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一、摘要 
 
1. 中文摘要  
 
關鍵詞：低溫多晶矽，壓印技術，薄膜電晶體，金屬誘發多晶矽結晶。 
 

本計畫主要的目的是利用壓印技術製造<112>方向的金屬誘發多晶矽結
晶。這多晶矽比起傳統的<111>金屬誘發多晶矽好很多。 
。 

 
2. 英文摘要 
 

Keywords：LTPS, poly-Si, imprint, thin-film transistors, Ni-metal induced 
lateral crystallization.  

 

Thin-film transistors fabricated by <111> and <112> needle grains have 

been investigated. They were fabricated by Ni-metal-induced lateral 

crystallization method and Ni-metal imprint method. It is found that the 

performance of 112-TFT was far superior to that of 111-TFT. The device 

transfer characteristics of 112- TFT is 2.6 times increased in field-effect 

mobility (µFE), and 4 times improved on/off current ratio (Ion/Ioff), and 2.4 

times diminish in leakage current (Ioff) that compared with the 111-TFT. 

 
 
二 、前言及研究目的 

 
Low-temperature polycrystalline-silicon (LTPS) thin-film transistors (TFTs) 

have attracted considerable interest owing to their use in the active matrix 

liquid crystal displays (AMLCDs) due to its higher carrier mobility compared 

with amorphous Si (α-Si) and can be used to integrate circuit on the glass 

substrate. Many kinds of techniques have been used to crystallize the α-Si on 

the inexpensive glass substrate. Among many crystallization methods, excimer 

laser crystallization (ELA) of α-Si film appears to be very promising method 

due to its lower thermal budget, shorter processing time, and ability to produce 



 

poly-Si film with better quality than others. However, the equipment cost is 

high and uniformity is poor. As for the solid phase crystallization (SPC) 

method, it is a well-established poly-Si formation technique with several 

advantages over ELA, including smoother surfaces, superior uniformity, and 

batch process in furnace annealing.1,2) However, there are several drawbacks 

of SPC poly-Si: (1) grain size is small, (2) carrier mobility is low, and (3) α-Si 

needs to be annealed for about 24h at temperature over 600°C.3) The 

temperature is higher than the strain temperature of a normal glass substrate. 

In comparison, the Ni-metal-induced crystallization (NIC) and 

Ni-metal-induced lateral crystallization (NILC) method has a lower equipment 

cost than ELA, and a lower thermal budget than SPC. In NIC and NILC, a thin 

Ni4-7) metal layer is selectively deposited on the top of α-Si film, which is 

followed by annealing at a temperature lower than 600°C. Three stages have 

been identified in the process: (1) the formation of NiSi2 precipitates, (2) the 

nucleation of crystalline Silicon (c-Si) on NiSi2 precipitates, and (3) the 

subsequent migration of NiSi2 precipitates and growth of c-Si.8) The poly-Si 

forming below the metal film is called “NIC”, as forming outside the metal 

coverage is called “NILC”. The first stage, the formation of NiSi2 precipitates, 

is a diffusion-controlled process. As for stages (2) and (3), the nucleation and 

growth of c-Si, they are mediated by NiSi2 precipitates. Crystalline Si 

nucleates on {111} faces. The crystallization of needlelike Si grains proceeds 

via the migration of nickel silicides through α-Si. The orientation of needle 

grain is <111>. Unfortunately, the NILC poly-Si film has intragrain defects 

and some uncrystallized regions between poly-Si grains. In this study, these 

defects were reduced by Ni-metal imprint induced crystallization method. In 



 

Ni-metal imprint method, a thin Ni metal layer was deposited on the imprint 

mold. The mold and α-Si film were then pressed together and annealed at 

550°C. The orientation of Ni-metal imprint needle grains is <112>, which 

differed from that of NILC needle grains <111>.Therefore, the principal goal 

of this research has been to investigate the performances of TFTs fabricated by 

<112> and <111> needle grains.  

 

三 、研究方法 
As shown in Table I, two kinds of TFT were used in this study. Samples 

designated as "111-TFT" were TFTs fabricated from traditional NILC method, 

whose growth direction of poly-Si grain is <111>, while samples as 

"112-TFT" were from Ni-metal imprint method, whose growth direction is 

<112>. The basic processes of 112-TFT were the same as that of 111-TFT.3) 

Silicon (100) wafers were used as the substrates. Wet oxide films of 500 nm 

thickness were grown using a H2/O2 mixture at a substrate temperature of 

1050°C. Silane-based α-Si films with a thickness of 100 nm were then 

deposited using a low-pressure chemical vapor deposition (LPCVD) system at 

550°C.  

