrier locations as well as to
reduce the noise effect in LS channel estimation. Several methods of interpolation and
filtering are considered. They are, for frequency-domain interpolation, linear interpolation
and second-order interpolation, and for time-domain filtering, two-dimensional (2D)
interpolation and LMS adaptation. The techniques themselves and their performance as
obtained from computer simulation are discussed in considerable detail in [2] and [3]. The
simulation results show that linear interpolation in the frequency domain is about as good as
second-order interpolation, and that 2D interpolation in the time domain is better than LMS
adaptation. Hence we employ them in the DSP implementation. But in the following

discussion we will present more in-depth information regarding linear interpolation.

B. DSP Implementation

We consider fixed-point DSP software implementation, where we employ Texas
Instruments (TI)'s TMS320C6416 DSP. Its CPU contains eight parallel 32-bit function units,

* This chapter is mainly excerpted from R.-C. Chen, D. W. Lin, and C.-J. Wu, “Pilot-aided channel estimation
for IEEE 802.16 OFDMA TDD downlink transmission and its DSP software implementation,” to appear in
Proc. Workshop Consumer Electronics Signal Processing, Yunlin, Taiwan, ROC, Nov. 2005.

7

two of which are multipliers and the remaining six can do a number of arithmetic, logic, and
memory access operations. There is also flexibility in arranging the data so that each
function unit can do double 16-bit or quadruple 8-bit operations. Running at 600 MHz, the
peak performance is 4800 MIPS.

TI supports a useful software development tool set with convenient graphical user
interface (GUI), called the Code Composer Studio. It includes, among other things, a
compiler, a debugger, and a profiler that can help the programmer analyze the efficiency of
his/her code. The compiler supports several options to optimize the code either in size or in
execution speed. In our case, code size is not a concern, but speed is. Hence we use -03, the
highest level (program level) of optimization. TI's library function also includes a set of
“intrinsics,” which are C-callable functions mapped directly to assembly instructions that
are not easily expressable in C. Examples of such intrinsics are functions for parallel
loading of multiple data and parallel multiplications of multiple 16-bit data. We make use of
some such intrinsics in our implementation.

Now we turn to the fixed-point DSP implementation. This entails careful conversion of
the original program based on floating-point computation, used in simulation, to

fixed-point.

AWGN

" X(k) ¢
Generate Binary Data > (szlﬁ??lélfggmi, - Complex_Mul @
64QAM) XRHE
dafter_dea'sion (k) De-Modulation | (k Complex_Div H(F\') HP (k) Pilot. Loccati I (k)
<—— (QPSK, 16-QAM, |a—— Y (k) - Linear_Tnterp [« Ry
) 64QAM) - il
Output Binary Data H(k) r

Fig. 3-1. Structure of the implemented channel estimation system.

Figure 3-1 shows the structure of the implemented system. As far as channel estimation
is concerned, the key function is Linear_Interp which does linear interpolation; other
components only play a supporting role which are not the focus of this work (but are
considered in greater depth in related studies such as [5]). The block Modulation (QPSK,
16-QAM, 64-QAM) maps binary data to the constellation points, Complex_Mul does
complex multiplications to simulate the channel filtering effect, Pilot Location is the LS
estimator which divides the received signal Y(f) at pilot locations by p = 4/3 or -4/3,
Complex_Div is an equalizer which divides the received data signal by the estimated
channel response, and De_Modulation maps the equalized signal into the constellation

points as well as back into binary data. In a practical implementation, the functions Pilot

Location, Complex_Div, and De_Modulation should be re-designed for efficiency, e.g., by
avoiding use of divisions and integrating with the subsequent error-control decoder. But in
the present work they are left as is.

Table 3-1 lists the code sizes and the execution speed of Linear_Interp and some other
function blocks in our final fixed-point implementation employing 16-bit computation,
where “load” refers to the number of DSPs needed for real-time execution of the given
function. Simulation shows that the 16-bit implementation performs similarly to the original
floating-point program in noise performance. Enhancement of the implementation is being
worked on. Reference [5] contains discussion on optimization of the modulation function.

It is of interest to see how efficient the software is relative to the DSP’s computing
power and how the efficiency improves from using floating-point computation to using
fixed-point computation. For fixed-point computation, the DSP can perform 6 32-bit
additions and 2 32-bit multiplications per cycle, and 12 16-bit additions and 4 16-bit
multiplications per cycle. For division, from measurement we see that it takes 22 and 21
cycles, respectively, in 32-bit and 16-bit fixed-point arithmetic. Now for Complex_Mul,
each sample costs 4 real multiplications and 2 real additions, and for Complex_Div, each
sample costs 6 real multiplications, 3 additions, and 2 divisions. Since a downlink OFDMA
symbol contains 1702 used subcarriers (including pilots and data), the minimum cycle
counts needed per symbol for Complex_Mul are roughly max{2/6,4/2} x 1702 = 3404 and
max{2/12,4/4} x 1702 = 1702, respectively, with 32-bit and 16-bit fixed-point computation.
That needed for Complex_Div are roughly (max{3/6,6/2}+2x22/2)x1702 = 42550 and
(max {3/12,6/4}+2x21/2)x 1702 = 38295, respectively, with 32-bit and 16-bit computation.

