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a b s t r a c t

We study linear distributed estimation with coherent multiple access channel model

and MMSE fusion rule. The flat fading channels are assumed unknown at the fusion

center and need to be estimated. We adopt a two-phase approach, which first estimates

channels and then estimates the source signal, to minimize the MSE of the estimated

signal. We study optimal power allocation under a total network power constraint. We

consider the optimal power allocation scheme in which training power and data power

for each sensor are optimized, and the equal power allocation scheme in which training

power is optimized while data power for each sensor is set equal. In both schemes, the

problem is formulated as a constrained optimization problem and analytical closed-

form solution is obtained. Analytic results reveal that (i) with estimated channels, the

MSE approaches to a finite nonzero value as the number of sensors increases; (ii) the

optimal training powers are the same in both schemes; (iii) the MSE performance

compared with the case when channels are known shows the penalty caused by channel

estimation becomes worse as the number of sensors increases. Simulation results verify

our findings.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor network (WSN) is composed of a large
number of signal processing sensors, each is capable of
simple local computation, short range low data-rate
communication, and a fusion center (FC) that has more
powerful communication and processing capability.
The fusion center receives signals transmitted from the
sensors over the wireless channels and combines the
signals for a specific processing purpose. One example of
such a distributed signal processing scheme is distributed
estimation. A certain parameter or variable is measured
by the sensors and the measurements are sent to the
fusion center, and the goal is to estimate the parameter
based on the distributed sensor measurements [1,2].
ll rights reserved.
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In the distributed estimation scenario, the sensors
could transmit measurements to the fusion center based
on quantized or unquantized strategy. In the quantized
strategy, the measurements sent from the sensors are
quantized, encoded, and transmitted via digital modula-
tion. Due to practical limitations, it is important to make
efficient use of energy and bandwidth. Some research
works attempt to minimize transmitted power via bit
length assignment under a predefined MSE constraint
[3,4], while others focus on the search of quantization
threshold for a fixed bit length [5,6]. In the unquantized
strategy, the sensors send raw measurements directly
through channels without quantization and thus analog
transmission, such as amplify-and-forward approach, is
used. It is asserted in [11] that the amplify-and-forward
approach is optimal over additive white Gaussian noise
channels. Along this line of approach, many papers study
the minimization of mean squared estimation error under
a total network power constraint by optimally allocating
the transmitted power for each sensor [7–10] and others
analyze asymptotic behavior as the network power or the
number of sensors increases [12,13].
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dx.doi.org/10.1016/j.sigpro.2010.10.002
mailto:chwu.ece92g@nctu.edu.tw
mailto:calin@cc.nctu.edu.tw
dx.doi.org/10.1016/j.sigpro.2010.10.002


�

n1

n2

nK

�1

�2

�K

h1

h2

hK

�

FC
y

�̂

Fig. 1. Coherent MAC wireless sensor network.
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In the amplify-and-forward approach, two types of
channel models are used, the orthogonal multiple access
channel (MAC) [7–10] and the coherent MAC [7]. Linear
minimum mean squared error (LMMSE) estimator for the
coherent MAC model and the orthogonal MAC model with
channel knowledge at the FC was discussed and its
performance analyzed in [7]. The results indicate that the
MSE for the orthogonal MAC model reaches a finite nonzero
value as the number of sensors is increased without bound.
S-enol and Tepedelenlioğlu [8] consider the orthogonal MAC
model with unknown flat Rayleigh fading channels. A two-
phase approach, which first estimates channels and then
estimates source signal, is proposed. The result shows that
with unknown fading channels, increasing the number of
sensors may eventually lead to a degradation in perfor-
mance if the total network power is fixed.

In this paper, we consider coherent MAC model with
unknown flat fading channels. We derive training-based
LMMSE channel estimator. The channel estimate is then used
to obtain LMMSE estimation of the source signal. We consider
the allocation of power to each sensor for training and for
data transmission, under a total network power constraint, so
as to minimize the MSE of the estimated source signal. We
consider two schemes: (i) the optimal power allocation
scheme and (ii) the equal power allocation scheme. In (i),
training power and data power for each sensor are optimized,
and the power gain (for data) of each sensor is computed
based on the respective channel estimate and sent to the
sensor from the FC. In (ii), training power is optimized, but
the data power for each sensor is set equal, only the phase of
the estimated channel is fedback to each sensor from the FC.
In both schemes, the problem is formulated as a constrained
optimization problem and analytical closed-form solution is
obtained. We compare the performance of the distributed
estimation scheme with estimated channels to that with
actual known channels. The main results of this paper are
as follows: (i) the MSE with estimated channels at the FC
approaches to a finite nonzero value as the number of sensors
increases; (ii) the optimal training powers are the same in
both schemes; (iii) compared with the case when channels
are known, the penalty caused by the channel estimation
error becomes worse as the number of sensors increases.

The rest of this paper is organized as follows. Section 2
describes the system model. Section 3 derives results of
the two-phase approach, namely the LMMSE estimation
of channels and source. Section 4 formulates the optimal
power allocation problem as an optimization problem.
The problem is solved for two cases: when channels are
known and when channels are estimated. Comparison of
performance of two cases are given. Section 5 describes
the equal power allocation scheme in which the training
power is optimized. Performance analysis of the scheme is
also given. In Section 6, simulation results are given to
verify the analytical results obtained in Sections 4 and 5.
Section 7 is a brief conclusion.
2. System model

We consider a wireless sensor network with K sensors
for estimating a random source signal y, as depicted in
Fig. 1. The measurement at the kth sensor is corrupted by
an additive noise nk and amplified by a factor ak before it
is transmitted to the fusion center (FC) through a flat
fading channel, hk. The signal y received at the FC can be
expressed as

y¼
XK

k ¼ 1

hkakðyþnkÞþn ð1Þ

where n is the additive noise at the receiver. We assume
(i) E½y� ¼ 0 and E½jyj2� ¼ s2

y , where jxj is the magnitude of x,
(ii) the measurement noises are independent and
nk � CN ð0,s2

nÞ for k=1,2,y,K, that is, nk’s are independent
and circular Gaussian with zero mean and variance s2

n ,
(iii) the channels are independent and hk � CN ð0,s2

hÞ, (iv)
n� CN ð0,s2

n Þ, and (v) the source signal, the channels, the
measurement noises, and the receiver noise are uncorre-
lated. Specifically, for 1rk,jrK ,E½y*nk� ¼ 0, E[nk

*hl]=0,
E½y*n� ¼ 0,E½y*hk� ¼ 0, and E½h*

kn� ¼ 0, where x* denotes the
complex conjugate of x.

