(1/ 2)

NSC93-2213-E-009-153-
93 08 01 94 07 31

¢)

94 6 1

Software Security Assurance by Analyzing Program Run
Time Behavior

Chang-Hsien Tsai!

Shih-Hung Liu?

Shuen-Wen Huang?

Shih-Kun Huang!>*
Deron Liang??
'Department of Computer Science and Information Engineering
National Chiao Tung University, Taiwan
2Institute of Information Science, Academia Sinica, Taiwan
3Department of Computer Science, National Taiwan Ocean University, Taiwan
*skhuang@iis.sinica.edu.tw

Abstract

Software vulnerabilities can be attributed to
inherent bugs in the system. Several types
of bugs render faults for not conforming to
specifications or failures that cause crash of
control flow, indefinite hang, or panic re-
source access. We have developed a progres-
sive method for testing potential vulnerabilities
to verify whether such crash-type failures are
exploitable. When software bugs are found to
be exploitable, then these bugs are very likely
to be transformed into software vulnerabilities.
To resolve such vulnerabilities, we have devel-
oped a tool, BEAGLE, that helps isolate bugs
in presence of crash failures and reconstructs
the scene of the failure point. The process of
reconstruction detects the wviolation of control
state invariants with tainted input analysis and
covers security-faults related tests. We analyze
bug reports from the most active projects in
sorceforge.net and systematically identify ex-
ploitable bugs with the precise indication of
vulnerability and prove the applicability of our
method.

Keywords: COTS Vulnerability Testing, Dy-
namic Analysis, Software Wrapper, Control
State Corruption, Exploitable Bugs

1 Introduction

Abnormal program running behavior
severely affects software security. Tainted
input and access race conditions can cause
system failures such as buffer overflow,
privilege violation, or indefinite hang that
causes denial of service. We classify cases
of anomaly into crash(due to stale control
flow), hang(indefinite wait), and panic(crash
due to data access violation) and deal with
control-crash type failures. Programs may
run out of control and crash due to the
corruption of branch control state. Branch
control state determines the branch flow of the
next instruction for execution, corresponding
to three types of branch instructions: function
call, function return, and jump. If the branch
targets of these instructions are dynamic
addresses, they may be corrupted with an

invalid address range. For example, dynamic
call target can refer to an offset of a virtual
table in C++ implementation, or a function
pointer in C language. Function returns are
usually dynamic. Jump target can also be
dynamic. If these targets are corrupted (either
unintentionally, or maliciously), the program
may fail to meet specifications. Such programs
with corrupted control states may also be
exploited and thus become vulnerable. It is
difficult to reconstruct system failures after
a program has crashed due to a corrupted
control state and the propagated distance
between crash sites and corrupt sites. To cope
with this difficulty, we try to intercept and
monitor running behavior during programs
in execution. We aim to design a tool that
analyzes the program running behavior and
determine whether it is an exploitable vulner-
ability. Furthermore, since source codes are
usually unavailable to users, in our design we
assume that only COTS (Commercial Off The
Shelf) executables are available for analysis.

We develop a run-time instrumentation and
interception tool called BEAGLE to peri-
odically monitor software running behavior.
BEAGLE has the following capabilities. First,
when the software crashes, it can approximate
the latest checkpoint and determine through
tainted input analysis whether the failure point
is exploitable. Second, using wrapping sys-
tem call API techniques BEAGLE observes the
internal behavior of running programs, such
as API call sequence, call parameters and re-
turn values and then determines whether they
are anomalous or not. Therefore, BEAGLE
is capable of verifying whether the crash site
is security exploitable. In the implementation
aspect, BEAGLE uses an interactive software
wrapper to manipulate the interfaces between
the software application and the operating sys-
tem functions. This wrapper not only inter-
cepts the functions and records the parameters
and the return value, but also receives testing

directives to replace calling parameters and the
return value with any arbitrary value. Thus,
we can use BEAGLE to conveniently maneu-
ver the application, change the intended OS
function call parameters with testing data, and
observe the response of the application to de-
termine the suspicious crash sites.

We encounter software crash occasionally
and the convention solution is to restart the
software. However, there is much valuable in-
formation to help developers find the reasons
for a crash.