Table 3-1. Profile of Implemented Function Blocks Using 16-Bit Fixed-Point Computation

Function Code Size (Bytes) | Load (# DSPs)
Complex Mul 272 0.02
Linear Interp 332 0.55
Complex_Div 428 1.15

De Modulation 1068 1.05

Table 3-2. Comparison of Minimum Cycles and Actual Cycles Consumed per OFDMA

Symbol Under Different Data Types for Various Functions

Function | Type Actual | Minimum | Efficiency
float | 899,231 3,404 0.38%
A 32-bit | 15,338 3,404 22.19%
16-bit | 3,421 1,702 49.75%
float | 1,900,051 | 42,550 2.24%
B 32-bit | 688,850 42,550 6.18%
16-bit | 162,960 38,295 23.50%
float | 467,233 12,852 2.75%
C 32-bit | 441,423 26,082 5.91%
16-bit | 67,705 24,381 36.01%

A: Complex_Mul, B: Complex_Div, C: Linear_Interp

Table 3-2 lists the efficiency figures, where for the floating-point implementation we
have used the same minimum cycle counts as 32-bit fixed-point computation to gauge the
efficiency, and the efficiency is defined as the ratio of minimum cycles needed to actual
cycles consumed. We see that the efficiency is improved significantly from using
floating-point computation to 32-bit and to 16-bit fixed-point computation.

Now consider Linear_Interp, wherein we use 567x 8 additions, 567 x4 multiplications,
and 567x4 divisions per OFDMA symbol. Therefore, the minimum cycles are 26082 with
32-bit fixed-point computation and 24381 for 16-bit fixed-point computation. The
efficiency is also listed in Table 3-2. The minimum cycles for floating-point computation
are calculated on a different base, whose details are omitted here.

The implemented channel estimator can achieve real-time execution speed for the
considered transmission bandwidth of 10 MHz. Improvement of the execution speed is
possible, for example, by replacing the divisions with equivalent operations, and such work
is part of the studies which are currently in progress. Indeed, part of the inefficiency in the
final code is due to checks to prevent division by zero. This kind of conditional statements
hamper the compiler’s ability in software pipelining. An enhanced version of the overall

transceiver is currently being worked on.

10

= ~ TDD OFDMA ™ {7 @ fc % 5.2 DSP® g g &3

A. Introduction

Figures 4-1 depicts the downlink (DL) transmitter and receiver structures. Not all blocks
are treated to equal depth in this study. Some system parameters used in our study are listed
in Table 4-1. We refer to the IEEE 802.16a and 802.16-2004 standards for detailed
explanation of the parameters. Suffice it to say that the center frequency and the signal
bandwidth are chosen arbitrarily but typical of some foreseeable applications.

parameters: No_OFDM_symbol/ No_subchannel/
OFDM_symbol_offset/ Subchannel_offset

DL_MAP,UL_MAP +
pilot (preamble) —»@
burst 1 data burst 1 Ffaming &' S/P | add v1rFual carriers [5
— FEC data carrier allocation 1702| | 5| (paddingzeros) | | _
modulation
burst n data burst n

not addressed in the
present study

‘ interpolator
T e Do 1+ e e w
2048 add prefix * 4 (SRRC filter) filter RF channel
(AWGN)
(fadding channel)
(a)
Fractional Integer
not addressed in frequency frequency
the present study SYNC Sync
S N R S B gy IR FeT |
RF filter (SRRC filter) sync removal 2048 sync
DL_frame_prefix
DL_MAP
- }
/ Channel ~ |—»| P/S Data Data FEC » Data
estimation | | | 1702 deframing | " |demodulation| | decoder De-scrambler d

Fig. 4-1. (a) DL transmitter structure. (b) DL receiver structure. (From [17].)

Table 4-1. System Parameters Used in This Study

Number of carriers (N) 2048
Center frequency 6 GHz
Signal bandwidth (BW) 10 MHz
Carrier spacing (Af) 5.58 kHz
Sampling frequency (f;) 11.43 MHz
OFDM symbol time (Ts) | 201.6 ps (2304 samples)
Cyclic prefix time (Tg) | 22.4 us (256 samples)

3 This chapter is mainly excerpted from Y.-S. Chen, D. W. Lin, and C.-J. Wu, “DSP Software Implementation
and Integration of IEEE 802.16 TDD-OFDMA-mode downlink transceiver functions,” to appear in Proc. Int.