For the fabrication of 111-poly-Si, a 2-nm-thick Ni film was selectively 

deposited on the top of α-Si film, which is followed by crystallization at 550°C. 

The fabrication of 112-poly-Si is illustrated in Fig. 1. P-type (100) orientation 

silicon wafers were used to fabricate imprint molds. Stripe patterns were 

introduced into the molds by etching it with photolithographically generated 

patterns. The molds were prepared by wet chemical etching using potassium 

hydroxide (45 wt%) solution at 70°C.9) A 2-nm-thick Ni film was then 

deposited on the imprint mold. A 2-nm-thick Ni film was then deposited on 



 

the imprint mold.  The imprint mold and α-Si film were then pressed in a 

differential thermal expansion apparatus,10) which was followed by annealing 

at 550°C for 24 h in argon ambient. The OM image of 112-poly-Si is shown in 

Fig. 2, the light region is the poly-Si area; the grain growth is very uniform at 

each imprint site.  

 The TFTs were then fabricated by defining the active areas on these two 

poly-Si films. Channels of TFTs were parallel to the longitudinal grain 

boundaries. A 100 nm thick SiO2 film for gate insulator was deposited using 

plasma-enhance chemical vapor deposition (PECVD). Subsequently, 150 nm 

poly-Si for gate electrode was deposited using high-density plasma chemical 

vapor deposition (HDP-CVD). After defined the gate, a self-aligned 35 kev 

phosphorus ions at the dosage of 5×1015 ions/cm2 were implanted to form 

source/drain and gate. The implanted dopants were activated by thermal 

annealing at 600°C for 24h. Finally, a 500-nm-thick SiO2 film was deposited 

using PECVD to serve as a passivation layer. Contact holes were opened 

through the oxide layer, and 500 nm of aluminum (Al) was then deposited as 

the interconnection. And hydrogen plasma was performed after the TFT 

devices were fabricated.  

 

三 、結果與討論 
Figure 3 shows the SEM and TEM images of 111-poly-Si. Not all α-Si film 

was transformed to c-Si. Some regions between the needlelike Si grains 

remained uncrystallized. Lots of branch grains were found. The growth rate 

was about 4.6 µm/h and the growth direction of needle grain was <111>.  

The SEM and TEM images of 112-poly-Si are shown in Fig. 4. The diffraction 

pattern of the grains reveales that the grain orientation (perpendicular to the 



 

film plane) is <111> and the growth direction (parallel to the film plane) of 

needle grains is <112>. Most of the grains were parallel to each other. 

Compare with 111-poly-Si, 112-poly-Si had fewer branch grains and less 

uncrystallized α-Si region, which had been etched away by Secco solution. 

The growth rate of 112-poly-Si was about 5.3 µm/h, which was higher than 

that of 111-poly-Si.  

After comparison, the different poly-Si growth mechanisms used should be the 

main cause of the different results. In 111-poly-Si grains, the α-Si right under 

the Ni layer was completely crystallized to very fine grain sizes (15–20 nm) 

due to the NIC mechanism.11, 12) At the edges of Ni layer, Ni silicide nodules 

moved laterally into the α-Si region and induce the crystallization of α-Si. As 

for the 112-poly-Si, the Si crystallization mechanism was also mediated by 

NiSi2 precipitates, which were found in front of the 112-needle grains. 

However, as illustrated in Fig. 5, there was no need for the formation of NIC 

grains. Therefore, the 112-poly-Si had faster growth rate. When samples were 

annealed at 550ºC, lots of the Ni silicides were formed on the faces of the 

imprint-stripe patterns. These silicide nodules moved into the α-Si region and 

any α-Si along the path would be crystallized. Therefore, as shown in Fig. 3, 

not much uncrystallized α-Si region was left. Thus, the growth of branch 

grains was suppressed by the neighbor major needlelike grains. These extra 

constrains of NILC growth mechanism might be the reason why the growth 

direction of our Ni-metal imprint needle grains were along <112>.  