The remainder of this paper is organized as
follows. In Section B, we will cover the buffer
overflow and some popular exploits . In Sec-
tion Bl we describe the difference between a
crash site and a bug site. We propose a scheme
to point out the bug site. In Section 77, we in-
troduce the background of Win32 API hook-
ing techniques. In Section Bl we detail the
implementation of the BEAGLE system in a
Windows platform. In Section B, we describe
experiments with case studies. In Section @]
related work will be presented. Finally, in Sec-
tion [, we present our conclusions and future
work.

2 Buffer Overflow and Control
State Corruption

The purpose of this work is to automatically
detect security-related errors from the crash.
First of all, we must explain what our so-called
"exploitable crash” is. Actually, this concept
is much similar to exploiting the vulnerabili-
ties in the programs. Buffer overflow vulnera-
bilities dominate security attacks in the recent
years because they are low-hanging fruits for
attackers. Attackers can use the buffer to in-
ject payload and change the control flow of the
program. In this section, two common kinds of
buffer overflow crashes will be elucidated, in-
cluding how they are produced, how attackers
can exploit them to alter the control flow and

how they can be detected.

If a program writes data in a buffer without
boundary checking, other data subsequent to
the buffer may be overwritten. This is often
due to using unsafe C function calls, such as
strcpy (), sprintf (), strcat() and so forth.
According to where the buffer is, the overflow
is known as stack overflow or heap overflow.

2.1 Stack Overflow

Nowadays, function calls are implemented
in the stack because the CPU supports much
about this. When a function is called, a new
stack frame is pushed into the stack; when the
function exits, the stack frame is popped from
the stack. A example stack frame is shown in
Figure [l The stack frame consists of the two
arguments of the function, the return address
of the function, the saved frame pointer and
local variables.

For example, if a buffer in Figure [over-
flows, local variables and saved base pointer
(and even the data in the previous stack frame)
will be overwritten. Once the overwritten data
is referenced, the program runs into an unex-
pected state and often crashes. If important
data is overwritten with a carefully designed
malicious code, the program will execute the
injected code.

2.2 Heap Overflow

Heap is the memory region in the memory
space for dynamic allocated data . Heap over-
flow could also change the execution flow of
the program and is more complicated than
stack overflow. We will introduce how the
heap-based overflow overwrites the destination
of CALL instruction to change the execution
flow and causes programs to crash. The basic
method is to pollute a function pointer by the
neighboring buffer. Memory objects are often
on the heap and provide a way to overwrite the
virtual function table pointer

return address

buffer|]

Figure 1. The layout of a stack frame

2.3 Target of Overflow

There are two main causes of a crash. The
first is accessing data in an invalid address.
The second is transferring control to an invalid
address, often due to buffer overflow. The lat-
ter is the more serious of the two cases. In
this situation, we can intercept the program
by overwriting the following data:

Return address The corruption of this
data belongs to stack-based control flow
anomaly and will be detected by our stack
corrupt site identification mechanism.
When the current function returns, the
program transfers control to the code
designated by the return address. By
overwriting the return address, we can
jump to any position in the process. After
the function returns, the control flow will
be intercepted. This is the popular target
of buffer overflow exploit [IJ.

Saved base pointer The corruption of this
data also belongs to stack-based control
flow anomaly and will be detected by our
stack corrupt site identification mecha-
nism. This points to the previous acti-
vation record. If the saved base pointer

is overwritten, the process will have a
fake frame after returning from the cur-
rent function and will jump to the fake
return address of the fake frame [I7].

Function pointer This data may be in the
stack or heap and will be detected by our
call target validation mechanism. When
overwriting the function pointer, the pro-
cess will jump to an arbitrary position.
Overwriting the virtual function pointer
in the heap is also a common vulnerabil-
ity in C++ program. [6].

These control flow anomaly caused by over-
writing these data mentioned above would be
detected by the following two mechanisms.
Some limitations will be discussed in the Sec-
tion Ml

2.4 Correct Stack Trace

A correct call stack is very helpful for de-
bugging. Following the stack trace, developers
can examine the program source to know what
happened. If the crash is caused by buffer over-
flow,however, the stack is usually corrupted,
overwriting important clues to the crash. The
main obstacle of debugging stack overflow bug
is losing call stack information. Call stack is
the first help for debugging crash program. For
example, you load your crash program with gdb
and issue the bt command. gdb would print
the backtrace of all stack frames. So we get
the function call sequences that introduce the
crash.

This important clue may disappear when the
crash is introduced by the stack buffer over-
flow. If the buffer overflow overwrites some im-
portant data in the stack (saved frame pointer
and return address), We confirm that Visual
C++ .NET 2003 and GNU gdb can not show
the correct call stack after buffer overflow.