The problem is to estimate the parameter y based on
the received signal y at the FC. The fading channels are
assumed unknown. We consider a two-phase approach
similar to that proposed in [8]: to estimate the channels
first using training symbols sent from the sensors and
then to estimate y based on the estimated channels and y.
In both phases, we seek the linear minimum mean
squared error (LMMSE) estimator.
3. LMMSE estimation

3.1. Channel estimation

During the training phase, the sensors send training
symbols in sequence: the training period is divided into K

time intervals and only the kth sensor sends a training
symbol tk over the kth time interval. Thus, the received
signal at the kth time interval can be expressed as
yk ¼ hktkþnk, k=1,2,y,K, where nk � CN ð0,s2

n Þ and
E½n*

inj� ¼ 0 for iaj. For a given training sequence tk, the
LMMSE estimator of hk is given by [14, p. 382]

ĥk ¼
s2

h

jtkj
2s2

hþs2
n

t�kyk ð2Þ
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and the corresponding mean squared error (MSE) is

d2
k ¼ E½jhk�ĥkj

2� ¼
s2

hs
2
n

jtkj
2s2

hþs2
n

, k¼ 1, . . . ,K ð3Þ

The MSE of ĥk decreases as the power of the training symbol
jtkj

2 increases. The LMMSE problem under the training power
constraint

PK
k ¼ 1 jtkj

2rPt can be formulated as

min
pk :1rkrK

1

K

XK

k ¼ 1

d2
k subject to

XK

k ¼ 1

pkrPt and

pkZ0, k¼ 1, . . . ,K

where pk ¼ jtkj
2 is the training power of the kth sensor. The

problem can be solved using standard Karush–Kuhn–Tucker
(KKT) condition [8] and the solution is jtkj

2 ¼ Pt=K , 8k, as
expected since the channels are independent and identically
distributed. In particular, we choose the training symbol to be
real and positive, that is, tk ¼

ffiffiffiffiffiffiffiffiffiffi
Pt=K

p
, and the resulting

channel estimate is

ĥk ¼
s2

h

ffiffiffiffiffiffiffiffi
KPt

p

s2
hPtþKs2

n
yk, k¼ 1,2, . . . ,K ð4Þ

with the corresponding MSE

d2
k ¼

Ks2
hs

2
n

s2
hPtþKs2

n
, k¼ 1, . . . ,K ð5Þ

We note that with such choices of training symbols, both the
received signal yk and the channel estimate ĥk are circular
Gaussian.

3.2. Source estimation

During the second phase, channel estimates ĥk are
available at the FC, although the actual channels are
unknown. We express the received signal y in (1) in terms
of ĥk as

y¼
XK

k ¼ 1

ĥkakyþ
XK

k ¼ 1

ĥkaknkþeþn ð6Þ

where e¼
PK

k ¼ 1ðhk�ĥkÞakðyþnkÞ is contributed by chan-
nel estimation error. Let ĥ ¼ ½ĥ1ĥ2 � � � ĥK �

T be the vector of
channel estimates. The LMMSE estimate of y given ĥ is

ŷ ¼ ay where a¼
E½yy*jĥ�

E½jyj2jĥ�
ð7Þ

From (6) it follows that

E yy�jĥ
h i

¼ E y
XK

k ¼ 1

ĥ
�

ka
�
ky
�
þ
XK

k ¼ 1

ĥ
�

ka
�
kn�kþe

�þn�
 !

jĥ

" #

¼
XK

k ¼ 1

ĥ
�

ka
�
ks

2
y ð8Þ

where the last equality is from the assumptions that the
source signal is uncorrelated with the measurement noise
and the receiver noise, and that ĥk ¼ E½hkjyk� ¼ E½hkjĥk�

since ĥk is a linear function of yk. It is derived in Appendix A
that

E½jyj2jĥ� ¼
XK

k ¼ 1

ĥkak

�����
�����
2

s2
yþ

XK

k ¼ 1

jĥkj
2jakj

2s2
nþs

2
nþðs

2
yþs

2
nÞd

2
1

XK

k ¼ 1

jakj
2

ð9Þ
The MSE incurred by (7) is

J¼ E½jy�ŷj2jĥ� ¼ s2
y�aE½y�yjĥ��a�E y�yjĥ

h i
þjaj2E jyj2jĥ

h i

¼
1

s2
y
þ

PK
k ¼ 1 ĥkak

��� ���2PK
k ¼ 1 jĥkj

2jakj
2s2

nþs2
nþðs2

yþs2
nÞd

2
1

PK
k ¼ 1 jakj

2

0
B@

1
CA
�1

ð10Þ

When the channel hk is available at the FC, we can set
ĥk ¼ hk and d2

k ¼ 0 in (10), and the corresponding MSE
becomes

Jo ¼
1

s2
y
þ

PK
k ¼ 1 hkak

��� ���2PK
k ¼ 1 jhkj

2jakj
2s2

nþs2
n

0
B@

1
CA
�1

ð11Þ

The MSE Jo is a lower bound of J in (10) and can serve as a
benchmark against which the performance of the estima-
tor (7) can be compared.

4. Optimal power allocation

During the training phase, each sensor uses the same
training symbol and thus consumes the same amount of
training power Pt/K, where Pt is the total allocated training
power. From (5), it is clear that as Pt increases, the MSE in
channel estimation decreases. In a sensor network, there
is likely a total power constraint, that is, there is an upper
bound imposed on the sum of training power and the
power used to transmit data. Hence, when more power is
allocated for training, less power is available for data
transmission and vice versa. Under the total power
constraint, the minimum MSE of ŷ, that is, J in (10),
depends on the training power Pt and how the remaining
network power is allocated to each sensor for data
transmission. In the following, we consider the optimal
power allocation problem, that is, to choose Pt and data
power for each sensor to minimize J under a total power
constraint. For comparison, we will also consider the case
when channel information is available, no training, no
channel error, and all power is used for data transmission.
The comparison of the two cases will show the penalty
incurred due to the fact that the channel is unknown.