11

We have employed four-times oversampled square-root raised cosine (SRRC)
transmitter and receiver filters, where the four-times oversampling is for convenience in
simulating non-integer spaced multipath propagation. Both filters have the same length of
57 taps and the rolloff factor is set to 0.155 to satisfy the power mask specification [17].

In what follows, since synchronization is the most complicated function in this work,
Section B introduces the downlink synchronization method. Section B discusses the DSP

implementation. And Section D contains the conclusion.

B. Downlink Synchronization Method

In OFDM(A) transmission, several quantities need to be synchronized: the carrier
frequency, the sampling clock, the (OFDM) symbol timing, and the (multi-symbol) frame
timing. In this work, we omit the consideration of sampling clock synchronization for
simplicity, which is equivalent to assuming that it is sufficiently accurate.

DL synchronization can be divided into two modes: the initial mode (or acquisition
mode) for the initial establishment of a connection, and the normal mode (or tracking mode)
for maintaining the synchronization. The reason for having a normal mode separate from
the initial mode is to reduce the computational complexity in normal operation. Three kinds
of quantity exist in the IEEE 802.16 specifications that can be used for synchronization: the
guard interval (i.e., cyclic prefix), the pilot carriers (including the preamble), and the guard
bands. We base our implementation on a modification of the methods in [17] and [18].
These methods have been designed with simplicity in mind. Not all the information

available in the signal structure is exploited. However, reasonable performance is achieved.
1. [Initial Synchronization

Our initial synchronization method consists of four stages, for symbol timing, fractional
carrier frequency, integer carrier frequency, and frame timing, respectively.

In symbol synchronization (stage I), we do simple cyclic prefix (CP) correlation as

A

0 = arg max |T(O) |

where

6+L-1

re)= ror’'(k +N),

k=6
with r(k) being the signal samples and L the CP length in number of samples. Since I'(6) has
to be calculated for a series of values of €, a way to further reduce the complexity is to
employ the recursion

F@+1) =@ -rkr k+N)+r(@+L)yr (@+L+N).
The symbol timing obtained from (\ref{eq:max theta}) is refined in stage IV along with

frame synchronization using pilot correlation.

Symp. Commun., Kaohsiung, Taiwan, ROC, Nov. 2005.
12

In stage II, the fractional frequency offset &, normalized to the carrier spacing used in
the OFDM(A) transmission, is estimated using

é=-/T(0)/2r).

That the frequency offset can be estimated in the above fashion is because a frequency
offset ¢ results in an exponential modulation in the time domain by exp(j27zek/N). From
this, we also see that integer values of ¢ cannot be estimated this way, because they yield
phase offsets of integer multiples of 2.

The integer frequency synchronization (stage III) is performed after fast Fourier
transform (FFT). It is done by checking the power levels of the carriers in the guard bands
and that of the two fixed pilot carriers at the edges of the used carriers. If the guard band
carriers do not have low power or the two edge pilot carriers do not have high power, then
we declare existence of integer frequency offset and attempt to correct it.

To determine the frame start time (stage 1V), we correlate the received symbols (after
FFT) with the pilots. In IEEE 802.16a, the DL symbols contain fixed-location pilots and
varible-location pilots whose locations change from symbol to symbol. There are a total of
7 possible pilot structures. In our algorithm, a frame is determined to start if three
successive DL symbols all have the maximum correlation with the preamble symbols' pilot
structures (as compared to the other pilot structures).

After establishing the initial synchronization, we turn to normal operation. However, if 6
unexpected pilot patterns are encountered in a DL subframe, then we declare
synchronization failure and revert to initial frame synchronization.

The performance of the correlation-based frame synchronization depends on the
accuracy of symbol synchronization. Since the result of stage I may be subject to error, we
refine the symbol timing estimate in the current stage by checking an additional range of
+32 sample locations centered at the location found in stage I. To reduce the
computational complexity, the conventional FFT is only applied at location -32. At
subsequent sample locations, the DFT may be computed recursively as

Xy (M) =X, (M) —r(k=N)+r(k)lexp(j2m/N)

where K is the location number and n is the carrier index.
2. Normal Synchronization

After initial synchronization, the subscriber station (SS) can obtain the frame duration
from the DL signal and predict the next frame start time. Hence we only need to track minor
timing and frequency variations. Methods used in stages I and II of initial synchronization
can be used for this purpose. For added robustness, the pilot correlation of stage IV can also
be used to determine the symbol timing more accurately. For this we use a reduced search

window of +16 samples, instead of the +32 of initial synchronization.

