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The complexity of computing the Walsh spectrum of Boolean functions is
difficult in general, however several interesting classes of such functions have
a very special spectrum, whose ad hoc computation can be carried out
significantly faster than in the general case. It is worth to note that the spectral
analysis of Boolean functions can be viewed as a Cayley graph eigenvalue
problem, this observations allow the using of tools from algebraic graph
theory for investigations related to the spectral coefficients of Boolean
functions, especially when the number of distinct coefficients is small. The
main motivation for introducing the graph Gs is that its spectrum coincides
with the Walsh spectrum of its associated Boolean function f(x). This brings
the problem of analyzing the spectral coefficients of Boolean functions into
the framework of spectral analysis of graphs, i.e., it makes it possible to use
techniques from graph spectra for the evaluation of spectral coefficients. More
precisely, the results from algebraic graph theory can be applied to analyze
Boolean functions with a few distinct spectral coefficients, the fewer is the
number of distinct coefficients, the stronger are the algebraic properties of the
function; this leads to a nice interpretation for the well-known class of bent
functions in terms of strongly regular graphs.
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The complexity of computing the Walsh spectrum of Boolean functions is difficult in
general, however several interesting classes of such functions have a very special spectrum,
whose ad hoc computation can be carried out significantly faster than in the general case. It is
worth to note that the spectral analysis of Boolean functions can be viewed as a Cayley graph
eigenvalue problem, this observations allow the using of tools from algebraic graph theory
for investigations related to the spectral coefficients of Boolean functions, especially when
the number of distinct coefficients is small. The main motivation for introducing the graph G,
is that its spectrum coincides with the Walsh spectrum of its associated Boolean function f{x).
This brings the problem of analyzing the spectral coefficients of Boolean functions into the
framework of spectral analysis of graphs, i.e., it makes it possible to use techniques from
graph spectra for the evaluation of spectral coefficients. More precisely, the results from
algebraic graph theory can be applied to analyze Boolean functions with a few distinct
spectral coefficients, the fewer is the number of distinct coefficients, the stronger are the
algebraic properties of the function; this leads to a nice interpretation for the well-known
class of bent functions in terms of strongly regular graphs.

1. Bent Functions
The Fourier transform of a Boolean function g(x):Z, — Z, is defined to be

g"(2) =% > o) (1)

VxeZ;

It is known that g(x) = z g ) (- 1)<l’x> . A Boolean function f:Z) — Z, iscalleda

VieZ}

bent function if ((— 1)/ )* A=+ !

J2r

forany A e ZJ,the term of bent was coined by

Rothaus [9].

Theorem [9]
If f(x) is a bent function on Z; withn >3, then n = 2k must be even, and the degree of f(x) is

at most k; moreover f{x) is irreducible whenever deg(f(x)) =k >3.

Some basic properties of bent functions together with their relationships with some
combinatorial structures are summarized in the following theorem. The Boolean function

f(x) is bent if and only if the matrix [(~1)’**"’] is a Hadamard matrix. The Fourier
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transform of a bent function is again a bent function.

2. The Cayley Graphs associated with Bent Functions

The Cayley graph G,= (V(f), Ey) associated with a Boolean function f:Z) — Z,
is defined on the vertex set V(f) =Z; , with u, we Z; adjacent ifw®u e Q, =77, or

equivalently f(w®u)=1.The graph Gyis ‘Qf‘ - regular with 2" Connected

components, the graph Gris connected if dim<Q f> = n. The spectrum of Gyis usually
ey ) where 4= 3 £G0(=1)"0) =27 £ (b))

VxeZy

denoted by Spec(Gy) = (22,

Upper and lower bounds on the rank (over the real field) of the adjacency matrix 4, of Gy
i.e., the number of nonzero spectral coefficients of the function /', are given in terms of
degrees of polynomials representation of /. Some properties of the Fourier coefficients and its
associated Cayley graphs are given in the following.