4.1. When channels are known

If the channels are known at the FC, the phase of ak is
chosen as +ak ¼�+hk, so that hkak ¼ jhkjjakj and the MSE
Jo in (11) becomes

Jo ¼
1

s2
y
þ

z
PK

k ¼ 1 gkjakj

� �2

zs2
nð
PK

k ¼ 1 g2
k jakj

2Þþ1

0
B@

1
CA
�1

ð12Þ

where z¼ s2
h=s

2
n is the channel SNR, and gk ¼ jhkj=sh is the

normalized channel gain for the kth sensor. Such choices of
phases make Jo smallest among ak’s of the same magni-
tude. Note that gk has a Rayleigh distribution with density
function fg(x)=2x exp(�x2), xZ0, and E½gk� ¼

ffiffiffiffiffiffiffiffiffi
p=4

p
; gk

2

has an exponential distribution with density function
fg2 ðxÞ ¼ expð�xÞ,xZ0, and E[gk

2]=1 [15, p. 51]. The signal
transmitted from the kth sensor is akðyþnkÞ with power
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Pk ¼ E½jakðyþnkÞj
2� ¼ jakj

2ðs2
yþs

2
nÞ. From (12), the optimal

power allocation problem with the total network power
constrained to P40 can be formulated as the following
optimization problem:

minjakj:1rkrK
1

s2
y
þ

z
PK

k ¼ 1 gkjakj

� �2

zs2
n

PK
k ¼ 1 g2

k jakj
2

� �
þ1

0
B@

1
CA
�1

subject to
XK

k ¼ 1

jakj
2ðs2

yþs
2
nÞrP:

8>>>>>>>><
>>>>>>>>:

ð13Þ

From (13), we make the following observations:
(i)
 If the inequality sign in the constraint of problem
(13) is replaced by the equality sign, the solution
does not change. Hence we could consider the
optimization problem with equality constraint. The
argument is as follows. Since the constraint func-
tion is quadratic in jakj, if a set of jakj is such that
strict inequality holds, we can equally scale up
each jakj, so that equality holds. And if we equally
scale up each jakj, we get a lower function value of
Jo because in (12) the second term inside the
parentheses becomes larger. Consequently, with
optimal jakj, the inequality constraint must be
active.
(ii)
 Consider the optimal MSE in (13), say, Jo
* as a

function of the power P, then Jo
* is a strictly

decreasing function of P, that is, if P24P1, then
J*
oðP2Þo J*

oðP1Þ. The argument is similar: if the power
level increases, we can equally scale up jakj to
obtain a lower value of Jo and thus a lower value of
optimal MSE Jo

* can be obtained.

(iii)
 Since the function Jo

*(P) is one-to-one and decreas-
ing, the inverse function P(Jo

*) is also one-to-one and
decreasing. Hence instead of finding jakj that
minimize Jo in (12) under an equality constraint
on power level, we can find jakj that minimize the
power level subject to an equality constraint on
MSE. And if the constraint value on MSE is such that
the resulting minimum power level matches the
given value P in (13), the corresponding jakj are the
optimal ones we set out to find. We thus consider
the following optimization problem:

minjak j:1rkrK

PK
k ¼ 1 jakj

2ðs2
yþs

2
nÞ

subject to
1

s2
y
þ

z
PK

k ¼ 1 gkjakj

� �2

zs2
n

PK
k ¼ 1 g2

k jakj
2

� �
þ1

0
B@

1
CA
�1

¼ Jo

8>>>>><
>>>>>:

ð14Þ

where 0o Jors2
y .
The solution of (14) is derived in Appendix B and
given by

jakj
2 ¼ m

XK

k ¼ 1

g2
k ðs

2
yþs

2
nÞ

½ðs2
yþs2

nÞþs2
nzg2

km�
2

 !�1
g2

k

½ðs2
yþs2

nÞþs2
nzg2

km�
2

ð15Þ
where m satisfies

XK

k ¼ 1

zg2
k

zs2
ng2

k þðs
2
yþs2

nÞ=m
¼

1

Jo
�

1

s2
y

ð16Þ

The multiplier m is the total network power since from
(15) we have

PK
k ¼ 1 jakj

2ðs2
yþs

2
nÞ ¼ m. It is also clear from

(16) that there is a one-to-one correspondence between
the total power m and the constraint Jo, and that m
increases as Jo decreases and vice versa. Hence the original
problem (13) is solved if we choose Jo so that m is equal to
P, and the choice is

Jo ¼
1

s2
y
þ
XK

k ¼ 1

g2
k

s2
ng2

k þðs
2
yþs2

nÞ
1
zP

 !�1

ð17Þ

which is the minimum MSE of (13). Accordingly, the
optimal power allocation is, for 1rkrK ,

Pk ¼ jakj
2ðs2

yþs
2
nÞ ¼

XK

k ¼ 1

g2
k ðs

2
yþs

2
nÞ

½ðs2
yþs2

nÞþs2
nzg2

k P�2

 !�1

�
g2

k ðs
2
yþs

2
nÞ

½ðs2
yþs2

nÞþs2
nzg2

k P�2
P ð18Þ

and jakj
2 ¼ Pk=ðs2

yþs
2
nÞ. Since the minimum MSE depends

on the total network power P and the number of sensors
K, we hereafter write the MSE Jo in (17) as Jo(P,K).

As the power P increases, we expect Jo to decrease,
which is easy to see from (17). For a fixed K, as P-1,
we have

lim
P-1

JoðP,KÞ ¼
s2
y

1þKb
ð19Þ

where b¼ s2
y=s

2
n is the observation SNR. The limit dose

not go to zero but is roughly proportional to 1/K as we
would expect. On the other hand, for a fixed P40, as K

increases, we have

lim
K-1

JoðP,KÞ ¼
1

s2
y
þ lim

K-1
KE

g2
k

s2
ng2

k þðs
2
yþs2

nÞ
1
zP

" # !�1

¼ lim
K-1

1

K
E

zg2
k P

ðs2
yþs2

nÞþs2
nzg2

k P

" #( )�1

¼ 0 ð20Þ

where in the first equality we used the law of large
numbers [17]. From (20), we conclude that in the
coherent MAC model, the MSE decreases in the order of
1/K as K goes to infinity even though the total network
power P is finite. Similar conclusion for the unit variance
case, s2

y ¼ s
2
n ¼ s2

n ¼ 1, appeared in [7].