2.5 Crash Site and Bug Site

Even with the correct call stack, developers
are also not easy to catch where the bug is.
Because developers usually trace the bug from
the crash site, but there is a situation that the
bug site is far from the crash site.

When the program crashes, by inspecting
it using the debugger we know the instruc-
tion where the program stops running. The
point where the program stops running abnor-
mally is the crash site. When the stack-based
overflow occurs, the stack is ”corrupt” for the
saved base pointer and the return address cor-
responding to a certain function is overwritten.
This is the point where the stack becomes ab-
normal. At some later time, this program must
either crash or be exploited. The goal of the
stack corrupt site identification is that right
after the control flow of the program has been
changed, we identify where the corrupt site is
as precisely as possible.

The distinction between the crash site and
the bug site is essential. The crash site is
obviously the point where software crashes,
whereas the bug site is the point where buffer
(heap or stack) is corrupted. For example,
in Figure B, the function foo passes its local
buffer buf to the function bar, which overflows
the buffer. After strcpy() returns, the stack
is corrupted. However, the program does not
crash until the function foo returns (in line 4).
Obviously, the debugger could not specify the
distance between the stack bug site and the
crash site. Therefore, the bug site needs to be
identified in order to find the root causes.

3 Research Method

Our research uses the following approaches
to manifest and analyze the crash process as
precisely as possible.

void foo(void){
char buf[8];
bar (buf) ;

} /*crash sitex/

void bar(char *buf){
strcpy(buf, "this is a long string");
/*bug sitex/

Figure 2. A program with buffer overflow.

3.1 Control Flow Anomaly Detection

There are two values, the address and saved
frame pointer, stayed the same during its own
function’s lifetime. We call these two values
stack invariant property and check it in prolog
and epilog of the function.

The return address of a function is the ad-
dress where the function returns control. The
return address stays the same for the function’s
lifetime. If the return address changed during
function call, there must be something wrong.
This is often caused by buffer overflow in stack.

The frame pointer is generally used to ad-
dress the local variable of the function. The
saved frame pointer is the frame pointer of par-
ent function call (the function that call this
function). The saved frame pointer is also un-
changing during function call.

3.2 Frame Tracing

Stack frame backtracing employs the fact
that saved base pointer points to previous
saved base pointer in the stack. Typically, the
function prologue is used to allocate the space
on the stack for local variables. The follow-
ing short disassembly shows how the compiler
decided to implement the allocation of stack
variables.

PUSH EBP

MOV EBP, ESP
SUB ESP, X

The old EBP is pushed on the stack, and
then the current EBP is overwritten by the ad-
dress of stack pointer, which points the top of
the stack. That is, the current EBP points
to the previous saved EBP. If we continuously
trace back the saved EBP, the tracing will
reach the saved EBP of main function. We
utilize stack frame backtracing to verify that
the call stack is sound and furthermore iden-
tify the stack corrupt site when the stack-based
overflow occurs.

We define our term ”stacktrace”. In
Figure 6, function A invokes function B.
Therefore, the stack frame of function A is
in the higher address and the stack frame
of function B is in the lower address. Now
assume that the EBP register points to
the saved base pointer of function B. If we
perform the stack frame backtracing, we
will generate a stacktrace, which comprises
(SavedEBP, RET)p, (SavedEBP, RET)a,

..y (SavedEBP, RET)pmain. Actually, this
sequence could be understood easily by real-
izing that the main function calls some other
functions and then some other functions call
function A, and then function A calls function
B.

In general, the EBP register points the ad-
dress of the saved frame pointer. Each saved
frame pointer stores the address of the saved
frame pointer of parent’s function. And each
return address is next to the saved frame
pointer in high memory address. This prop-
erty allows us to trace the stack invariant in
run-time. We call this frame tracing.

4 Implementation
4.1 Interception

System call interception is the fundamental
technique in our work. We survey six related

work [I4] [15, 20, 26, 8, 21] in Table @ De-
tours is a library for instrumentation of arbi-
trary Win32 functions on x86 machines. It re-
places the first few instructions of the target
function with an unconditional jump instruc-
tion, which points to the user-provided Detour
function. Users can do the interception work
in the corresponding Detour function. API-
SPY tools list API’'s name in the order they
are called, and record the parameters as well
as the return value.