Figure 6 and Table II show the transfer characteristics of 111-TFT and 

112-TFT. The performance of 112-TFT was far superior to that of 111-TFT. 

Compared with 111-TFT, the field-effect mobility (µFE) were increased by a 



 

factor of 2.6 from 44 to 117 cm2/V-s, and the on/off current ratio (Ion/Ioff) by a 

factor of 4 from 2.29×105 to 9.23×105. The leakage current (Ioff) was reduced 

from 13 to 5.47 pA/µm.  

As mentioned earlier, some α-Si regions remained among the poly-Si grains. 

These regions trap charge carriers and constitute potential barriers to the flow 

of carriers. The presence of the potential barriers and the additional scattering 

at the boundaries degrade the mobility.13,14) As shown in Figs. 3 and 4, 

112-poly-Si had less α-Si region than 111-poly-Si. Therefore, 112-TFT had 

higher µFE, higher Ion/Ioff, smaller subthreshold slope (S) and lower threshold 

voltage (Vth) than 111-TFT.  

Besides the effect of α-Si region, the orientation of grain boundaries will also 

affect the performance of TFTs. In a previous study, Chao et al.
3)

 found that 

NILC-TFT (111-TFT) exhibit enhanced performance compared with 

SPC-TFT. This was because that SPC poly-Si had a columnar grain structure 

with grain boundaries randomly oriented with respect to the direction of drain 

current (Id).14) These grain boundaries trapped charge carriers and built up 

potential barriers to the flow of carriers. The presence of these grain 

boundaries degraded µFE, S and Vth. This degradation could be improved by 

using 111-poly-Si because lots of its longitudinal grains and their boundaries 

were parallel to Id hence less impeding to carrier flow. In this study, as 

illustrated in Fig. 7, the arrangement of 112-poly-Si grains was even better 

than that of 111-poly-Si grains. All 112-poly-Si grains and their boundaries 

were parallel to each other with the exception of very few branch grains 

between them. Therefore, the performance of 112-TFT was far superior to that 

of 111-TFT.  



 

Thin-film transistors fabricated by <111> and <112> needle grains have been 

investigated. 111-poly-Si grains were fabricated by NILC method, while 

112-poly-Si by Ni-metal imprint method. It is found the performance of 

112-TFT was far superior to that of 111-TFT.  Compared with 111-TFT, the 

field-effect mobility (µFE) was increased by a factor of 2.6 from 44 to 117 

cm2/Vs, and the on/off current ratio (Ion/Ioff) by a factor of 4 from 2.29×105 to 

9.23×105. The leakage current (Ioff) was reduced from 13 to 5.47 pA/µm. This 

improvement is because that 112-poly-Si had fewer branch grains and less 

uncrystallized α-Si region than 111-poly-Si. Besides, all 112-poly-Si grains 

and their boundaries were parallel to each other with the exception of very few 

branch grains between them.  

 

三 、未來的方向 
 
（1） 將此技術用在玻璃基板上。 
（2） 大面積的壓印技術開發。 

 



 

 

 

Fig. 1 Schematic illustration of Ni-metal imprint method. 

 

 

Fig. 2. Optical microscopy image of 112 - poly-Si annealed at 550°C for 24 h. 

 

Fig. 3 (a) SEM image of Secco-etched 111-poly-Si film and (b) TEM image of 111-
poly-Si film. 



 

 

Fig. 4 (a) SEM image of Secco-etched 112-poly-Si film and (b)TEM image of 112-
poly-Si film. Compared with 111-poly-Si, 112-poly-Si had fewer branch grains and less 
uncrystallized α-Si region. The preferred direction of needle grain was <112>, which 
differed from that of 111-poly-Si grains <111>. 

 

 

Fig. 5 Schematic illustration of the growth mechanisms of (a) 111 - poly-Si and (b) 112 
- poly-Si grains. 

 

 

Fig. 6 Typical IDS-VGS transfer characteristic of 111 - TFT and 112 - TFT. 



 

 

 

 

Fig. 7 Schematic illustration of the growth of needle grains: (a) 112 – poly-Si and (b) 
111-poly-Si grains. All 112-poly-Si grains were parallel to each other with the exception 
of very few branch grains between them. 

 

 
Table Ι The specification and fabrication method of 111-TFT and 112-TFT. 

 
 
 
 
 

 
Table ΙΙ Device characteristics of 111-TFT and 112-TFT. 
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