4.2. When channels are estimated

Suppose training for channel estimation consumes
power Pt, then the remaining power for data transmission
is P�Pt. The power allocation problem now is to optimally
choose training power Pt and data power for each sensor.

The phase of ak is chosen to match that of ĥk, i.e., +ak ¼

�+ĥk. Write hk ¼ ĥkþðhk�ĥkÞ, since ĥk and hk�ĥk are
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uncorrelated we have s2
h ¼ s

2
ĥ
þd2

k , where d2
k ¼ E½jhk�ĥkj

2�.

Use (5) and s2
ĥ
¼ s2

h�d
2
k , we can express the MSE in (10) as

J ¼
1

s2
y
þ

z2 PK
k ¼ 1 ĝ kjakj

� �2
Pt

z2s2
n

PK
k ¼ 1 ĝ

2
k jakj

2
� �

PtþzPtþKzðs2
yþs2

nÞ
PK

k ¼ 1 jakj
2

� �
þK

0
B@

1
CA
�1

ð21Þ

where ĝ k ¼ jĥkj=sĥ
is the normalized estimated channel

gain for the kth sensor. Since ĥk is circular Gaussian, ĝ k and
gk have identical distribution. From (21), the MMSE
optimization problem under a total network power
constraint can be formulated as
minPt ;jakj:1rkrK
1

s2
y
þ

z2 PK
k ¼ 1 ĝ kjakj

� �2
Pt

z2s2
n

PK
k ¼ 1 ĝ

2
k jakj

2
� �

PtþzPtþKzðs2
yþs2

nÞ
PK

k ¼ 1 jakj
2

� �
þK

0
B@

1
CA
�1

subject to
PK

k ¼ 1 jakj
2ðs2

yþs
2
nÞþPt rP:

8>>>>><
>>>>>:

ð22Þ
Again instead of solving problem (22) directly, we consider
a problem in which the roles of objective function and
constraint are interchanged. The solution to problem (22)
is given in the following proposition, the proof of which is
given in Appendix C.

Proposition 1. For K41, the solution to (22) gives the

optimal training power

Popt
t ¼

KðzPþ1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzPþ1ÞðzPþKÞ

p
zðK�1Þ

ð23Þ

where z¼ s2
h=s

2
n is the channel SNR, and the associated

optimal data power for the kth sensor is

Popt
k ¼

XK

k ¼ 1

ĝ
2
k=f̂

2

k

 !�1
ĝ

2
k

f̂
2

k

ðP�Popt
t Þ ð24Þ

where f̂k ¼ ½ðs2
yþs

2
nÞþmz

2s2
nĝ

2
kPopt

t þmKzðs2
yþs

2
nÞ� and

m¼ Popt
t =ðKþKzðP�Popt

t ÞÞ. The incurred MSE is

JðP,KÞ ¼
1

s2
y
þ
XK

k ¼ 1

ĝ
2
k

s2
nĝ

2
kþðs2

yþs2
nÞ

K�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzPþ1Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zPþK

p
 !2

0
BBBBB@

1
CCCCCA

�1

ð25Þ

Note that the optimal training power in (23) depends on
the number of sensors K, the channel SNR z, and the total
network power P. From (25), we see that the MSE decreases
as the power P increases. For a fixed K, as P-1, we obtain

lim
P-1

JðP,KÞ ¼
s2
y

1þKb
ð26Þ

which is the same as (19). This makes sense since P-1

implies Popt
t -1 and thus the MSE of channel estimation in

(5) approaches to zero, that is, ĥk-hk as P-1 in the mean
square sense. It is shown in Appendix D that, for a fixed P,

lim
K-1

JðP,KÞ ¼ s2
y 1þ

b
1þb

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
zPþ1

p
�1Þ2

� ��1

ð27Þ
The MSE does not approach to zero. The reason is that the
order of 1/K decrease in MSE in (20) is offset by the order of
K increase in the power of the error term E½jej2jĥ� in (A.3) in
Appendix A. Therefore, in the presence of the channel
estimation error, the MSE reaches a finite nonzero value as K

goes to infinity.

4.3. Comparison of two cases

If the total network power and number of sensors are
fixed, with estimated channel, the estimation perfor-
mance is worse than when channel information is
available due to the presence of channel estimation
error. To quantitative compare the two cases, we set the
same MSE objective, use optimal power allocation for
both cases, and determine the respective total network
power that would be required. Suppose to achieve
the selected MSE, total network power Pa is required
when channel information is available and the required
total network power is Pe when channels are estimated.
The ratio Pa/Pe gives an indication of the penalty
incurred by the consumption of training power and
the presence of channel estimation error. A small
ratio would imply a heavy penalty. But the MSE expres-
sions in (17) and (25) are random variables, we instead
derive the condition on Pa and Pe under which the
distributions of MSEs are identical. This is possible due
to the fact that the random variables gk and ĝ k have
identical Rayleigh distribution. From (17) and (25),
the distributions of MSE expressions are identical if
the deterministic terms in the denominator are equal,
that is,

K�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzPeþ1Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zPeþK

p
 !2

¼
1

zPa
ð28Þ

Rearranging (28), we get

Pa

Pe
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð1þ1=ðzPeÞÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þK=ðzPeÞ

p
K�1

 !2

ð29Þ

Note that the ratio in (29) is less than one, and for Pe

large

Pa

Pe
�

1

ð
ffiffiffiffi
K
p
þ1Þ2

: ð30Þ

The ratio decreases as the number of sensors K increases.
This means that the penalty caused by channel
estimation becomes worse as the number of sensor
increases.
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5. Equal power allocation

The optimal power allocation scheme discussed in the
previous section requires that the complex ak be com-
puted based on channel estimate ĥk (or hk) and sent to the
kth sensor through feedback channel from the FC. If
the gains are not computed and fedback, in order to reduce
computations and save (feedback) bandwidth, a reasonable
strategy is to allocate equal power for each sensor
for data transmission. In the following, we study the
performance of the equal power allocation scheme. We
again consider two cases: (i) channels are known at the FC
and (ii) channels are estimated. In the latter case, we
consider the optimal choice of training power Pt to achieve
the smallest MSE. We compare performance of the two
cases in terms of the power ratio Pa/Pe as in the previous
section.