As with Detours, the purpose of this work is
to take control before the intended target func-
tion call is reached. However, the technique
used in API-SPY is DLL redirection by modi-
fying the Import Address Table (IAT). This is
very different to Detours, which modifies the
target function’s prolog code to transfer con-
trol by inserting a JMP instruction at the start
of the function.

4.2 User Function Wrapping

In order to check integrity of the stack, we
must wrap the user function at prolog and epi-
log. As shown in Figure B there are two steps
to wrap user functions. The first step is to dis-
assemble the program binary via OllyDbg [30)].
The function info parser then parses the as-
sembly code to generate the prolog/epilog info.
The second step is to feed the prolog/epilog in-
fomation into the instrumentation library. The
library then generates user function wrapper
on the fly.

4.2.1 Binary Disassembly

Our system relies heavily on the disassembly
ability of OllyDBG, which is a assembler level
analysing debugger on Microsoft Windows. It
does much work on binary code analysis that
we could utilize, especially when the source is
not available. It can recognize procedures, API
calls, and complex code constructs, like the call
to jump to a procedure. These analyses help us

Binary » OllyDBG Fun}c)‘zrosrérlnfo
Detours
] Function
Prolog/Epilog W
Instrumentation rapper
library

Figure 3. Process of the function wrapper
generation

parse the disassembly of the application to re-
trieve the necessary information such as proce-
dure call sites and entry addresses. In addition,
it can disassemble all the executable modules
that the application loads.

4.2.2 Function Info Parser

In order to transfer control from the execu-
tion of the application process to our runtime-
generated stub, we need to replace instructions
at the function prologue and epilogue with a
JMP to the stub. The type of the procedures we
recognize is the typical function prolog and epi-
log, which sets up and destroys the stack frame
respectively. Our function info parser retrieves
prolog/epilog information that is needed by the
instrumentation library.

When the prolog is instrumented, the tar-
geted library will check the length of the bi-
nary to be replaced. If the length is less than 5
bytes, it means that there is not enough space
to substitute the prolog for the JMP instruc-
tion and we leave this kind of procedure to the
breakpoint mechanism, if needed. There may
be multiple return sites in this function, but
not all of them have enough space to be in-

Dynamic hook | Dynamic unhook | Replace | Overhead Impact

Watchd OK. N/A N/A N/A crash together
Detours OK. N/A N/A | 2% ~ 3% | crash together
API-SPY OK. N/A N/A N/A crash together
Intel OK. N/A N/A N/A crash together

GSWTK OK. OK. OK. N/A N/A
Binary rewriting NO. NO. NO. 1% ~ 3% | crash together
Beagle OK. OK. OK. N/A crash together

Table 1. Comparison of interception techniques
strumented. corruption detection. Detours provides a use-

In most C/C++ programs, the typical func-
tion prolog is

"PUSH EBP; MOV EBP,ESP"

and the typical function epilog is

"RETN" or "RETN const"

The two instructions in the prolog occupy
only 3 bytes. We need to check the following
instructions for another two bytes. Similarly,
we need to find more space before the epilog.
However, the instructions should not be:

1. JMP related intructions

2. Instructions which jump from others. (e.g.
PUSH EDI in the following code.)

PUSH EBP
MOV EBP, ESP
LABEL: PUSH EDI

JMP LABEL
4.2.3 Instrumentation Library

We develop an instrumentation library to re-
place certain functions at runtime. According
to the information provided by the function
info parser, the instrument library would al-
locate the space for the stub and append the
intended instructions on the stub. The most
important instruction is to CALL the monitor
function where we could backtrace the stack for

ful library to append instructions to the stub.

The instrumentation library takes pro-
log/epilog info from function info parser. It
inserts a JMP instruction in prolog and epilog
on the fly, if space is sufficient.

4.3 Experience and Further Discussion

When implementing this instrument tool, we
encounter some issues that are not intuitively
simple to overcome. We address these issues in
this sub-section and describe our solutions and
experience.

4.3.1 Stack Region

When performing stack frame backtracing, we
need to figure out when to stop tracing the
frame pointer. The straightforward idea is that
the frame pointer should not point to the ad-
dress that is out of stack region.

At first, we try to use VirtualQueryEx()
API to retrieve the meta-data of a stack re-
gion. It provides information about a re-
gion of consecutive pages beginning at a spec-
ified address that share the same attributes.
VirtualQueryEx() determines the attributes
of the first page in the region and then scans
subsequent pages until it scans the entire range
of pages, or until it encounters a page with a
non-matching set of attributes. Because of our
wrong assumption that the whole stack region

shares the same attributes, we make a serious
mistake on determining the stack upper bound-
ary. Therefore, in this wrong implementation
we did not traverse the whole stack and missed
many stack frames to check.