C. DSP Implementation
13

We consider DSP software implementation of some key DL transceiver functions. The
DSP employed is Texas Instruments (T1)'s TMS320C6416. It runs at 600 MHz and its CPU
contains eight parallel 32-bit function units, of which six can do a variety of arithmetic,
logical, or memory access operations and two can do multiplications. Besides 32-bit
operations, they can also do dual 16-bit or quad 8-bit operations.

Since 32-bit operations are usually an overkill but 8-bit ones do not have sufficient
accuracy for some functions, we decide to employ largely 16-bit operations, all fixed-point.
Besides the choice of data formats, the techniques used for program efficiency include
software pipelining, loop unrolling, loop partition, and good coding styles (proper program
structure to reduce unnecessary operations). TI's Code Composer Studio provides a
convenient development environment for code analysis and improvement.

Below we first discuss the implementation of individual transceiver functions and then
discuss their integration. The code sizes and cycle counts of various functions are
summarized in Table 4-2, where “load (# DSPs)” gives the fraction of a single DSP’s

computing power needed in real-time execution.
1. Modulation

There are three modulation options: QPSK, 16QAM, and 64QAM. We separate them
into three functions and each of them is written in a way facilitating efficiency in the

compiled code.
2. Framing and Deframing

The framing function places null values, pilots, and modulated data in their assigned
carrier locations. The presence of variable-location pilots requires some attention in style of
coding. An unsophisticated coding style employing many conditional branches can be
detrimental to the execution speed. We use table-lookups to implement the framing and the

deframing functions.
3. FFTand IFFT

The 16-bit FFT function that we use is taken from TI’s DSPLIB [19]. Since no 16-bit
inverse FFT (IFFT) is provided, we build our IFFT function based on the FFT function.
Hence the IFFT is somewhat less efficient than the FFT in code size and execution speed.

It is of interest to see how efficient the FFT function is in terms of CPU usage. A little
analysis reveals that the mixed-radix algorithm employed requires 19974 real
multiplications and 68102 real additions for 2048-point FFT. Since the DSP can do up to 4
16-bit real multiplications and 12 real additions per cycle, the minimum cycles needed,
excluding data moves, are given by max{19974/4,68102/12} = 5676. From this point of
view, the efficiency of the FFT function is approximately 33.3%.

4. Transmitter and Receiver Filtering

14

Some discussion on good coding style for the transmitter SRRC filter is given in [7].
One particular technique employed to facilitate efficiency is the use of some “intrinsic
functions” provided by TI for moving of multi-byte data between memory and CPU, where
“intrinsic functions” are C-callable functions which are mapped to simple assembly
instructions that are not easy to express in regular C instructions efficiently. Two of the

3

functions are “ amemd8” and “ amemd8 const” which do aligned loads and stores of 8
bytes in single instruction.
Note in Table 4-2 that the relative inefficiency of the receiver filter is worse than the

transmitter filter. This is one function where further work on of efficiency is envisioned.
5. Synchronization and Other Transceiver Functions

The synchronization function is implemented based on an earlier work [18] which
already makes use of intrinsics, circular buffering, loop unrolling, and other techniques for
execution efficiency. By modifying the setting of the compiler, we find that some gains in
speed can be achieved. Since initial synchronization is a one-time function, we only show
the code size and cycle counts for normal synchronization in Table 4-2. Further work on
improving the synchronization function’s execution efficiency is envisioned.

Other important transceiver functions in the physical layer are channel estimation and
error-control encoding and decoding-demodulation. Work on them is reported in the last
chapter and in [3], [20], [21].

Table 4-2. Profile of DL Transmitter and Receiver Functions

Function Code Size Cycle Counts Load
(Bytes) | Per Symbol | Per Sample | (# DSPs)

Modulation 544 8310 5.41 0.10

T Framing 3032 25676 15.08 0.28
X IFFT 1420 24360 11.89 0.22
Tx filter 3728 72166 31.32 0.59

Rx Filter* 348 288000 125 2.38

R | Normal sync* 820 1071360 465 8.86
X FFT 412 17046 8.32 0.15
Deframing 2236 7373 4.33 0.08

*Functions not yet well optimized.
6. System Integration

We integrate the transmitter and receiver functions into a system as illustrated in Fig.
4-2(a), where the channel simulator on the PC can simulate multipath propagation, AWGN,
and carrier frequency offset. A not yet fully optimized channel estimator employing “2-D
interpolation” [3] and a simple unoptimized demodulation function are also integrated into
the system to facilitate demonstration of system functions. A graphical user interface (GUI)
is developed to facilitate control of execution and dynamic display of results, as shown in
Fig. 4-2(b).