5.1. When channels are known

We set the phase of ak as +ak ¼�+hk. This requires
feedback of a real number from the FC. With equal power
allocation, we have jakj

2 ¼ P=ðKðs2
yþs

2
nÞÞ, for k=1,y,K and

the MSE in (12) can be rewritten as

JoðP,KÞ ¼ s2
y 1þ

b
1þb

1

K

PK
k ¼ 1 gk

� �2

1

K

1

1þb
1

K

PK
k ¼ 1 g2

k

� �
þ

1

KzP

0
BBB@

1
CCCA
�1

ð31Þ

It is easy to see from (31) that Jo decreases as P increases.
For a fixed K, as P-1, we have

lim
P-1

1

JoðP,KÞ
¼ s�2

y 1þb
ð
PK

k ¼ 1 gkÞ
2PK

k ¼ 1 g2
k

 !
rs�2

y ð1þKbÞ

where the last inequality uses the Cauchy–Schwartz
inequality and the equal sign holds if and only if
g1 ¼ � � � ¼ gK . Therefore, as P-1, we have a MSE lower
bound as follows:

lim
P-1

JoðP,KÞZ
s2
y

1þKb
ð32Þ

Since equality holds in (19), we see that the performance
of the equal power scheme is usually worse than that of
the optimal power scheme as P-1. On the other hand,
for a fixed P, as K-1, we have ð1=KÞ

PK
k ¼ 1 gk-E½gk� ¼ffiffiffiffiffiffiffiffiffi

p=4
p

and ð1=KÞ
PK

k ¼ 1 g2
k-E½g2

k � ¼ 1, thus (31) becomes

lim
K-1

JoðP,KÞ ¼ lim
K-1

s2
y

K

b
1þb

p
4

1

1þb
þ

1

zP

0
BB@

1
CCA
�1

¼ 0 ð33Þ

Hence, the MSE decreases in the order of 1/K and
approaches to zero as K-1 even though the total power
P is finite. Similar conclusion appeared in [7] for the unit
variance case.

5.2. When channels are estimated

If the power Pt is used for channel estimation, the
transmitted data power for the kth sensor is Pk=(P�Pt)/K,
or equivalently, jakj
2 ¼ ðP�PtÞ=ðKðs2

yþs
2
nÞÞ. Again the

phase of ak is chosen as +ak ¼�+ĥk and the MSE
derived from (21) is

JðP,KÞ ¼ s2
y 1þ

z2K
b

1þb
1

K

PK
k ¼ 1 ĝ k

� �2

ðP�PtÞPt

z2 1

1þb
1

K

PK
k ¼ 1 ĝ

2
k

� �
ðP�PtÞPtþzPtþzKðP�PtÞþK

0
BBB@

1
CCCA
�1

ð34Þ

From (34), the optimization problem becomes to choose Pt

so that the MSE J is minimum under the total network
power constraint. From (34) the MMSE optimization
problem can be formulated equivalently as

minPt
�

z2K
b

1þb
1

K

PK
k ¼ 1 ĝ k

� �2

ðP�PtÞPt

z2 1

1þb
1

K

PK
k ¼ 1 ĝ

2
k

� �
ðP�PtÞPtþzPtþzKðP�PtÞþK

subject to 0rPt rP:

8>>>>>><
>>>>>>:

ð35Þ

It can be shown that the second derivative of the objective
function in (35) with respect to Pt is positive. Hence, the
optimization problem (35) is convex since the objective
function is convex and the constraint is linear. The
following proposition gives the optimal training power
and the corresponding MSE.

Proposition 2. For K41, the solution to (35) gives the

optimal training power

Popt
t ¼

KðzPþ1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzPþ1ÞðzPþKÞ

p
zðK�1Þ

ð36Þ

where z¼ s2
h=s

2
n , and the incurred MSE

JðP,KÞ ¼s2
y 1þ

b
1þb

1

K

PK
k ¼ 1 ĝ k

� �2

1

K

1

1þb
1

K

PK
k ¼ 1 ĝ

2
k

� �
þ

ðK�1Þ2

K2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
zPþ1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðzP=KÞ

p� �2

0
BBBBBB@

1
CCCCCCA

�1

ð37Þ

Proof. Please see Appendix E.

Note that the optimal training powers for both the
equal and optimal power allocation schemes are the
same. From (37) with fixed K, as P-1, we obtain
limP-1ð1=JðP,KÞÞrs�2

y ð1þKbÞ and thus

lim
P-1

JðP,KÞZ
s2
y

1þKb
ð38Þ

which is the same as (32). On the other hand, for a fixed P,
when K-1, we obtain

lim
K-1

JðP,KÞ ¼ s2
y 1þ

p
4

b
1þb

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
zPþ1

p
�1Þ2

� ��1

ð39Þ

which is worse than (27). Note that the MSE in (39) also
approaches a finite nonzero value as the number of
sensors goes to infinity due to the same reason as stated
in Section 4.2.
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5.3. Comparison of two cases

To compare performance of the two cases, we set Pa

and Pe respectively so that the MSE expressions in (31)
and (37) have the same distribution as in Section 4.3.
From (31) and (37), the distributions of the MSE are
identical if the deterministic terms in the denominator are
equal, that is,

K�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzPeþ1Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zPeþK

p
 !2

¼
1

zPa
ð40Þ

This equation is the same as (28) and thus we have the
same ratio of penalty incurred by the training power
consumption and the channel estimation error as shown
in (29) and (30).

