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Abstract — Compact bandpass filters with a sharp 

transition band are presented. The circuit consists of a 
cascade of two stages. The cascade is implemented by a 
direct coupling scheme, as well as a three-line structure. 
Each stage is a resonator tapped with a quarter-wave open 
stub at its center and a transmission zero can be created. The 
positions of the two zeros can be easily tuned to locate close 
to the passband, so that an elliptic function-like response can 
be obtained. Both uniform impedance resonators (UIRs) and 
stepped impedance resonators (SIRs) are employed. 
Experimental results show a close agreement with the design. 

Index Terms  —  Elliptic filters, microstrip filters, 
transition band, transmission zero, stepped impedance 
resonator. 

I. INTRODUCTION 

Filters are essential components in the RF front end of a 
wireless communication system. Planar filters are usually 
preferred due to its low cost, good reliability and ease in 
synthesis and design. A high-performance planar 
microwave filter is usually required to have a good 
attenuation level in rejection bands and a sufficiently wide 
upper stopband. It is especially favorable that transmission 
zeros can be created and easily tuned close to the 
passband, since one of the important missions of a filter is 
to suppress the image frequency near the passband. The 
creation of transmission zeros in a planar filter can be 
achieved by establishing proper cross couplings [1-3], 
tapping input/output resonators [4,5], and employing a 
zero degree feed scheme [6]. 

In [7], quarter-wave microstrip resonators are proposed 
to design a compact and low loss filter with elliptic-type 
performance. In this filter, two transmission zeros are 
generated at upper and lower sides of the passband. It is 
found that strong couplings between feed lines and end 
resonators are required in the structure, so that a very 
small coupling gap becomes inevitable. 

In this presentation, uniform impedance resonators 
(UIRs) and stepped impedance resonators (SIRs) are 
employed to design a bandpass filter with a sharp 
transition band. The sharp transition band is achieved by 

locating transmission zeros close to the passband. Both 
the UIRs and SIRs are tapped with an open stub at its 
center. When the stub is longer than a quarter wavelength 
at the design frequency, a transmission zero at lower 
passband edge is introduced to the filter, and vice versa. A 
cascade of two filter stages, one of them has a 
transmission zero at the lower edge of the passband and 
the other has a zero at the upper edge, forms a bandpass 
filter with sharp transitions. In addition to direct coupling 
of the two stages, three-line microstrip structures [8] are 
also incorporated into the design. 
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Fig. 1.  Structure of two tapped quarter-wave SIRs. 
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Fig. 2.  The transmission zero and poles of a tapped SIR. 
Structure parameters of the SIR, l2/l1 = 2 and Z2/Z1 = 0.3. 
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Fig. 3. Dependence of the transmission zero fz and pole 
frequencies, fo and fp, on normalized stub length. (a) UIR circuit. 
(b) SIR circuit in Fig.1 and Fig.2. 
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Fig. 4.  Two coupling structures for tapped λ/4 UIRs. 

II. PROPERTIES OF TAPPED λ/4 UIRS AND SIRS 

The SIR shown in Fig.1 will have two resonant 
frequencies due to the open stub. The length and the 
impedance ratios of the low impedance to the high 
impedance sections of the SIR are 2 and 0.3, respectively, 

so that the spurious resonance can be pushed more than 
three times the fundamental frequency [5]. The IE3D 
software [9] is used to do the simulation. In Fig.1, the 
structure is fed with microstrips through small gaps at 
both ends, and both conductor and dielectric are assumed 
loss free to have peak frequencies with a good accuracy. 
Note that when the impedance ratio is unity, the resonator 
becomes a UIR. Both the SIR and UIR without stub are 
designed to have a resonant frequency at fo = 2.45 GHz.  

Fig.2 plots the |S21| response of the circuit in Fig.1. A 
transmission zero fz and two transmission poles fo and fp 
can be observed. Before the circuit design, it is important 
to investigate the dependence of these three frequencies 
on the dimension of the stub. Fig.3(a) and Fig.3(b) plot 
the variations of fz, fo and fp against the stub length for the 
UIR and SIR circuits, respectively. The stub length is 
normalized with respect to the corresponding quarter-
wave resonator at 2.45 GHz. Fig.3 indicates some 
important properties of fz, fo and fp as follows. The 
fundamental frequency fo is fixed at 2.45 GHz and it is 
independent of the stub length. The transmission zero fz 
can be located either on lower or upper side of the 
passband, and fp always locates between fo than fz. It is 
interesting to note that when ls/(λ/4) = 1.10 and 1.045 for 
the UIR and SIR cases, respectively; the three curves 
intersect at 2.45GHz, the design frequency. 