Theorem [1]1Iff:Z) - Z,,and A4,0<i<2"—1, are the eigenvalues of the graph G, then

a. A, =2"f"(b@i)) for0<i<2" —1;

n—dim(Q)

b. the multiplicity of its largest eigenvalue f~ (5(0))is 2 (which implies the graph G,

iS‘Qf‘ - regular with 2”‘dim<ﬂf’>

ifdim(Q, ) =n);

connected components and the graph Gyis connected

A Boolean functions is characterized by its spectrum if it is possible to identify its
associated graph (i.e., determine all the details of its topology) only on the basis of the
knowledge of its distinct eigenvalues, i.e., without using any information regarding their
eigenvectors. It is interesting to note that the fewer the number of distinct spectral
coefficients are, the stronger are the algebraic properties of the setQ) , ; for instance, it is

well-known that if a connected graph has exactly m distinct eigenvalues, then its diameter d
satisfiesd <m —1.

A k-regular graph G is strongly regular if there exist nonnegative integers a and ¢ such
that for all vertices u, v, the number| G, (1) (1 G,(v) | of vertices adjacent to both u and v is a if

u and v are adjacent, and ¢ otherwise. A k- regular connected graph is strongly regular if and
only if it has exactly three distinct eigenvalues A, = k, 4,4, . A rephrase of Parseval’s identity

gives that 1 (b(0)) = ZZOI (f"(b(i)))* and then yields the following useful quality
(k=A)k=2) =2"(k+A4k) where k=|Q,

not connected. If G is strongly regular, then a=k+rs+r+s andc =k +rs. It was also
observed that the class of bent functions is associated to a very special class of strongly
regular graphs indeed exactly identifies the bent functions.

, and » must be replaced by dim<Q f> if G is
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Theorem [1]
If Gyis a connected strongly regular graph, then there exists v €, such that

u®veQ, foreach ueZ)\Q, , and there exist z elementsw e Q, such that

vOweQ,, whereh=eifveQ  and d ifv¢Q .foreachveZ;,

In order to find a complete characterization of the class of functions with three distinct
nonzero spectral coefficients and with the additional property a = ¢, we are then left with the
problem of understanding whether or not there exists other integer solutions to

x> =2"x+(2" =1)y* =0. It was proved in [2] that the equation has integer solutions in x and

yonlyify® =0, 1, 2"*. As a consequence, bent functions can be characterized as binary
functions with a certain class of strongly regular graphs.

Theorem [1,2]
a. The associated Caley graph Gof a bent function is a strongly regular
graph SRG(v,k, A, A).

b. The bent functions are the only binary functions ' whose associated graph Gyis a strongly
regular graph SRG(v,k,A,4).

Those graphs G with small numbers of distinct eigenvalues are considered: if Grhas a

single eigenvalue, then G, =K,  ;if Gyhas two distinct eigenvalues, then either

Gy =2—K whenb(0) ¢ Q. , or GfZZ—K with loops otherwise; if Gyhas three
‘Q/{""l ‘Qf.‘Jrl ‘Qf‘ ‘Q/‘
eigenvalues, then
a.(Ag, A4 A4,) = (\Qf

30’_
vertices inQ ;and inZ; \Q ...

b. (A4, 4y) = (12

Qf‘) if and only if Gris the complete bipartite graph between

,0,4,)if and only if Gris a complete multipartite graph with

~ ‘Q/" . n-1\(1) @142 %
G, = —7+1)K_12 and with Spec(Gy) = ((2"7)",(0) 2 (4) 7))

c. if Gyis connected, then Gyis a SRG (2",

Q,

,e,d) with

—ap (21 )f‘n, ‘ )

A(2"1 >+‘£z,v‘

(%@—d—J@—df—%d%QA»f e

Spec(Gy) = (‘Q ;

Theorem if f'is a bent function with connected G, then Gyis a strongly regular graph
SRG(v,k, ) with
(L) = @27 425 27 125 202 42 o
(2" ,2"_1 — 2%71’2"‘2 _ 2%*1 ’271—2 _ 2%—1)
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Spec(Gp = (2 +247)0, @1 (2 op

Spec(Gy) = ((2n_1 - 2%_1)(1),(2%_1)(2%1‘271)’ (_2%‘1)(2”" +271—1)) .