6. Numerical results

In this section, we use a number of numerical
simulations to verify the analytical results obtained in
previous sections. All random parameters, y, nk, hk, and n,
are set as zero-mean circular Gaussian. The parameter y
and the channel hk are assumed to have unit variance, that
is, we set s2

y ¼ s
2
h ¼ 1 (0 dB). The observation noise

variance s2
n ¼�10 dB and the receiver noise variance

s2
n ¼�1 dB, so that the observation SNR b¼ s2

y=s
2
n and the

channel SNR z¼ s2
h=s

2
n are 10 and 1 dB, respectively.

We first compute the average MSE of the optimal
power allocation scheme. The average MSE is the average
of 105 independent runs. The theoretical MSE is given
in (25), where only the normalized channel gains ĝ k are
random. To obtain the simulation MSE, we use the LMMSE
estimators in (2) and (7) with all random variables
independently generated, and take the average MSE of ŷ.
It is clear from Fig. 2 that the theoretical and simulation
values of MSE are very close. For a fixed P, we see that the
MSE decreases as the number of sensors K increases and
approaches to the lower bound (27). The results for P=14
and 17 dB show that the 3 dB difference in total power
leads to about 3 dB difference in MSE for KZ20.
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The comparison between theoretical and simulation
average MSEs for the equal power scheme is shown in
Fig. 3, where the theoretical result averages the MSE in
(37). Again the figure shows that the theoretical and
simulation values are very close. As K increases, the
average MSE decreases and approaches to the lower
bound in (39). The results for P=14 and 17 dB also show
roughly 3 dB difference in MSE for KZ20.

Fig. 4 shows the comparison of MSEs between the
equal and optimal power schemes for a fixed P=16 dB.
It shows that the optimal power scheme performs better
than the equal power scheme. For KZ20, the difference in
MSE between the two schemes approaches to a constant
value 0.007 (approximately 20% difference), which is
about the difference between the respective low bounds.

For comparison, we also simulate the two-phase
approach proposed in [8] based on the orthogonal model,
where the kth sensor transmits the measured signal
akðyþnkÞ to the kth receiver through an unknown fading
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schemes.
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channel hk, k=1,y,K. The kth receiver is corrupted by an
additive noise nk � CN ð0,s2

n Þ, where s2
n ¼�1 dB, and

E½ninj� ¼ 0 for iaj; then K received data is collected by
the FC with the LMMSE fusion rule for estimating the
signal. The coherent model is shown in (1), where the
received signal is a linear combination of the K trans-
mitted data corrupted by a noise. Fig. 5 shows that with a
fixed P=17 dB, the MSE of the orthogonal model exhibits a
conspicuous degradation as K440, while the MSE of the
coherent model approaches to a constant value. Also
compared with the orthogonal model, the coherent model
has a lower average MSE regardless of the number of
sensors used. This is a consequence of using orthogonal
model, which results in K different receiver noise nk at the
FC so that the increase of K does not reduce the effect of
receiver noise; while in the coherent model, only one
receiver noise is generated at the FC, which leads to
increased signal to noise ratio as K increases. In the figure,
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we see that as K increases, the MSE of the coherent model
is less sensitive to the channel estimation error than that
of the orthogonal model.

Fig. 6 shows the ratio of average MSE E[Jo]/E[J] versus the
ratio Pa/Pe for the optimal power allocation scheme with a
fixed K=16 sensors. In the figure, the curves corresponding
to total network power Pe=20, 23dB, 27 dB, and 30 dB,
respectively. The curves all cross the horizontal lines
E[Jo]/E[J]=1 at about 0.04 very close to the predicted
1=ð

ffiffiffiffi
K
p
þ1Þ2 in (30). Fig. 7 shows the ratio of average MSE

E[Jo]/E[J] versus the ratio Pa/Pe for the equal power scheme.
The total network power is fixed at Pe=30 dB and the
number of sensors K=9, 25, and 36. We see that the curve
for K=9 crosses E[Jo]/E[J]=1 at about 0.06, the curve for K=25
at about 0.03, and the curve for K=36 at about 0.02. The
curves show that the penalty caused by channel estimation
becomes worse as the number of sensors K increases.
7. Conclusion

We study distributed estimation with coherent multiple
access channel model and MMSE fusion rule. We use a two-
phase approach for channel and source signal estimations; in
both phases, the MMSE criterion is used. We study optimal
power allocation problem under a total network power
constraint. We obtain expressions of optimal training power
and optimal data power for each sensor and the resulting
MSE as a function of total network power P and the number
of sensor K when channel estimates are used to compute
power gains ak and fedback to the sensors. For the equal
power scheme, we obtain an expression for the optimal
training power and the resulting MSE. In both schemes,
the optimal training powers are equal. Our results show that
with estimated channels, the MSEs approach to finite
nonzero values as the number of sensors increases. We
note that this is in contrast with the result obtained for
orthogonal MAC model [8] which shows the MSE perfor-
mance eventually deteriorates as the number of sensor
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increases. The MSE performance compared with the case
when channels are known shows the penalty caused by
channel estimation becomes worse as the number of sensors
increases.
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Appendix A. Derivation of (9)

We first show that given ĥ, e is uncorrelated with n,
PK

k ¼ 1 ĥkaknk, and
PK

k ¼ 1 ĥkaky. Since E½n*y� ¼ 0, E½h*
kn� ¼ 0, and

E½n*nl� ¼ 0, E½n*e j ĥ� ¼ 0. We show that e and
PK

k ¼ 1 ĥkaknk are uncorrelated as follows:

E
XK

k ¼ 1

ĥkaknk

 !�
ejĥ

" #
¼ E

XK

k ¼ 1

ĥ
�

kðhk�ĥkÞjakj
2jnkj

2

 !
jĥ

" #
¼
XK

k ¼ 1

ĥ
�

kðE½hkjĥ��ĥkÞjakj
2s2

n ¼ 0 ðA:1Þ

where the first equality uses that E½n�ky� ¼ 0 and E[nk
*nl]=0 for kal. The last equality follows because ĥk ¼ E½hkjyk� ¼ E½hkjĥk�.