Our solution to overcome this problem is
to use Thread Information Block (TIB) to
identify when to stop backtracing the frame
pointer. TIB is a key system data structure in
Microsoft Windows and there are many data
related to threads inside it, including a pointer
to the thread’s structured exception handler
list, the location of the thread’s stack and the
location of the thread local storage. Further-
more, each thread in the system has its corre-
sponding TIB.

In all Intel-based Win32 implementations,
the FS register points to the TIB. As a re-
sult, we have to look at what the FS regis-
ter points to for getting the information hid-
den in the TIB. For example, FS: [0] points
to the structured exception handling chain,
while FS:[2C] points to the thread’s local
storage array. The information we needed
to judge the stack region is pvStackUserTop
and pvStackUserBase field in the TIB. The
04h DWORD pvStackUserTop filed contains the
linear address of the topmost address of the
thread’s stack. This thread should not have
a stack pointer value that is greater than or
equal to the value of this field. The 08h
DWORD pvStackUserBase field contains the lin-
ear address of the lowest committed page
in the thread’s user mode stack. As the
thread uses successively lower addresses in the
stack, those pages will be committed, and this
field will be updated accordingly. The 18h
DWORD ptibSelf field holds the linear address
of the TIB. We use this data to access the
pvStackUserTop and pvStackUserBase struc-
ture. The following code is to demonstrate how
to access these system data structure.

PTIB pTIB; __asm {

mov EAX, FS:[18h]
mov [pTIB], EAX

Therefore, we could use
pTIB->pvStackUserTop and
pTIB->pvStackUserBase to set the boundary
when performing stack frame backtracing.

4.3.2 Corrupt Site Approximation

Because of insufficient space to instrument a
JMP instruction to prologue and epilogue, we
do not wrap all the typical functions in the
target program. Therefore, some corrupt site
approximation could be discussed to increase
the precision of the corrupt site identification.
For a certain wrapped function, its stacktraces
performed in prologue and epilogue will fall in
one of situations below under an assumption:
a "normal” stacktrace is defined.

1. If the stacktrace in the prologue is normal
but the stacktrace in the epilogue is abnor-
mal, it means that the stack is corrupted
in this wrapped function.

2. If the stacktraces in the prologue and epi-
logue are normal, it means that the stack
is not yet corrupted.

3. If the stacktrace in the prologue is abnor-
mal, it means that no matter the stack-
trace in the epilogue is normal or not, the
stack is corrupted in one of the previous
functions.

If we could retrieve the function entries cor-
responding to these different stack frames, we
could use another method such as software in-
terrupt to wrap these functions to identity the
exact corrupt site. Therefore, we could in-
crease the precision of corrupt site identifica-
tion.

52
52 4 ldaffkd4 52235fF
52
5z

4 522824 14arfb4 522357

10 3be] 41414141 5B585858 lddfedd 435lch 14dFfad
i3 bc] lddfebe 435c7f ld4dfedd 435lch l4dffad

522824 144FFbd

14dFFe
14dFfe
144ff«
14dft
T 14arts
14411

S2ZBSE 14

i 5-2 Buffer Overflow in Serv-U 4.1 [25]

Figure 4. The stack backtrace of the
RobotFTP Server 1.0 with overlong input

5 Experiments
5.1 Stack Tracing and Tainted Input Analysis

To validate the correctness of the BEAGLE
prototype, we need to verify that our stack cor-
rupt site detection does point out the vulner-
able function where the stack is polluted. We
instrument RobotFTP Server 1.0, which has a
known stack overflow vulnerability, to demon-
strate that BEAGLE can detect the abnormal
stack at runtime when running the exploit and
terminate the program.

RobotFTP Server is an FTP server for the
Microsoft Windows platform. It has a non-
trivial buffer overrun bug in the function that
processes the login information that an FTP
client sends. An attacker can first login with
a username longer than 48 characters and lo-
gin again with a username of 1,994 character
to overflow the return address of this function.
When this program is running under the BEA-
GLE instrumentation, this buffer overflow will
be detected and terminate the program to pre-
vent transferring control to the attacker’s pay-
load. The result is shown as Figure Hl

We can see the first frame pointer and re-
turn address pair in the third line from bot-
tom, (41414141, 58585858). This is the sec-
ond of the overlong input usernames mentioned

~ above. Before the program returns from this
Jvulnerable function, our epilog monitor func-

14dEfL

tion backtraces the stack. BEAGLE then de-
termines if stack trace is abnormal by compar-
ing it with the stack trace in the prolog monitor
function.