3. Strongly Regular Graphs SRG(n,k,A,2)

The Friendship theorem shows that a connected graph with a unique common neighbor for
any pairs of distinct vertices has a vertex adjacent to its all other vertices, and K3 is the unique
such regular graph. We now consider those connected k-regular graphs such that any two
distinct vertices has a constant number of A common neighbors, they are strongly regular
graphs SRG(n, k, 4, 2). When A = 1, then G = K3 as just mentioned. The symplectic graphs
Sp(2m) offer a family of such strongly regular graphs with parameters (2*" — 1, 2*" ', 2*" 72,
2*"~2) for positive integers m, note that K3 is the symplectic graph Sp(2). The Cayley graphs

associated with bent functions provide another family of such graphs.

Theorem: Suppose there exists a SRG(n, k, A, A) with A >1, and with distinct eigenvalues
k>6>r7,then

1. 0=—1=+k—-1, Or=—(k—A) are integers with multiplicities
1 k k
m,=—((n-1)—-— :
0 2(( ) ) '—k—ﬂ)
2 2
2. 0|2 and(n)= (¢ +9”)/1(0 0+4) o

), andm_ :%((n—l)—i-

+1).

Proof: (1). Available in monographs, omitted. (2) Lett = , which is a positive integer

k
NI =)
2N -4

by (1). Hencek = — both  and b =~/t* —44 are of the same parity;

sincet” —44 = b, it follows that44 = (¢ + b)(t —b) , both

2 2
k k k k
t+b= + -4 ,andt—b= - -4
N \/(\/k—/lj k-7 \/( k—lj

must be even. Let # + b = 2h; and ¢t — b = 2h, for some positive integers /; > h,, hence 4 =
]’l1h2, then ¢ = hy + hy, b= hy — hy, and k is either i, (hy + hy) or hy(hy + hy). Note

thatd =<k —A 1iseitherh (incase k =h(h +h,))orh,(incase k=h,(h +h,)), hence
(@*+0+ )0 -0+1)
A

0| A. 1t follows that n= in either case as required. Q.E.D.

The above lemma paves a way for studying possible feasible parameters (v, k, 4, 1) for a
given A with a pair (h,h,)=(0,4/60)or(1/6,0). The trivial decompositionof 4 =1-1
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with (h,h,)=(4,1) leadsto (v, k, 4, A)= (A (A+2),A(A+1),4,A)or(A+2,A+1,4,4).
The other extremal cases with 7,4, close to J4 are considered for 2 = 2*", and
2" (2" + 1) respectively.
If A =2""with(h,h,)=(2",2"), then (v, k, 2, A) = (2°"** =1,2°"",2*" 2°™) which is
identical with those of the symplectic graphs.
IfA=2"2" +1), then (v, k, 4, 4) =
222"+, Q2" + D™ +1),2" (2" +1),2" (2" +1)) or
(27(272),2" (2" +1),2" (2" +1),2" (2" +1))
respectively with (4, h,) = (2" +1,2" )respectively. For the symplectic graphs Sp(2(m+1)),
which is a SRG (2*"** —1,2*"*",2°",2*" ) with spectrum
Spec(G) = ((22m+1)1’(2m)22"”‘ 72m71,(_2m)22"’*‘+2m71) ’
some examples with small number of vertices are known already, for example:
SRG(3, 2, 1, 1) with Spec(G) =(2',1°,(-1)*),
SRG(15, 8, 4, 4) with Spec(G) = (8',2°,(-2)°),
SRG(63, 32, 16, 16 ) with Spec(G) = (32',4”,(-4)* ), and
SRG(255, 128, 64, 64 ) with Spec(G) = (128',8",(-8)'").
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