15

Host PC Target DSP

1
1
1
1
1
1
i
| -,
1 7 Y
! Tx
| i
| Buffer
1
| One OFDMA frame data
| (16 symbols & TTG RTG)
1
1

T 1

o I 16 blocks
/ o« — — - — — — —

£/
{ Channel |
‘ Sl]]llllﬁtOI' One block per transmission

.

e S

"Lﬁﬁﬂcﬁioloisﬂ@ﬂmzﬂiﬂﬂ e

PR

1

1
\ |
o, N j
[N\ i
| ! Graphical ‘] !
|\ interface | |
\ / |
| a
| |
\ |

: Trmusdar
15
Touses O
0 Blocks Sent U kbps
0l 02 03 04 05 06 07 0F 089*2 F3 01 02 03 04 05 06 07 0F 08+ =
Wl svetol time -0 = [fosqmency otfset - =
=
X ¥ =] X ¥
=
L =
§|
b
g jal
O}, 02 03 04 U5 UF UF 0F * w12 e x
Wm0 v Il el mgesee v
= X ¥ X ¥ -~
) 00000 0E7ES
=] 100 El
20000 05057
j T
o 40000 08352
= N\ SO0 DB
60000 05651
= o s
20000 05554
pal 9000 Lo
<] 100000 1
11000 1M
120000 1 0555
130000 100G
140000 18% &
< »
I~ Multipth channs] ™ AWON chanmel [aded Frquencyalfmt [sdded fading o mnltipath channe]

(b)
Fig. 4-2. (a) Integration of software DL transmitter and receiver. (b) GUI.

16

D. Conclusion

We presented a study on DSP software implementation of the physical-layer downlink
transmitter and receiver functions under the TDD OFDMA mode of the IEEE 802.16
standards. Taken together, the not yet fully optimized code required the computing power of
multiple DSPs to perform all the transmitter and receiver functions. We integrated the
functions and attached a GUI for convenience in execution control and dynamic display of
results. The system integration gave rise to additional execution overhead. Further

improvement of the software efficiency is planned.

17

I ~ TDD OFDMA } 7 @ jc % %2 DSP§ B2z jr & 4

A. Introduction

Figure 5-1 shows the structures of the uplink (UL) transmitter and receiver. Concerning
the channel estimator, for simplicity, in the present DSP implementation we merely fake the
existence of a channel estimator by assuming perfect knowledge of the channel response at
the receiver. A space is reserved in the program structure for expanding it into a full-fledged

channel estimator. Some system parameters used in our study have been listed in Table 4-1.

preamble » Modulation > >
Data S/p Add virtual >
s carriers >
framing 1696 Gukding seic |
Burst data ;
—»{ Scrambler FEC Interleaver Modulation >
—»| T |
2 ™ prs I |
= IFFT > Add CP 44 LPF (SRRC filter) Channel
2048 | |
— 1 I
—»] | e i i e i,y
Interpolator
(a)
LPF uplink cp se [/
(SRRC filter) | | S synchronization | | remeval | 7| 2048 : L
Channel P/S i FEC
74. Estimation || = -+ data deframing |- decoder || de-scrambler |——»

(b)

Fig. 5-1. (a) UL transmitter structure. (b) UL receiver structure.

In what follows, we briefly describe the uplink synchronization technique in Section B.
Section C describes the DSP implementation, which employs the same platform as

described in the last chapter. And Section D is a conclusion.

B. Uplink Synchronization Technique

In IEEE 802.16a, each TDD frame consists of a downlink (DL) subframe and a UL
subframe. The first symbol in the UL subframe is an all-pilot preamble where the subscriber
station (SS) should send on all its allocated subcarriers. The number of UL symbols
following the preamble must be an integer multiple of 3.

For synchronization, we assume that after a successful initial synchronization and

ranging, the UL transmission from an SS has the low frequency offset specified in the

* This chapter is mainly excerpted from C.-C. Tung, D. W. Lin, and C.-J. Wu, “Software implementation and
integration of IEEE 802.16 OFDMA-TDD-mode uplink transceiver functions on digital signal processor,” to
appear in Proc. Workshop Consumer Electronics Signal Processing, Yunlin, Taiwan, ROC, Nov. 2005.

18

standard. Hence no frequency synchronization is done in normal UL transmission.
Acknowledgeably, while this assumption appears appropriate for fixed base station (BS)
and SS, it is certainly debatable for mobile communication. Hence future enhancement of
the implementation will add UL frequency synchronization. But for simplicity we leave it
out in the present implementation.