While executing SITE CHMOD on a nonexis-
tent file, Serv-U constructs the error message.
The code resembles the following:
sprintf(dst, "%s: ©No such file or
directory.", filename);

The length of the dst buffer is limited. If a
long filename was received, Serv-U will crash.

The function 00419080,which handles the
CHMOD command, passes its local variable
as an error message buffer to function
0059F9B0. The function 0059F9B0 calls func-
tion 005A01C4, which calls function 005A015c,
which calls function 005A0114, which calls
function 0059F988, which calls function
0059BBF8. The last function 0059BBF8 then
overflows the local variable in the first func-
tion 00419080.

By our definition, the function 00419080 is
the crash site of this bug; while the function
0059BBF8 is the corrupt site. BEAGLE suc-
cessfully detects stack corruption in the epilog
of the function 0059BBF8 and infers the cor-
rect calling sequence. Other approaches, such
as StackGuard and StackShield, do not detect
the buffer overflow until the crash site.

5.3 Buffer Overflow in Palace 3.z client [24]

The Palace is a graphical chat program. Its
client has a stack-based buffer overflow due to
a dangerous call to wsprintf when a user visits
an overlong link similar to the following:
palace://(’a’x118) (’BBBB’) (’XXXX’)
When this situation occurs, BEAGLE detects
that the ebp/ret pair is abnormal.

6 Related Work

A considerable amount of work has been per-
formed on detecting program errors and identi-
fying their root causes either by static analysis,
or by observing their running behavior through
dynamic program instrumentation. In this sec-
tion we review different work in each category
and relate them to our work.

6.1 Runtime Inspection

Using conventional debuggers, we must set
breakpoints carefully, or we will miss the bug.
Bidirectional debuggers allow developers to
trace programs forward and backward. Biswas
and Mall use inverse statements and execu-
tion traces to roll programs back to a previous
state [].

6.1.1 Automatic Debugger

Memory checker is another useful debugging
tool. CRED [23] is an extension of GNU C
compiler to track the referent object of each
pointer. Purify [12] is a famous commer-
cial software to detect memory errors. Val-
grind [19] emulates the x86 CPU and runs
the program binary directly. Memcheck in
Valgrind can discover various bugs, or sus-
picious things, while a program is running,
such as reading or writing to memory where
it shouldn’t read or write, using uninitialized
variables. A lot of research automatically adds
codes in the source and observe the behavior
of these codes at runtime. The difference from
our work is that we instrument the runtime
process image, not the source. Therefore even
if we don’t have the source, we can still detect
program errors and add survival patches.
DIDUCE [11] tracks down software bugs us-
ing automatic anomaly detection. It aids pro-
grammers in detecting complex program er-
rors and identifying their root causes. It dy-
namically formulates hypotheses of invariants

10

obeyed by the program. DIDUCE observes the
invariants at runtime and check if the program
violates it.

6.1.2 Abnormality Detector

As described in Section Bl buffer overflow ex-
ploit must transfer the control of program
by overwriting important variables. Observ-
ing these abnormal changes, one can detect
buffer overflow exploit and terminate the vul-
nerable program. Several works design com-
piler extension to add this checking. Stack-
Guard [1] adds canary between return address
and saved base pointer. SSP []], originally
named propolice, and Microsoft Visual Studio
/GS option [B] adds canary between the saved
base pointer and local variables. Before any
user function returns, its canary is checked to
detect buffer overflow. StackShield [28] uses
Ret Range Check to protect the return address.
It saves return the return address of the cur-
rent function in another global variable. When
the function returns, it matches the return ad-
dress with the stored return address. Binary
Rewriting [?] protects the integrity of the re-
turn address on the stack by modifying the bi-
nary code. It adds the same detection mech-
anism similar to StackGuard without source
code. However, all these approaches only de-
tect the crash site.

Feng et al. [9] extract return addresses from
the call stack and use them to detect exploit.
But this approach requires a training phase to
learn all valid return address.