III. THE FILTER DESIGN 

The design method for the investigated filter is as 
follows. For a bandpass filter with sharp transitions at 
passband edges, two transmission zeros are required. The 
intuitive way is to cascade two two-pole filters in Fig.1. In 
the design, first locate fz on both sides of the passband, 
tune the resonator size if necessary, and then adjust the 
couplings in the structure. Since the transmission zeros 
have been determined by the stub length, their frequencies 
are unchanged during the cascading of the two stages. 
This can greatly save time in synthesizing the filter 
response. 

IV. UIR FILTER RESPONSES 

Consider a two-stage UIR filter with coupling structure 
A in Fig.4. According to our experience, the contribution 
from fp to the coupling coefficients in the filter is 
negligible. Thus, the synthesis of the passband response 
can be approximated by three coefficients K01, K12 and K23 
determined by fo of the main resonators. For a Butterworth 
response with a fractional bandwidth ∆ = 10%, K01 = K23 
= 0.30 and K12 = 0.11. If a coupling angle of 60o is used, 
the gap sizes can be found to be 0.25 mm and 1.2 mm, for 
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a substrate with εr = 10.2 and thickness 1.27 mm. The 
sizes of the quarter-wave resonators have to be slightly 
trimmed. It is found that the resonator tapped with longer 
stub has to be cut down by 6%, and the other one has to be 
increased by 4%. Fig.5(a) shows the simulation and 
measured results for the filter. The frequencies of the 
zeros are chosen at 2.3 and 2.6 GHz. The measured 
insertion loss at the center frequency is 1.5dB.  

The filter can also be implemented by structure B in 
Fig.4. It is found that the size of either resonator has not to 
be trimmed for compensating the change of phase 
constants from single microstrip to coupled three-lines for 
the input and output couplings. The reason why this filter 
structure possesses the two transmission zeros created by 
the stubs can be explained as follows. It can be seen that 
at either one zero frequency fz, the center of the 
corresponding resonator is grounded, and the distance 
from the center to the open end of the resonator 
corresponds to a resonant frequency other than fz. Thus, at 
fz, the input signal can neither be coupled into the main 
resonators, nor pass through the filter. 
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Fig. 5.  Simulation and measured responses of four-pole filters 
with tapped UIRs. Responses for (a) coupling structure A and (b) 
coupling structure B in Fig.4. 
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Fig. 6.  Two coupling structures for tapped λ/4 SIRs. 
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Fig. 7.  Simulation and measured responses of four-pole filters 
with tapped SIRs with coupling structure A in Fig.6. (a) Detailed 
responses. (b) Responses in a broader band. 

V. SIR FILTER RESPONSES 

The filters in Fig.5 present a spurious response at twice 
the fundamental frequency. It degrades the attenuation 
level of the filter in the upper rejection band. Therefore, 
we design the bandpass filters with SIRs. There are also at 
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least two possible coupling structures for cascading the 
two SIR filter stages, as shown in Fig.6. In coupling 
structure A, the coupling between the tapped resonators is 
performed by the central parallel-coupled lines. Fig.7(a) 
shows the simulation and measured responses from 2 to 3 
GHz, and Fig.7(b) shows those from 1 to 12 GHz. The 
insertion loss at the center passband is 2.6dB. The 
rejection level at twice the design frequency (4.9GHz) is 
close to 70dB. The filter has an attenuation level better 
than 40dB before the unwanted response goes up at 10.5 
GHz. The extra transmission zero at 8.5 GHz is produced 
by the input and output coupled stages, and that at 10.5 
GHz is the second attenuation pole of the open stepped 
impedance stub. 

Fig.8(a) plots the simulation and measured responses 
of the SIR filter fed with a three-line structure from 2 to 3 
GHz and Fig.8(b) shows those from 1 to 10 GHz. The 
passband insertion loss is 1.7dB at the design frequency. 
The spurious response goes up at 8GHz, and before this 
frequency the attenuation level is about 30dB. 
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Fig. 8.  Simulation and measured responses of four-pole filters 
with tapped SIRs with coupling structure B in Fig.6. (a) Detailed 
responses. (b) Responses in a broader band. 

VI. CONCLUSION 

A simple design for bandpass filters with a sharp 
transition is presented. The building blocks of the filters 
are quarter wavelength uniform impedance resonators 
(UIRs) and stepped impedance resonators (SIRs). Both 
direct coupling and a three-line microstrip structure are 
used to realize the cascade of two filter stages, which have 
a transmission zero on the lower and upper sides of the 
passband. The UIR design presents a good |S11| responses 
as well as good insertion loss in the passband, while the 
SIR design possesses a wide upper rejection band with a 
good attenuation level in the rejection band. All the filters 
shown here have a sharp transition band. 
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