Similarly,

E
XK

k ¼ 1

ĥkaky

 !�
ejĥ

" #
¼ E

XK

k ¼ 1

XK

l ¼ 1

ĥ
�

kðhl�ĥlÞa�kaljyj2
 !

jĥ

" #
¼
XK

k ¼ 1

XK

l ¼ 1

ĥ
�

kðE½hljĥ��ĥlÞa�kals2
y ¼ 0 ðA:2Þ

Finally the conditional variance

E½jej2jĥ� ¼ E
XK

k ¼ 1

ðhk�ĥkÞ
�
ðhk�ĥkÞjakj

2ðs2
yþs

2
nÞjĥ

" #
¼ ðs2

yþs
2
nÞ
XK

k ¼ 1

E½ðhk�ĥkÞ
�
ðhk�ĥkÞjĥ�jakj

2

¼ ðs2
yþs

2
nÞ
XK

k ¼ 1

d2
k jakj

2 ¼ ðs2
yþs

2
nÞd

2
1

XK

k ¼ 1

jakj
2 ðA:3Þ

where the last equality uses d1 ¼ � � � ¼ dk in (5). By (A.1)to (A.3) and (6), equality (9) follows.
Appendix B. Derivation of (15)

We introduce a slack variable t¼
PK

k ¼ 1 gkjakj and rewrite the problem (14) as

minjak j,t
PK

k ¼ 1 jakj
2ðs2

yþs
2
nÞ

subject to
PK

k ¼ 1 gkjakj�t¼ 0

1þzs2
n

PK
k ¼ 1 g2

k jakj
2

� �
¼

1

Jo
�

1

s2
y

 !�1

zt2

8>>>>><
>>>>>:

The Lagrangian is

Lðjakj,t,l,mÞ ¼
XK

k ¼ 1

jakj
2ðs2

yþs
2
nÞþl

XK

k ¼ 1

gkjakj�t

 !
þm 1þzs2

n

XK

k ¼ 1

g2
k jakj

2�
1

Jo
�

1

s2
y

 !�1

zt2

2
4

3
5

where l,m 2 R, and the associated necessary conditions [16] for optimality are

@L

@jakj
¼ 2ðs2

yþs
2
nÞjakjþlgkþ2mzs2

ng2
k jakj ¼ 0 ðB:1Þ

@L

@t
¼�l�2m 1

Jo
�

1

s2
y

 !�1

zt¼ 0 ðB:2Þ

@L

@l
¼
XK

k ¼ 1

gkjakj�t¼ 0 ðB:3Þ

@L

@m ¼ 1þzs2
n

XK

k ¼ 1

g2
k jakj

2�
1

Jo
�

1

s2
y

 !�1

zt2 ¼ 0 ðB:4Þ



C.-H. Wu, C.-A. Lin / Signal Processing 91 (2011) 1000–1011 1009
From (B.1), jakj ¼ �lgk=ð2fkÞ, where fk ¼ ðs2
yþs

2
nÞþmzs2

ng2
k , and thus from (B.3), we have t¼

PK
k ¼ 1�lg2

k=ð2fkÞ and then
from (B.2), we have

1

Jo
�

1

s2
y
¼
XK

k ¼ 1

mzg2
k

fk

¼
XK

k ¼ 1

zg2
k

zs2
ng2

k þðs
2
yþs2

nÞ=m
ðB:5Þ

Hence, we obtain (16). Finally use t¼�lð1=Jo�1=s2
yÞ=ð2mzÞ from (B.2) and jakj ¼ �lgk=ð2fkÞ in (B.4) to get

l2

4
¼

1

Jo
�

1

s2
y

m2z
�
XK

k ¼ 1

zs2
ng4

k

f2
k

0
BBB@

1
CCCA
�1

¼
XK

k ¼ 1

ðs2
yþs

2
nÞg

2
k

f2
k

 !�1

m ðB:6Þ

where the last equality follows from (B.5). Therefore, we have jakj
2 ¼ ðl2=4Þðg2

k=f
2
k Þ and (15) is established.

Appendix C. Proof of Proposition 1

Instead of solving (22) directly, we consider the following problem:

minPt ,jak j
ðs2

yþs
2
nÞ
PK

k ¼ 1 jakj
2þPt

subject to
1

s2
y
þ

z2 PK
k ¼ 1 ĝ kjakj

� �2
Pt

z2s2
n

PK
k ¼ 1 ĝ

2
k jakj

2
� �

PtþzPtþKzðs2
yþs2

nÞ
PK

k ¼ 1 jakj
2

� �
þK

0
B@

1
CA
�1

¼ J

8>>>>><
>>>>>:

where 0o Jrs2
y . Let t¼

PK
k ¼ 1 ĝ kjakj, the optimization problem becomes

minPt ,jak j,t ðs2
yþs

2
nÞ
PK

k ¼ 1 jakj
2þPt

subject to
PK

k ¼ 1 ĝ kjakj�t¼ 0

z2s2
n

PK
k ¼ 1 ĝ

2
k jakj

2
� �

PtþzPtþKzðs2
yþs

2
nÞ
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2

� �
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1

J
�

1
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y

 !�1

z2t2Pt

8>>>>><
>>>>>:

The Lagrangian is

Lðjakj,Pt ,t,l,mÞT ¼ ðs2
yþs

2
nÞ
XK

k ¼ 1

jakj
2þPtþl

XK

k ¼ 1

ĝ kjakj�t
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þm z2s2
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ĝ
2
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where l,m 2 R, and the associated necessary conditions for optimality are

@L

@jakj
¼ 2ðs2

yþs
2
nÞjakjþlĝ kþm½2z

2s2
nĝ

2
k Ptjakjþ2Kzðs2

yþs
2
nÞjakj� ¼ 0 ðC:1Þ
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From (C.1), jakj ¼ �lĝ k=ð2f̂kÞ, where f̂k ¼ ðs2
yþs

2
nÞþmz

2s2
nĝ

2
kPtþmKzðs2

yþs
2
nÞ, thus it follows from (C.4) that

t¼�ðl=2Þ
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k ¼ 1ðĝ
2
k=f̂kÞ and then from (C.3), we have
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nĝ
2
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ðC:6Þ
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Use t¼�lð1=J�1=s2
yÞ=ð2mz