Software wrapper is another approach to
monitor dangerous library call. libsafe [2
wraps dangerous functions (such as strcpy(),
strcat () and etc.) to enforce boundary check-
ing. Wrapping functions compute the size be-
tween the buffer starting address and saved
frame pointer. If the input data is larger than
the size, libsafe halts the program to avoid
overwriting the saved base pointer and the re-

turn address. [22] wraps heap-related func-
tions to detects heap overflow. By wrapping
malloc(), it inserts canary and padding in
front of each memory chunk. By wrapping
free(), it checksums the chunk to ensure the
canary unchanged. STOBO [I3] wraps user
functions to detect buffer overflow.

6.1.3 Exploit Avoidance

Most of buffer overflow exploits depend on in-
jecting malicious code in the stack. RISE [3]
XOR trusted binary code with random number
in loading time and XOR back in instruction
fetch time. Malicious code injected without
XOR becomes garbage and soon crash.

Some researches work on mnon-erecutable
stack to render the kind of attack useless [27].
By the way, Intel and AMD are working on
their next generation CPU to include this abil-
ity in hardware [I6]. Although these tech-
niques are good for security, they do not solve
all the problems. Non-executable stack just
protects from some of the buffer overflow at-
tacks and makes them be Denial of Service.

6.2 Fault Triggering and Robustness Testing

Fault triggering systems aide in producing
system crashes. We can examine whether
these crash are exploitable or not. Ghosh and
Schmid present an approach to testing COTS
software for robustness to operating system ex-
ceptions and errors [I0]. They instrument the
interface between the software application and
the Win32 APIs. By manipulating the APIs
to throw exceptions or return error codes, they
analyzes the robustness of the application un-
der the stressful conditions. Whittaker and
Jorgensen summarize the experience of break-
ing software [29]. By studying how these soft-
ware failed, they present four classes of soft-
ware failures: improperly constrained input,
improperly constrained stored data, improp-
erly constrained computation and improperly

11

constrained output. Software testers can use
the four classes of failures to break the soft-
ware.

7 Conclusion

We have tried to build up the relationship
between system robustness and software secu-
rity. Unreliable software with inherent bugs
may be exploited to violate security specifica-
tions, meant to be security faults. Types of
bugs are either faults not conforming to system
specifications or failures such as crash, hang,
and panic. We design and implement the BEA-
GLE system to back-track crash type failures
and analyze tainted input by an input pollu-
tant tracing algorithm to determine if such fail-
ures are security exploitable. Crash-type fail-
ures are potentially vulnerable to be exploited
by tainted input due to corruption of control
state. We try to approximate sites of con-
trol state corruption by stack checkpoints and
monitoring run-time status. Known exploits
have been tested to show the applicability of
the system. We hope to discover more failures
that will introduce security exploits with finer-
grained stack checkpoints and further improve
the precision of approximation process for cor-
ruption detection.

References

[1] Aleph One. Smashing the stack for fun
and profit. Phrack Magazine, 7(49):File
14, 1996.

Arash Baratloo, Timothy Tsai, and
Navjot Singh. Libsafe: Protecting crit-
ical elements of stacks. White paper,
Bell Labs, Lucent Technologies, Decem-
ber 1999.

Elena Gabriela Barrantes, David H. Ack-
ley, Trek S. Palmer, Darko Stefanovic, and
Dino Dai Zovi. Randomized instruction

[10]

set emulation to disrupt binary code in-
jection attacks. In Proceedings of the 10th
ACM conference on Computer and com-
munication security, pages 281-289. ACM
Press, 2003.

Bitan Biswas and Rajib Mall. Reverse ex-
ecution of programs. ACM SIGPLAN No-
tices, 34(4):61-69, April 1999.

Brandon Bray. Compiler security checks
in depth. Technical report, Microsoft Cor-
poration, 2002.

Bulba and Kil3r. Bypassing stack-
guard and stackshield. Phrack Magazine,
10(56):File 5, 2000.

Crispan Cowan, Calton Pu, Dave Maier,
Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian
Zhang, and Heather Hinton. StackGuard:
Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In Proc.
7th USENIX Security Conference, pages
63-78, San Antonio, Texas, January 1998.

Hiroaki Etoh. Gce exten-
sion for protecting applications
from stack-smashing attacks.

[11]

[12]

[13]

[14]

[15]

http://www.trl.ibm.com/projects/security /ssp/.

Henry Hanping Feng, Oleg M. Kolesnikov,
Prahlad Fogla, Wenke Lee, and Weibo
Gong. Anomaly detection using call
stack information. In Proceedings of the
2003 Symposium on Security and Privacy,
pages 62-77, Los Alamitos, CA, May 11—
14 2003. IEEE Computer Society.