Since, according to the standard, the UL transmissions from different users may be
offset by up to 50% of the minimum CP length, symbol timing synchronization is needed in
the UL direction. Since the first symbol in an UL subframe consists of the all-pilot
preambles transmitted by all users and the BS knows what each user transmits, for each user
the BS can generate the same signal as this user's associated preamble and correlate the
generated signal with the received signal over a range of successive sample positions to
determine the peak location and take it as the symbol timing for this user. Figure 5-2
illustrates how this method works. We have over-designed the system to examine more than
50% of the minimum CP length for symbol timing synchronization. From all the peak
locations (each corresponding to a particular user), we also find the earliest one, as this time
is an important parameter for good signal reception [17]. (The proposed UL synchronization

method has reduced complexity compared to the earlier proposal in [17].)

reference for S5 1

r1(0), ..., r1(2047)

sum of 2048 peak

. —= start time of S5 1
samples detector

]

k), ..., r(k+2047) —

sum of 2048 peak

samples detector [starttime of S5 k

reference for S8 k

tk(0) , ..., Tk(2047)
Fig. 5-2. UL synchronization method.

C. DSP Implementation

1. Architecture of the Overall System and Profile of Implemented Software

Figure 5-3 shows the overall structure of the implemented UL transmission system.
There is one receiver (at the BS). For illustration purpose, we show two transmitters (at two
SSs). The channel simulation is done in the host PC. We also develop a graphical user
interface (GUI) on the PC for convenience in execution control and display of results.

For efficiency, we employ 16-bit fixed-point computations, which is accurate enough.
Care is taken to properly position the binary point in each transceiver function to curtail
overflow probability and obtain desirable performance. Table 5-1 gives the profile of the
implemented transmitter and receiver functions. As in the last chapter, “load (# DSPs)”

gives the fraction of real-time DSP computing power consumed in each function.

19

Transmitters: 2 55s

Channel simulator

Coding, = =
Userl) Interleaving, —» Framing —»{ IFFT |—» 44 —> L‘T“-pd.“,.FI"H * Tr : Delny
. . (SRRC Filter) of User 2
Symbaol Mapping
k.
Channel Gain
of User 1
Coding, . pihe = e
User 2—)- Interleaving, [— Framing ——»{ IFFT |—» 44— Lu_n-pas:cuhllcr - Iy . Delay
2 = (SRRC Filter) of User 2
Symbol Mapping
Channel Gain
of User 2 _“é
Receiver: BS
Decoding,
User 1| K Dor—}inlnl';‘lea\'ing..
Symbol Demapping || . ¥
De-framing FFT |« Synchronization (¢ ¥4 fe— ["{“'Pa,“,_l:lltﬂ /—\‘
e (SRRC Filter) \J
A

User ll

Decoding,
De-interleaving,
Symbol Demapping

=

Channel
Equalizer

Fig. 5-3. Overall structure of implemented system.

.

AWG!

Table 5-1. Profile of UL Transmitter and Receiver Functions

Function Code Size | Avg. Cycles Load
(Bytes) | per Sample | (# DSPs)

QPSK mod. 780 2.6 0.045

16QAM mod. 364 2.84 0.054

T | 64QAM mod. 280 2.88 0.055

X Framing 1812 11.04 0.21

IFFT 1180 11.79 0.22

Tx SRRC 2576 31.34 0.60

Rx SRRC 400 242 4.61

R | Deframing 784 10.85 0.21
X Sync. 1020 Variable Variable

FFT 412 7.40 0.14

2. Transmitter and Receiver Filtering

We implement the transmitter filter in the well-known polyphase form as shown in Fig.
5-4, where L = 4. Since we do block-based processing, which essentially filters each OFDM

symbol separately, special care is taken in filtering of the boundary samples to avoid use of

many if-else instructions so as to achieve execution efficiency.

It is of interest to compare our implementation with straightforward application of the
FIR filtering function DSP_fir gen() in TI's DSPLIB. It turns out that our implementation
requires only 72209 clock cycles per OFDM symbol whereas using the library function

requires roughly twice, 146372 cycles.

20

> E,(2) = AL —’J = y[n]

/\2_1

> E(2) P *L ’\]/

-1

x[n] o =
Exe) [AL ™

: . fﬂ

~| Ey@) = br 9

Fig. 5-4. SRRC transmitter filter in polyphase decomposition form [17].

To see the efficiency in CPU utilization of our implementation, since there are 2304
complex-valued samples to an OFDM symbol and 57 real-valued taps in the filter, the
number of real multiplications for each symbol is given by (approximately) 2304x57x2 =
262656 and the number of real additions by (approximately) 2304x53x2 = 244224, The
DSP can do four 16x16 multiplications and six 32x32 additions per cycle. Hence the
minimum number of cycles needed is approximately max(262656/4,244224/6) = 65664.
Thus our 72209 cycles yields a 91% efficiency.

The receiver filter is not yet well optimized, as can be seen from Table 5-1. It is one

subject of future work to enhance the receiver filter’s efficiency.
3. Synchronization

For efficiency in implementation of the synchronization function, we use intrinsics to let
the DSP load data in 64-bit units. Our aim is to let the DSP access eight 16-bit values every
clock cycle so as to be able to do four 16x 16 multiplies every clock cycle. An analysis of
the number of arithmetic operations needed (in a similar spirit as the calculations shown in
the last subsection) results in a minimum requirement of 1679360 cycles per user per frame.
The implementation gives 1955700 cycles. Hence the efficiency is approximately 86%.