2PtÞ from (C.3) and jakj ¼ �lĝ k=ð2f̂kÞ in (C.2) to get

l2

4
¼

1
mþz

1
J �

1
s2
y

m2z2P2
t

�z2s2
n

PK
k ¼ 1 ĝ

4
k=f̂

2

k

� � ¼ ð1þmzÞ=ð1þKmzÞPK
k ¼ 1 ĝ

2
k ðs2

yþs2
nÞ=f̂

2

k

Pt ðC:7Þ

where the last equality follows from (C.6). Since the data power for the kth sensor is Pk ¼ jakj
2ðs2

yþs
2
nÞ ¼

ðl2=4Þðĝ
2
k ðs2

yþs
2
nÞ=f̂

2

k Þ, the total power for data transmission is
PK

k ¼ 1 Pk ¼ ðl2=4Þ
PK

k ¼ 1ðĝ
2
k ðs2

yþs
2
nÞ=f̂

2

k Þ ¼

ð1þmzÞPt=ð1þKmzÞ. With the total network power constraint P, it follows from (C.2) and (C.5) that

m¼ Pt

KþKzðP�PtÞ
ðC:8Þ

where we use
PK

k ¼ 1 Pk ¼ P�Pt . Moreover, since
PK

k ¼ 1 PkþPt ¼ P, we have

2þðKþ1Þzm
1þKzm Pt ¼ P ðC:9Þ

Substituting (C.8) into (C.9), we get the optimal training power in (23). With Pt
opt and m, we get Pk

opt in (24) and the MSE in
(25) follows from (C.6).
Appendix D. Derivation of (27)

Rewrite (25) as

JðP,KÞ ¼
1

s2
y
þ

1

s2
yþs2

n

bðKÞ
XK

k ¼ 1

ĝ
2
k

gbðKÞĝ
2
kþK

 !�1

where bðKÞ ¼ ½Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
zPþ1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þzP=K

p
Þ=ðK�1Þ�2 and g¼ s2

n=ðs2
yþs

2
nÞ. Note that limK-1bðKÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
zPþ1

p
�1Þ2. We will show

that the sum inside the parentheses converges to E½ĝ
2
k � ¼ 1 as K-1. Since

ĝ
2
k

K
�

ĝ
2
k

gbðKÞĝ
2
kþK

¼
gbðKÞĝ

4
k

K½gbðKÞĝ
2
kþK�

r
gbðKÞĝ

4
k

K2

we have ĝ
2
k=K�gbðKÞĝ

4
k=K2r ĝ

2
k=½gbðKÞĝ

2
kþK�r ĝ

2
k=K and thus

XK

k ¼ 1

ĝ
2
k

K
�
XK

k ¼ 1

gbðKÞĝ
4
k

K2
r
XK

k ¼ 1

ĝ
2
k

gbðKÞĝ
2
kþK

r
XK

k ¼ 1

ĝ
2
k

K

It follows from the law of large numbers that as K-1, we have
PK

k ¼ 1 ĝ
2
k=K ¼ E½ĝ

2
k � ¼ 1,

XK

k ¼ 1

gbðKÞĝ
4
k

K
¼ gð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
zPþ1

p
�1Þ2E½ĝ

4
k � and

XK

k ¼ 1

gbðKÞĝ
4
k

K2
¼ 0

because E½ĝ
4
k � is finite. Therefore,

XK

k ¼ 1

ĝ
2
k

gbðKÞĝ
2
kþK

¼ 1, as K-1

and (27) follows.
Appendix E. Proof of Proposition 2

Let

c1 ¼ K
b

1þb
1

K

XK

k ¼ 1

ĝ k

 !2

and

c2 ¼
1

1þb
1

K

XK

k ¼ 1

ĝ
2
k

 !
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then the Lagrangian of the problem (35) is

LðPt ,m1,m2Þ ¼�
z2c1ðP�PtÞPt

z2c2ðP�PtÞPtþzPtþzKðP�PtÞþK
þm1ðPt�PÞ�m2Pt

and the associated KKT conditions are

�
z2c1½zðK�1ÞP2

t �2KðzPþ1ÞPtþKPðzPþ1Þ�

ðz2c2ðP�PtÞPtþzPtþzKðP�PtÞþKÞ2
þm1�m2 ¼ 0 ðE:1Þ

m1ðPt�PÞ ¼ 0, m1Z0 ðE:2Þ

m2Pt ¼ 0, m2Z0 ðE:3Þ

Since the training power have to be greater than 0, we have m2 ¼ 0. If m140, then Pt ¼ P, but then (E.1) leads to m1o0 a
contradiction. Therefore, we have m1 ¼ m2 ¼ 0 and P4Pt 40. From (E.1), we have

zðK�1ÞP2
t �2KðzPþ1ÞPtþKPðzPþ1Þ ¼ 0) Pt ¼

KðzPþ1Þ7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðzPþ1ÞðzPþKÞ

p
zðK�1Þ

where we take negative term since positive term cannot satisfy the constraint PZPt . Let a¼ KðzPþ1Þ and b¼ zPþK , then
we have Popt

t ¼ ða�
ffiffiffiffiffiffi
ab
p
Þ=½zðK�1Þ� and P�Popt

t ¼ ðb�
ffiffiffiffiffiffi
ab
p
Þ=½zðK�1Þ�, and from (34), (37) follows:

JðP,KÞ ¼ s2
y 1þ

c1½ðaþbÞ
ffiffiffiffiffiffi
ab
p
�2ab�

c2½ðaþbÞ
ffiffiffiffiffiffi
ab
p
�2ab�þðK�1Þ2

ffiffiffiffiffiffi
ab
p

 !�1

¼ s2
y 1þ

c1

c2þ
ðK�1Þ2

ð
ffiffiffi
a
p
�

ffiffiffi
b
p
Þ
2

0
BBB@

1
CCCA
�1

where the first equality uses that

ðK�1Þða�
ffiffiffiffiffiffi
ab
p
ÞþKðK�1Þð

ffiffiffiffiffiffi
ab
p
�bÞþKðK�1Þ2 ¼ ðK�1Þ½ðK�1Þ

ffiffiffiffiffiffi
ab
p
þa�KbþK2�K|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼ 0

� ¼ ðK�1Þ2
ffiffiffiffiffiffi
ab
p

:
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