Anup K. Ghosh and Matthew Schmid. An
approach to testing cots software for ro-
bustness to operating system exceptions
and errors. In Proceedings of the 10th In-
ternational Symposium on Software Reli-
ability Engineering, November 1-4 1999.

12

[16]

[17]

[18]

Sudheendra Hangal and Monica S. Lam.
Tracking down software bugs using auto-
matic anomaly detection. In Proceedings
of the 24th International Conference on
Software Engineering (ICSE-02), pages
291-301, New York, May 19-25 2002.
ACM Press.

Reed Hastings and Bob Joyce. Purify:
Fast detection of memory leaks and ac-
cess errors. In Proceedings of the Win-
ter 1992 USENIX Conference, pages 125—
136, 1992.

Eric Haugh and Matt Bishop. Testing ¢
programs for buffer overflow vulnerabili-
ties. In Proceedings of the 2003 Sympo-
stum on Networked and Distributed Sys-
tem Security, February 2003.

Yennun Huang, P. Emerald Chung, Chan-
dra Kintala, Chung-Yih Wang, and De-
Ron Liang. NT-SwiFT: Software imple-
mented fault tolerance on Windows NT.
In USENIX, editor, Proceedings of the
2nd USENIX Windows NT Symposium:
August 3-5, 1998, Seattle, Washington,
Berkeley, CA, USA, 1998. USENIX.

Galen Hunt and Doug Brubacher. De-
tours: Binary interception of Win32 func-
tions. In Proceedings of the 3rd USENIX
Windows NT Symposium (WIN-NT-99),
pages 135-144, Berkeley, CA, July 12-15
1999. USENIX Association.

Michael Kanellos. Amd,
tel put antivirus tech into
http://news.com.com/2100-7355-
5137832.html, January 2004.

in-
chips.

klog. The frame pointer overwrite. Phrack
Magazine, 9(55):File 8, 1999.

Calvin Ko, Timothy Fraser, Lee Badger,
and Douglas Kilpatrick. Detecting and

[20]

[21]

[22]

23]

[25]

[26]

countering system intrusions using soft-
ware wrappers. In Proceedings of the
9th USENIX Security Symposium, Den-
ver, Colorado, August 2000. USENIX.

Nicholas Nethercote and Julian Seward.
Valgrind: A program supervision frame-
work. In Oleg Sokolsky and Mahesh
Viswanathan, editors, Flectronic Notes in
Theoretical Computer Science, volume 89.
Elsevier, 2003.

Matt Pietrek. Windows 95 System Pro-
gramming Secrets. IDG Books, 1995.

Manish Prasad and Tzi cker Chiueh. A bi-
nary rewriting defense against stack based
overflow attacks. In Proceedings of the
USENIX Annual Technical Conference,
pages 211-224, June 2003.

William Robertson, Christopher Kruegel,
Darren Mutz, and Fredrik Valeur. Run-
time detection of heap-based overflows.
In proceedings of 17th USENIX Large In-
stallation Systems Administration (LISA)
Conference, October 2003.

Olatunji Ruwase and Monica S. Lam. A
practical dynamic buffer overflow detec-
tor. In Proceedings of the 11th Annual
Network and Distributed System Security
Symposium, February 2004.

SecurityFocus. The palace graphical chat
client remote buffer overflow vulnerability.
http://www.securityfocus.com/bid /9602.

SecurityFocus. Rhinosoft serv-u ftp server
site chmod buffer overflow vulnerability.
http://www.securityfocus.com/bid /9675.

Johny Srouji, Paul Schuster, Maury Bach,

and Yulik Kuzmin. A transparent check-
point facility on NT. In Proceedings of

13

[27]

28]

the 2nd USENIX Windows NT Sympo-
stum: August 3-5, 1998, Seattle, Wash-
ington, pages 77-86, Berkeley, CA, USA,
1998. USENIX.

PaX Team. Documenta-
tion for the pax project.
http://pax.grsecurity.net /docs/index.html.

Vendicator. Stack shield:a ”stack smash-
ing” technique protection tool for linux.
http://www.angelfire.com /sk/stackshield/,
January 2000.

James A. Whittaker and Alan Jorgensen.
Why softwarre fails. SIGSOFT Software
Engineering Notes, 24(4):81-83, 1999.

Oleh Yuschuk. Ollydbg. http://home.t-
online.de/home/Ollydbg/.