This amount of complexity is approximately 37251 times the DSP cycles available in a
sample according to the system parameters given in Table 4-1. How exacting it is to a
real-time implementation depends on how long a TDD frame is, since the latter is a design
variable. In any case, it is desirable to improve the computational algorithm to reduce the

complexity, and this is one subject for potential future work.
4. Other Functions

Some details of modulation, framing and deframing, and FFT and IFFT have been
discussed in the last chapter. For FEC, as mentioned, we use the encoder and decoder of

[20], whose functionality is being further improved.
D. Conclusion

We considered DSP software implementation and integration of key uplink transceiver

21

functions under the OFDMA TDD mode of transmission of the IEEE 802.16 standards. For
efficiency and practicality, the functions were implemented using fixed-point computation.
Some of the functions achieved relatively high efficiency in CPU utilization. A GUI on the
PC was also developed for convenience in execution control and display of results. At
present, the not yet fully optimized code requires the computing power of some number of
DSP chips to perform all the transmitter and receiver functions.

Several areas of the implementation that need improvement have been identified and are

either being worked on or considered as potential future work.

22

A S g‘«;‘;é)’;k

[1] C.-J. Wu and D. W. Lin, “Sparse channel estimation for OFDM transmission based on
representative subspace fitting,” in IEEE 61% Veh. Technol. Conf., May 2005.

[2] R.-C. Chen, D. W. Lin, and C.-J. Wu, “Pilot-aided channel estimation for IEEE 802.16
OFDMA TDD downlink transmission and its DSP software implementation,” to appear
in Proc. Workshop Consumer Electronics Signal Processing, Yunlin, Taiwan, ROC,
Nov. 2005.

[3] R.-C. Chen, “IEEE 802.16a TDD OFDMA downlink pilot-symbol-aided channel
estimation: techniques and DSP software implementation,” M.S. thesis, Dept.
Electronics Engineering, National Chiao Tung University, June 2005.

[4] Y.-S. Chen, D. W. Lin, and C.-J. Wu, “DSP Software Implementation and Integration of IEEE
802.16 TDD-OFDMA-mode downlink transceiver functions,” to appear in Proc. Int.
Symp. Commun., Kaohsiung, Taiwan, ROC, Nov. 2005.

[5] Y.-S. Chen, “DSP software implementation and integration of IEEE 802.16a TDD
OFDMA downlink transceiver system,” M.S. thesis, Dept. Electronics Engineering,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2005.

[6] C.-C. Tung, D. W. Lin, and C.-J. Wu, “Software implementation and integration of
IEEE 802.16 OFDMA-TDD-mode uplink transceiver functions on digital signal
processor,” to appear in Proc. Workshop Consumer Electronics Signal Processing,
Yunlin, Taiwan, ROC, Nov. 2005.

[7] C.-C. Tung, “IEEE 802.16a OFDMA TDD uplink transceiver system integration and
optimization on DSP platform,” M.S. thesis, Dept. Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2005.

[8] K.-C. Hung and D. W. Lin, “A hybrid variable step-size adaptive blind equalization
algorithm for QAM signals,” to appear in Conf. Rec., IEEE Global Telecommun. Conf.,
Nov. 2005.

[9] Y.-N. Lin, “Analysis and design of direct-sequence code-division multiple access for
wireless communications,” Ph.D. dissertation, Dept. Electronics Engineering, National
Chiao Tung University, Hsinchu, Taiwan, ROC, July 2005.

[10] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P. O. Borjesson, “OFDM
channel estimation by singular value decomposition,” in IEEE 46th Veh. Technol. Conf.,
Apr. 1996, pp. 923--927.

[11] S. G Kang, Y. M. Ha, and E. K. Joo, “"A comparative investigation on channel
estimation algorithms for OFDM in mobile communications,” I|EEE Trans.
Broadcasting, vol. 49, no. 2, pp. 142--149, June 2003.

[12] H. Minn and V. K. Bhargava, “An investigation into time-domain approach for OFDM
channel estimation,” IEEE Trans. Broadcasting, vol. 46, no. 4, pp. 240-248, Dec. 2000.

[13] B. Yang, K. B. Letaief, R. S. Cheng and Z. Cao, “Channel estimation for OFDM

23

transmission in multipath fading channels based on parametric channel modeling,”
IEEE Trans. Commun., vol. 49, no. 3, pp. 467-478, Mar. 2001.

[14] O. Simeone, Y. Bar-Ness, and U. Spagnolini, “Pilot-based channel estimation for
OFDM systems by tracking the delay-subspace,” IEEE Trans. Wireless Commun., vol.
3,no. 1, pp. 315-324, Jan. 2004.

[15] L.-I. Chen, “Study and techniques of IEEE 802.16a TDD OFDMA downlink channel

2

estimation,” M.S. thesis, Dept. Electronics Engineering, National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., June 2004.

[16] M.-H. Hsieh, “Synchronization and channel estimation techniques for OFDM
systems,” Ph.D. dissertation, Dept. Electronics Engineering, National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., May 1998.

[17] M.-T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a TDD
OFDMA: transmission filtering and synchronization,” M.S. thesis, Dept. Electronics
Engineering, National Chiao Tung University, June 2003.

[18] T.-S. Chiang, “Study and DSP implementation of IEEE 802.16a TDD OFDM downlink
synchronization,” M.S. thesis, Degree Program of Electrical Engineering and
Computer Science, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., July
2004.

[19] Texas Instruments, TMS320C64x DSP Library Programmer's Reference. Lit. no.
SPRU565B, Oct. 2003.

[20] Y.-T. Lee, “DSP implementation and optimization of the forward error correction
scheme in IEEE 802.16a standard,” M.S. thesis, Dept. Electronics Engineering,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2004.

[21] C.-Y. Chen, “DSP implementation of AMR speech coding and the Reed-Solomon
decoder in IEEE 802.16a standard,” M.S. thesis, Dept. Electronics Engineering,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2005.

24

S v AEp

\

g?_

-

i ;_Eé?}%:
s}uj@ﬁﬂ ;

FEAPARR G

-

WU

DSP@’E&QIE,L;’E’E@ ~ ;%’TTE? 2 1iF 7 P p &
iE RS

S
=

4L
i E

BEPFAi g o E 2 a8 A% S0
—TT;TE‘ g l"““#?'l,{ﬁr TDD OFDMA T {7 % + {7 i@z & 5ot iy
A RTEY ArER R Eh - =L

L T I
s
1.

i
|7
7

ER

?%‘ :; ﬁ]‘%géi‘pmv °

2T ek o 2 g
1 FAL)
RIS TR L o4 D
2.

=
hoo B AEY ’f?(T;Tﬁﬁ”OFDM % 7 @%J" pES
:Eflﬁ IE.,"’E’%{A y o zg@;}lj\ ggi‘;}-q_i . f’l”j_,.’*}% OJ%TE% l 1§
"41}
4

‘3‘"";?’]___14]——]]]%0

EE* BED R o &Y
FE A

TRFBHEAT o OFDMA @4z % st

Z A e Rt
w %2 DSP #i
¢ _?IEIL‘/‘?L;‘Z‘E‘JJab
piEFH MY ¥V His BB E
AR ER ST o3 X kT A T
Bal PHEE -2 7 EE R - Eens %o T A4 BT 23T 2k
B 4F o

25

i * ** OFDM

=

~

CEL A R N o

L] 7 ¢ 5% W 7B R ¥ -94# 77 3P
PEIHARIIA IR R Y PSTL R 2 L RES
(2/2)
R g3 SLd A A R4
24 Y%L D NSC 93-2219-E-009-014 B M4k @ 7 S R 7313
B/ 4] 1% &AL (OFDMA i jc % o i* 2. DSP 34§

%}ﬁﬂ? X /ﬁl]ﬁ‘;&

m&ﬂ~§§ﬂ‘ﬁ%%

© 2+ IEEE 802.16a TDD OFDMA L4 2 @ fc B3 i & (% 2.
DSP é@i 89 I > 7 modulation ~ framing and deframing -~ FFT and
IFFT ~ transmitter and receiver filtering ~ synchronization ~ % & - H
? DSP i Texas Instruments 2. TMS320C6416 > @ FFT % IFFT %
25 3% Texas Instruments 2. DSPLIB #74¢ &2 — & e o

HE M
AT # <% @ DSP software implementation of transceiver components rooted
on the IEEE 802.16a TDD OFDMA specifications. The transceiver
functions implemented include modulation, framing and deframing,
FFT and IFFT, transmitter and receiver filtering, synchronization, etc.
The DSP used is Texas Instruments’ TMS320C6416, and the FFT and
the IFFT functions have been implemented employing a function in the
DSPLIB provided by Texas Instruments.
GETE A% £ P g H o
x
FRELAL
¢ * DSP #ic#8 > 7 L2 88 OFDMA @t B2 7 it i o
F B
TR AR MK A 2R o
B ZE® hif &

. #BFAE % FE G-
FE AR R E
MO2AAPELIEFFNAYZ

EHAE - i

$H

> -

e EE S 4R 2
(4t s e) o
FL 4l r BT Y R Iz A

® o

EpF

DR T N A & 1 ’;%“El f’rﬁ,EF’fé’# °

26

